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by (13). We subtract suitable multiples of L, from L,, ..., L,_, in such
a way as to remove the terms in u,, and write the results as

s (=1, ..., n—1). (23)

Suppose that we can ensure, by a preliminary unimodular substitution
on uy, ..., u,, that the coefficients «; satisfy

ay=M-+0o(M), oy=o0(M) for i+#j, (24)
where M is arbitrarily small. We then define 4,, ..., §,_, by
Ln = Ot(91 u1+ te +9n—1 un-l+un)’

where a ~ M1 A by comparison of determinants. The desired inequality
for C'(F) now follows from (13) by straightforward arguments, on using
the same continuity property of F as was used in §4.

It remains to be proved that we can satisfy the conditions (24). Let
the expressions for u,, ..., %, in terms of L,, ..., L, be

w= % ByL; (=1, ..., ).
ji=1

Then, arguing as in the Corollary to Theorem 2, we can ensure that the
elements in the first n—1 rows of the matrix B;; are approximately N times
the corresponding elements of the unit matrix. Now the matrix in (23)
is the reciprocal of the matrix B8; (i, j=1, ..., n—1). Hence (24) holds,
with M = N-1. This gives the desired result.

University College,
London.

ON DIRECT SUMS OF FREE CYCLES
E. C. Zeemant,

Introduction.

All the groups considered in this paper are abelian. If 4, B are two
groups, we denote by 4 & B the group of homomorphisms of 4 into B.
This is usually written Hom (4, B), but the shorter notation brings out
more clearly the dual relationship it bears to the tensor-product, ®. A
strong case for this duality is suggested by Eilenberg and Steenrod ([1],

+ Recejyed 12 April, 1954; read 22 April, 1954,
02
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Ch. V), and the advantages of the notation are apparent in Theorem 2
below.

Let Z be a free cyclic group. Let F and G be respectively the weak
and strongt direct sums of a set of free cyclic groups indexed by an
arbitrary indexing set, I'.  Thus FC G, and F is free abelian but @ is not
free (unless I' is finite). An element ge @ is uniquely determined by its
integer coordinates {g;};cr. The condition for ¢ to be in F is that only a
finite number of its coordinates are non-zero.

The main object of this paper is to establish

THEOREM 1. There are natural isomorphisms
() FOZXG, (i) GhZF.

The first half is well known§. The second half is obvious when I is
finite, and has been proved when I is countable by Specker [3]||. In §1
we extend his result to the general case by means of transfinite induction.
For this we need to assume

I. The Aziom of Choice,
and
II. The Axiom of Accessibility of Ordinalsy.

These have been shown to be consistent with the usual axioms for set
theory by Godel and Shepherdson [2] respectively. We do not need to
assume the continuum hypothesis. The main step in the proof is Lemma
1.6, which represents, for example, the jump from w, to c.

In the rest of the paper we discuss the “ associativity ** of the symbols

® and ; and prove

TreorEmM 2. If A, B, C are abelian. groups, there are natural -
ssomorphisms

(i) AQ(BRC)=(AQB)®C;
(i) A (B C)= (AQB)h C
(ili) AQ (Bt C)= (A M B)th C, provided both A and C are free;

(iv) An(BRC)= (At B)QC, provided A or Cis free and A or C is
finitely-generated.

+ Some authors use ‘‘restricted” and ‘‘unrestricted” instead of “weak” and

“gtrong .
1 An immediate consequence of Theorem 1 (ii).
§ [1], p. 133.
| My attention was drawn to Specker’s paper by G. Higman.
q See Lemma 1.7 below. My attention was drawn to Shepherdsons work by

MHANewmsn
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Part (i) merely states the associativity of the tensor-productt. The
proof of (ii) is straightforward}. The proof of (iii) is in essence the same as
that of Theorem 1(ii), and the necessary modifications are indicated in §2.
We also give examples to show the necessity of the conditions; and ask
the question: is FQQ~ Fh F?

