LMS JCM: Editorial Advisers

 

Papers for the LMS Journal of Computation and Mathematics should be submitted to the London Mathematical Society, naming the most appropriate Editorial Adviser below to whom the paper should be forwarded.

Subject

Editorial Adviser

       Special interests

Algebraic geometry, see Number theory

Algorithms, see Theoretical computer science or Symmetry methods

Approximation theory

J. Levesley
Department of Mathematics
University of Leicester

  • Multivariate approximation and interpolation
  • Splines
  • Radial basis functions
  • Approximation on manifolds
  • Lattice Boltzmann methods

Arithmetic geometry, see Number theory

Combinatorics

A. G. Thomason
DPMMS
Universityof Cambridge

  • Graph theory and hypergraphs
  • Combinatorial set theory

Complexity, see Theoretical Computer science

Computational modelling, see Mathematical and computational modelling

Computational group theory

C. M. Roney-Dougal
School of Mathematics and Statistics
University of St Andrews

  • Finite permutation and matrix groups
  • Finite simple groups
  • Representation theory of finite groups
  •   ·  

Computer science
(see also Theoretical computer science)

M. Fernández
Department of Computer Science
King’s College London

  • Models of computation
  • Programming language semantics, type systems and access control

Constraint satisfaction problems

C. M. Roney-Dougal
School of Mathematics and Statistics
University of St Andrews

 

Cryptology, see Number theory

Differential and difference equations, see Symmetry methods or Mathematical and computational modelling

Dynamical systems, see Mathematical and computational modelling

Dynamics, see Mathematical and computational modelling

Geometric group theory

Geometric topology

I. Kapovich
Department of Mathematics
University of Illinois at Urbana-Champaign

 

Geometric integration, see Mathematical and computational modelling or Symmetry methods

Geometry, see Computational geometry

Graph theory, see Combinatorics or Theoretical computer science

Group theory, see Computational group theory or Geometric group theory

Hamiltonian structures, see Mathematical and computational modelling
Image analysis and processing, see Mathematical and computational modelling
Integrability, see Mathematical and computational modelling

Linear algebra (numerical), see Mathematical methods and computational modelling

Logic, see Theoretical computer science

Mathematical and computational modelling

M. Leok
Department of Mathematics
University of California, San Diego

  • Numerical methods for differential equations (ODEs/PDEs)
  • Methods for Lagrangian, Hamiltonian, nonholonomic, and general dynamical systems
  • Geometric mechanics and geometric control theory

 

J. P. Wang
SMSAS – Mathematics Group
University of Kent

  • PDEs/ODEs
  • Symmetries
  • Conservation laws
  • Hamiltonian structures
  • Integrability
 

A. Zanna
Department of Mathematics
University of Bergen

  • Numerical methods for differential equations (ODEs/PDEs)
  • Geometric integration
  • Numerical linear algebra 
  • Image analysis and processing 
Moving frames, see Symmetry methods

Number theory

J-M. Couveignes
Départementde Mathématiques et Informatique
Université Toulouse 2

  • Algorithmic aspects of finite fields, number fields and function fields
  • Applications of the above to cryptology and coding theory

 

N. P. Dummigan
Department of Pure Mathematics
University of Sheffield

  • Arithmetic geometry and L-functions
  • Elliptic curves and modular forms

 

S. Siksek
Mathematics Institute
University of Warwick

  • Rational points on varieties
  • Diophantine equations

Numerical analysis and methods, see Mathematical and computational modelling or Approximation theory

Numerical linear algebra, see Mathematical and computational modelling

ODEs, see Mathematical and computational modelling or Symmetry methods

PDEs, see Mathematical and computational modelling or Symmetry methods

Representation theory, see Computational group theory

Semantics, see Computer science

Stochastic analysis

D. Crisan
Department of Mathematics
Imperial College London

  • Stochastic filtering
  • Stochastic PDEs
  • Strong/weak approximations of functions of SDEs

Symmetry methods

P. Hydon
Department of Mathematics
University of Surrey

  • Differential and difference equations (symmetry methods, formal theory and algorithms)
  • Geometric integration
  • Multisymplectic PDEs
  • Moving frames

Theoretical computer science
(see also Computer science)

M. Grohe
Fachgruppe Informatik
RWTH Aachen University

  • Logic
  • Algorithms
  • Complexity
  • Graph theory

Topology, see Geometric topology