LMS JCM: Editorial Advisers

The LMS JCM is closed to new submissions.

Subject

Editorial Adviser

       Special interests

Algebraic geometry (see also Number theory)

G. D. Brown
School of Mathematics
Loughborough University

  • Computational algebraic geometry
 

S. D. Galbraith
Department of Mathematics
University of Auckland

  • Computational algebraic geometry
Algorithms, see Computer science or Symmetry methods

Approximation theory

J. Levesley
Department of Mathematics
University of Leicester

  • Multivariate approximation and interpolation
  • Splines
  • Radial basis functions
  • Approximation on manifolds
  • Lattice Boltzmann methods
Arithmetic geometry, see Number theory

Combinatorics

A. G. Thomason
DPMMS
University of Cambridge

  • Graph theory and hypergraphs
  • Combinatorial set theory

Complexity, see Computer science

Computational algebraic geometry, see Algebraic geometry

Computational group theory

C. M. Roney-Dougal
School of Mathematics and Statistics
University of St Andrews

  • Finite permutation and matrix groups
  • Finite simple groups
  • Representation theory of finite groups
  •   ·  

Computational modelling, see Mathematical and computational modelling
Computational number theory, see Number theory
Computer science M. Fernández
Department of Computer Science
King’s College London
  • Models of computation
  • Programming language semantics, type systems and access control
  L. A. Gasieniec
Department of Computer Science
University of Liverpool
  • Discrete algorithms and structures
  • Parallel and distributed computing
  • Network analysis and communication
 

M. Lohrey
Department Electrotechnik und Informatik
Universität Siegen

  • Logic
  • Computational complexity
  • Automata theory
  • Algorithms in combinatorial group theory
 

F. G. Moller
Department of Computer Science
Swansea University

  • Concurrency theory
  • Automata theory
  • Modal and temporal logic
 

J-É. Pin
Laboratoire d'Informatique Algorithmique
Université Paris – Diderot Paris 7

  • Automata
  • Formal languages
  • Connections with logic

Constraint satisfaction problems

C. M. Roney-Dougal
School of Mathematics and Statistics
University of St Andrews

 

Cryptography, see Number theory
Differential and difference equations, see Symmetry methods or Mathematical and computational modelling

Dynamical systems, see Mathematical and computational modelling

Dynamics, see Mathematical and computational modelling

Geometric group theory

Geometric topology

I. Kapovich
Department of Mathematics
University of Illinois at Urbana-Champaign

 

Geometric integration, see Mathematical and computational modelling or Symmetry methods

Geometry, see Algebraic geometry or Number Theory

Graph theory, see Combinatorics

Group theory, see Computational group theory or Geometric group theory

Hamiltonian structures, see Mathematical and computational modelling
Image analysis and processing, see Mathematical and computational modelling
Integrability, see Mathematical and computational modelling

Linear algebra (numerical), see Mathematical methods and computational modelling

Logic, see Computer science

Mathematical and computational modelling

M. Leok
Department of Mathematics
University of California, San Diego

  • Numerical methods for differential equations (ODEs/PDEs)
  • Methods for Lagrangian, Hamiltonian, nonholonomic, and general dynamical systems
  • Geometric mechanics and geometric control theory

 

J. P. Wang
SMSAS – Mathematics Group
University of Kent

  • PDEs/ODEs
  • Symmetries
  • Conservation laws
  • Hamiltonian structures
  • Integrability
 

A. Zanna
Department of Mathematics
University of Bergen

  • Numerical methods for differential equations (ODEs/PDEs)
  • Geometric integration
  • Numerical linear algebra 
  • Image analysis and processing 
Moving frames, see Symmetry methods

Number theory

T. A. Fisher
DPMMS
University of Cambridge

  • Arithmetic of elliptic curves
  • Computational number theory
 

S. D. Galbraith
Department of Mathematics
University of Auckland

  • Computational number theory
  • Public key cryptography
  • Elliptic curves over finite fields
  • Geometry of numbers

 

S. Siksek
Mathematics Institute
University of Warwick

  • Rational points on varieties
  • Diophantine equations

Numerical analysis and methods, see Mathematical and computational modelling or Approximation theory

Numerical linear algebra, see Mathematical and computational modelling

ODEs, see Mathematical and computational modelling or Symmetry methods

PDEs, see Mathematical and computational modelling or Symmetry methods

Representation theory, see Computational group theory

Semantics, see Computer science

Stochastic analysis

D. Crisan
Department of Mathematics
Imperial College London

  • Stochastic filtering
  • Stochastic PDEs
  • Strong/weak approximations of functions of SDEs

Symmetry methods

P. Hydon
Department of Mathematics
University of Surrey

  • Differential and difference equations (symmetry methods, formal theory and algorithms)
  • Geometric integration
  • Multisymplectic PDEs
  • Moving frames
Theoretical computer science, see Computer science

Topology, see Geometric topology