Section 3 is concerned with proving Theorem 2 (iv), and giving
examples to show the necessity of the conditions.

The motivation behind the two theorems is homology theory in algebraic
topology. For instance, let F and G represent the groups of finite integral
chains and infinite integral cochains respectively, and Theorem 1 expresses
the duality between them. Theorem 2 is of interest in dihomologys,
where A, B represent integral chain groups and C a coefficient group.

I should like to acknowledge the fact that this paper grew out of
discussions with P. J. Hilton.

Notation. «, B, v, ... denote subsets of I.
If ge G, g|B denotes the element of @ given by

9> isﬁ’
9|B=1
B 0, otherwise.

A unit, ¢ of G(or F)is the element which has its 7-th coordinate equal to
unity and the remaining coordinates zero. The standard element, e, of G
is the element with all its coordinates unity.

3, k1,7, 8 w, .. denote ordinals.

0,, O, denote the classes of ordinals of the first and second kinds (¢.e. with
or without a predecessor).

A, A, w,, ... denote cardinals.

I, k, ... denote the cardinals of the set I', and the ordinal %, etc.

1. Proof of Theorem 1 (ii).

There is a natural embedding|| §: F— G Z, uniquely determined by
its effect upon the units of F
Oe(g)=g;, ¢cF, 0¢:G—Z.

6 is clearly 1—1, so that to prove the theorem we have to show that it is
onto. We shall prove (Corollary 1.11) that given ¢: G- Z, then ¢ maps
all but a finite number of units to zero. Therefore there exists fe F, such

t N. Bourbaki, Algébre, Livre II, Ch. III.

I (1], p. 160, ex. 1.

§ Dihomology is & homology theory based on pairs of simplexes; see a forthcoming
paper by the author. ) : a

|| In effect the Kronecker index between F and G.
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that $—0f maps all the units to zero. We shall then show (Lemmas 1.2-
1.7) that this condition is sufficierit to ensure ¢—ff = 0in Gh Z. In other
words if A, € G'th Z, is the annihilator of F, C @, then A = 0.

Lemmat 1.1. Given ge @, de G Z, and a set {«,} of disjoint subsets
of T, then there exist at most a finite number of r such that $(g|«,) # 0.

Proof. - Suppose not. Then there exists at least a countable set
{a,}, n=1, 2, ... such that ¢(g|«,)=a,#0, a, an integer. Construct
recursively a strictly increasing sequence of integers {k,}, by choosing
k, =1, k, = the minimum integer satisfying

n—1
%> B 2|, |+n.
m=1

Define he @ by
[ 2g;, iea,, n=12, ..,

10, .otherwise.
Let ¢h=a, and choose #>|a|. Then

k‘- ==

n—-1
h— = 2%n(g|a,) = 24K,
1

some h'eG. Take the ¢-image:

n—-1
a— 3 Zmg = 2 k',
1

n-1
2| dh' | =|a— T 2kng,, | << 2%
1
by construction. Therefore ¢h' =0 and
n—1 n
a= X 2knq,=22kq,,
1 1

similarly ; so that a, = 0, contradicting our hypothesis.

CoroLLARY 1.11. Any &G h Z maps all but a finite number of units
to zero. '

Proof. Choose g=e, the standard element, {«,} to be the set of
individual elements of I', and apply the lemma.

Consider now the following two statements concerning a cardinal

A< T

¥(A): For all ge@, ¢eA, BCT, F=2, we have ¢(g|B) =0.
x(A): If ge @, $eAf, kis an ordinal of cardinal <A, and we are given

t After Specker [3], Satz III.
1 We could allow ¢eG(h Z for the second statement, x(A), but this is not necessary for
the proof.
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any decreasing transfinite sequence {8;} of subsets of I, suffixed by j,
1 <j <k, such that for each j, ¢(¢|B;) =a, then ¢(g| N B;) =a.
i<k

=

Clearly ¥'(I') is equivalent to the theorem, for it impiies dg=¢(g|T')=0,
all e/, ge@. Conversely if §: F~Gm Z, and ¢eA, then ¢=0; 8o
that in particular ¢(g|p) =0, all B, B=T.

Lemma 1.21. F(x).
Proof. Given ge@G, ¢el, BCT, B countable; identify f with the
positive integers. Define he G by
2%g,, t=mn, nep,
h‘=

0, otherwise.
Then

n—1 -
#h—(h—Z 2"g,em), since gem—0, each m,
' m=1 oo

= 22", some integer a.

Therefore 22" divides ¢k, for arbitrary », and so ¢h = 0. Similarly ¢h' =0,
where b'¢ @ is given by ‘
B (2¥—1) gns t=mn, nep,
‘£ 0, otherwise.
Hence ¢(g|B) = ¢(h—h’) =0, as required.
This is sufficient to establish the theorem when I' is countable, and also
yields the beginning of our inductive proof of the general case.

Lemma 1.3. IfA<X <T, then W(X) implies ¥ ().

_ Proof. Given ge@, ¢eA, BCT, §=z\; then embed B C some g,

B'=X, and define g'=g|B. Therefore ¢(g|B)=¢(g'|B)=4(g'|B') =0,
by ¥(').

COROLLARY 1.31. .If T < T’ and the theorem is true Jor @, then it is
also true for G.

Proof. Embed I'C I, and hence GC &', and apply the lemma.
For the next lemma we need to recall two definitions:

The limit of a transfinite sequence of ordinals, lim r; is defined to be
j <k
_ the least ordinal >all r;, j < k. ’

The ordinal w, is said to be singular if w, = lim7,, the limit of some
i<k

strictly increasing sequencef, where k < w,, ke Oy,

t After Specker [3], Satz III.
I Recall that & &0, means that & has no predecessor.
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We observet that if w, is singular then se 0,, but the converse statement
needs some accessibility axiom, and we discuss this in Lemma 1.7 below.

LemmA 1.4, If w, is singular, and ¥ (A) for all A < Ns,vtken ¥(x,).

Proof. Given ge @G, ¢eA, BCT, F = N,; identify B with the section of
ordinals defined by w,. Thus 7e¢8 implies 1 <¢<w, By hypothesis

w,= lim 7;, where k < w,, k& 0,. We now use this accessibility of w, to
1<i<k

décompdse B into subsets for which the result holds. Denote by y the set
{j,1<j<k}. Theny<n,, and ¥(y) by hypothesis. Decompose B into

disjoint subsets «;, 8= U «;, where
i€y

o = {7’3 1 <7; </r1})
oc,-={i, limr,-.<i<r,-}, 1<j<k.
i'<j

Embed the set y in I', which is possible since y <, < T, and define an
endomorphism ¢: G— @ by

h:’gi’ is%'ﬂ’%
0, igp.

This is indeed a homomorphism, being linear in the coordinates of o, We
deduce that ¢&eA, for

(&h); = {

ifjgy, ¢ 50%0;
ifjey,, € 5 gla; 3 0, since &; <7; < ng, and so ¥(a;) by hypothesis.

Therefore ¢&(e|y) =0, since ¥(y); but £(e|y) =g|B, so that ¢(g|B)=0
as required.

Lemma 1.5. W(A) emplies x(A).

Proof. The proof follows closely the pattern of that of Lemma 1.4.
Suppose we are given the hypothesis of x(A), then we have to show

s(e|np)=a.
i<k
If ke O,, then NB, =81
i<k
and the result is trivial; so assume ke O, Further we may assume the

result true for all &', &' <k; otherwise replace & by the first such %', for
which it does not hold, and we shall achieve a contradiction. Let y be

+ W. Sierpinski, Legons sur les nombres transfini (Paris, 1928), p. 225.
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as in Lemma 1.4, and so, by hypothesis and Lemma 1.3, ¥(y). Let

B=p—N B
i<k
and decompose B into disjoint subsets «;, 8= U «;, where «, =empty,
ey
and J
o= N By—PF; 1<j<k

<3

Embed y in I" and define ¢ as before. Then ¢éeA for if jevy,

#lg] )= 40

by the assumption above. Again ¢(g|8) =0, so that

#(9] 08)=d06lB)=a

N Br)—d0lB) =0,

as required.

Remark. The essential difference between Lemmas 1.4 and 1.5 lies
in the fact that in the latter case we do not know whether ¥(g,) is true.
This is in effect the main obstacle in the transfinite induction and is solved
by the following lemma.

LeMmA 1.6. x(A) vmplies ¥ (21).

Proof. Given ge@, ¢cA, BCT, =2, #(g|B) =a, we have to show
@=20. Suppose not. _

Assuming the Axiom of Choice, choose an ordinal k, k=2A. (We may
choose ke 0,, but this is not necessary.) Now identify 8 with the set of
all transfinite} sequences of 0’s and 1’s, of type k; this is possible since
both these sets have the same cardinal. An element of B is therefore
uniquely determined by its coordinates, 0 or 1, at each I, 1 <l < k.

Let us define a decreasing sequence {8;'} of subsets of 8, suffixed by j,
1<j<k, as follows:

Let B,! = the set of all sequences with 0 at each [, I <j. In particular

B! =B, s0 $(g|Byt) =a.
Now we cannot have ¢(g|8;') =a, for all j, 1 <j < k; otherwise

.1 pe——y

¢(g ;'Dkﬁ’ ) @70,

by hypothesis x(A). But N ;' contains only one element, namely the
i<k

sequence of all zeros, and, since $eA, we have a contradiction. Therefore
there exists an ordinal j, (and we may choose the first such), with the

t Since all sequences in this proof are transfinite, we shall in general write ** sequence '
for * transfinite sequence . .
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properties 1 <j; <k, and ¢(g|B} ) =a—a,, @, #0. Also j; €0, otherwise
= N B and $(gl8f)=a, j<ijy so that applying x() yields a
1

contradiction. Let y, =g} _,—p}, namely the set of sequences with
coordinates

oatl, 1<i<j;—1,

1atj,—1,

free at I, 1>j;.

Then ¢(g|y1) = a—(a—a;) = a, #0.
Thus we have constructed :

Jp, 80 ordinel, 1 <j, <k;

71, & subset of B, namely a set of sequences with coordinates fixed
I<jy, free 1 >j;;

ay, an integer, such that ¢(g|y;) =a, #0.

We now propose to construct & (transfinite) sequence} of triples
{4, vr» @,}. Let us denote by P(s) the fact that triples have been defined
for all , 1 <7< s, where s is an ordinal, 1 s <k, with the following
properties :

(i) J, is an ordinal, 1 <j, <k, such that if v’ <r <s, jr <j,;

(i) v, is a subset of B, namely a set of sequences with coordinates
fixed I <j,, free I =j,; such that if ' <r < s, then y,Dvy,,
and if re0,, then y,= N y,;
r<r

(iil) @, is an integer, such that ¢(g|y,) = a, #0.

We deduce at once that if P(s) is true, then j,<<%k. Otherwise j,=#k,
and, by (ii), y, is & set of sequences with coordinates fixed for I < %; in

other words y, is comprised of & single element. Therefore, since
$el, a,= ¢(g|y,) =0, contradicting (iii). From this we see that we
cannot have P(k) true, for otherwise, since j, > 1 and j, > j, for r >,
then j;, > k, contradicting the previous statement.

Therefore, at some point, our construction of a sequence of triples to
satisfy the above properties must come to & halt. On the other hand we
will show that it can always be continued. The resulting contradiction is
the crux of the proof of the lemma, and will show that our original
assumption that a # 0 was invalid.

Let s be the least ordinal such that we can define triples for all 7,
1 <r <s, so that P(r) is true for all , 1 <r < s, but such that we cannot
have P(s) true. From the foregoing it is clear that s exists and 1 <& <k.

t We can construct the sequence uniquely, but this is not necessary to the proof.
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We now construct {j,, y,, @,} so as to satisfy P(s), in each of the two cases
s€ 0y, or s 0,, thereby achieving the contradiction and proving the lemma.

Construction of {j,, vs g, for se0,. Define a decreasing sequence
{B;#} of subsets of B, suffixed by j, 1 <j <k, as follows:

lfj st—ls let st = 73—1;

if >34,,, let B = the subset of y, ,, of sequences with 0 at each I,
j s—1 < l <.7 ‘

fixed Z6ero free
r A D I A N ! v

Bg: 0...0 1..0...1..0 ¥ ok
L L1 L1 | 1
1 J1 Jo1 J k

Then (as in the above case, s = 1),

s(o| 087 =0. B ) =ari 0.

Therefore there exists an ordinal j, (and we may choose the first) such
that j,_, <j, <k, #(9|B5)=0a, ,—a, a,%#0. Then j,€0, (as above); so
define y, = B5_,—pB5 . Thus y, = a set of sequences with coordinates fixed
1 <j,, free 1 >j,, and y,Cvy, ;. Further

¢(gl ')’s) =@g_q— (a‘s—l_' s) =a,7#0;
and so we have P(s) true as desired.
Construction of {Jj,, e @4}, for se 0, Define j,=limj,.. Thus j,€0,,
r<s

being the limit of a strictly increasing transfinite sequence of type s, s& O, ;
and j,>Jj, each r <s. Further j, <k, since j, <k, each » <<s, by the
remark above. Condition (i) of P(s) is therefore satisfied.
Define y,= N y,=a set of sequences with coordinates at ! fixed if
r<s

l < some j,, r < 8; s.e. if 1 <j,, since j,€0,; and free if [ >each j,, r <s;
t.e. if 1 >5,. Further y,Ceach y, r<s, and so satisfies property (ii).
Define a, = ¢(g|y,). To complete the proof we must show a, # 0, which
requires the use of Lemma 1.1.

Consider the disjoint subsets {«,} of 8 defined by

#, =Y, 1—, for re0;, 1<r<s.

By Lemma 1.1, ¢(g|a,) 7 0 for at most a finite number of ». Since s¢& O,,
we may therefore choose ¢, t < s, such that ¢(g|«,) =0, all re 0y, t <r <s.
From this we may deduce that a,=gq,, all r, t <r <s. Otherwise let #

t Do not confuse j,—1 with j,_,.
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be the first such that a, #a, If re0,, then r <s, and
0=4¢(g9|o,) =0,_,—0,=a,—a, a contradiction.

If re0,, then a,=gq, for all ', t <+ <r; therefore

a,=¢(glyr)=¢(g| ny) by condition (i),
=gq, by x(A), a contradiction.

In particular when » =s we have a,=a, and @, 0 by hypothesis P(¢).
Thus a, # 0, and hence all the requirements for P(s) are satisfied.
This completes the proof of Lemma 1.6.

We must now verify that Lemmas 1.2—1.6 are sufficient to achieve
a transfinite induction. We need to assume

1. The Aziom of Choice.

II. The Aziom of Accessibility of Ordinals: if s€0,, and 28 < n, for
all 7, r <s, then w, is singular.

This latter axiom is slightly weaker than the usual Accessibility Axiom
which says “if se O, then w, is singular”. It was introduced by Tarski,
and enables us to avoid discussing the Continunum Hypothesis. Shepherdson
[2] shows that it is consistent with the Zermelo-Fraenkel system of axioms
for set theory (provided these are themselves consistent), by constructing
a super-complete inner model of the universe, in which the class of ordinals
is the section of the ordinals of the universe by the first inaccessible ordinal
of the universe, if such exists. It is not known whether a universe with
inaccessible ordinals exists.

Lemma 1.7, If
(@) F(3),
(b) A< X" and ¥ (X') implies T (A),
(¢) w,singular and ¥ (A) all X < n, implies V' (N,),
(d) W(A) implies ¥ (2"),
then ¥ (T").
Proof. We may assume I infinite, otherwise the lemma is trivial:

Byl, = n;, some ordinal . Suppose the lemma is not true, and suppose
s is the first ordinal for which W¥(x,) does not hold. By (a), s>0. If
s&0,, then ¥ (28:-) by (d). (There is a small detail here, that if we do not
assume the generalized continuum hypothesis, and N, ; < [ < 2R,
then we must embed @ in @&, I = 2™, and use corollary 1.31.) Then
¥ (x,) by (b), since 8, < 2™,
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If s& Q,, either 28 >, for some 7, r < s, whence ¥ (»,) by (d) and (b),
as above; or w, is singular by II, and ¥(§,) by (¢). We have the desired
contradiction in each case. :

This completes the proof of Theorem 1.

Remark 1.8. Ulamt has tackled a similar set-theoretical problem in
showing that there must exist non-measurable sets in the unit interval;
7.e. that there exists no real-valued function f on the subsets of (0, 1) such
that

1° there is at least one subset 4 for which f(4) > 0,

2° for each point p, f(p) =0,

3° for each countable disjoint sequence {4,}, f (G An> — 3 f(4,).
. 1 n=1

However this problem lacks the analogue of Lemma 1.1, which is used in
achieving the induction A—2* of Lemma 1.6. Consequently he can only
obtain (by a different proof) the induction =, —.,; and to reach ¢, for
instance, he must assume either the continuum hypothesis, ¢=1,, or
the weaker hypothesis: “if se0, and w,<c¢, then w, is singular”.
Whereas in the above proof we may reach ¢ without any assumptions.

2. Proof of Theorem 2 (iii).
" The theorem states that if A and C are free then

AR (Bh C)= (4t B)th C, naturally.

We notice that if B= C' = Z this reduces to Theorem 1 (ii); moreover
the proof for the general case is only a modification of the above.
We show first (Lemma 2.1) there is a natural embedding

6: AQ(BhC)—(AhB)hC.

Then, as before, the more difficult step is to prove that 6 is onto. For
this we must choose a fixed arbitrary base {¢/};¢r for 4, but it is important
to notice that the definition of @ is independent of the choice of base, so
that the natural character of the isomorphism is preserved. The base
enables us to embed AQBcAhmB (Lemma 2.2), and to  define
A, c(An B)h C, the annihilator of 4® B. Then, given ¢e(4 h B)m C,
we are able (Corollary 2.31) to choose fe AQ (B h C), such that ¢—ffcA.

The proof that A= 0, and hence of the theorem, follows by Lemmas

t S. Ulam, “ Zur Masstheorie ”’, Fund. Math., 16 (1930).
[Added in proof. I.Kaplansky has pointed out to me that Lemma 1.6 may also be

induotion A — 2* holds.]
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1.2-1.7, with only a few formal changes in notation, e.g. replacing @ by
AMB.

The notation g|B, for ge A h B, BC T, is again dependent upon the base
chosen above, being used only as a tool in proving 6 onto, and is defined as
follows :

g|B is the element in 4 h B uniquely given by

ge', iep,

0, otherwise.

(g|ﬁ)e‘={

Lemma 2.1. If A, B, C, are any abelian groups, there is a natural
homomorphism 8: AQ(Bh C)— (AhB)hC, which is 1-1 provided A is
free.

Proof. Define 0 by linear extension of the formula
[0(2®y)](9) =y(g(a)) in C, for ac 4, geAh B, ye Bt C.

We leave the reader to verify that 6 is indeed one-valued with values in
(A B)h C, and & homomorphism. If 4 is free, and given 26 AQ (B th C)
such that 6z = 0, we must show z = 0. Let {¢'} be any base for 4; we may

n
write x= X e™Ry,, (after a suitable relabelling of the e’s concerned).
m=1

Now given any m, 1 <m < n, and any be B, let ge A (h B be the element
defined by ge™ = b, gef =0 for ¢ £ m.

Then 0 = 6z(g) = ) Ym (g(e'”)) =Y,,(b). Therefore y,, =0, since this
m=1
is true for arbitrary be B; and so, in turn, z = 0.

Lemma 2.2. If A is free, then any base of A induces a (non-natural)
embedding AQ BC A & B, which is an isomorphism onto if and only if A is
finitely-generated.

Proof. Let the base be {¢};cr. Then any element in A® B may be
written uniquely as Ze‘®b;, or as {b;};cr Where only a finite number of the
b; are non-zero. Again, an element in 4 (h B is uniquely determined by
the images {b};cr of the base elements ¢/. We thus have a representation
of AQ B and A (h B as the weak and strong direct sums of a set of groups
indexed by I, each isomorphic to B. This yields at once the desired
embedding and the lemma.

LeEmMAt 2.3, Assume A and C are free. Letge A B, de(Ah B)h C,
and let {«,} be a set of disjoint subsets of I' ; then there exist at most a finite number

of r such that ¢(g|a,) #0.

t 0f. Lemma 1. 1.
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Proof. Suppose not. Then I' must be infinite and there exists an
infinite set of r such that #(g|«,) =c,#0in C. Choose a base {d°} for C.
There are two cases :

(i) There is a base element, d say, such that there exists a countable set
of r for which the d-coordinate of ¢,, an integer a, say, is non-zero. Let
{:C—>Z be the homomorphism defined by taking the d-coordinate of an
element in C. Then {¢e(Ah B)h Z, and there exists a countable set
{a,}, n=1, 2, ..., such that {(g|x,)=a, #0.

We may now proceed as in Lemma 1.1. Define he A ih B by

2kngel, iEa,,
hel =
{ 0, otherwise; ete.

The contradiction is obtained as before.

(ii) There is no such base element.

Then we may pick out countable subsets {c,} of ¢,, and {d"} of base elements,
such that the dm-coordinate of ¢,, ¢,™ sayt,

a, #0, m=n,
B 0, m=#“n.

We do this recursively as follows.

Suppose we have chosen ¢,, and d™ for m < n, obeying the above formulse.
Certainly ¢, ..., ¢, have non-zero coordinates on only a finite subset, D,
of base elements, and D clearly contains dt, ..., d*-. By our assumption,
there is at most a finite set of ¢, which have a non-zero coordinate on at
least one d®e.D. Choose ¢, to be not one of these, and so ¢,” =0, m <n.
Further, choose d" to be any d¢ such that ¢,* 0. Thus c,» =a,, say, #0,
and since d™ ¢ D by construction of ¢,, we have ¢,,» = 0, m < n by definition
of D. Hence ¢, and d» are defined, and the formulae satisfied for m < n.

Now let {:C—>Z be the homomorphism defined by

(@ 1, s=some n,
- 0, otherwise;

so that {c, = a,,, and we reach the same conclusions as in (i).

CoroLLARY 2.31. Qiven ¢e (At B)hC, and the base {¢'} of A, then

there is a finite subset B(¢) of T, such that ¢g = ¢(g|ﬁ(¢)), for any ge A & B.
(Proof as for Corollary 1.11.)

t In general there will also exist d* % any d», such that ¢, # 0,
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Apart from the formal changes in notation in §1, which we leave to the
reader, this completes the proof of Theorem 2 (iii).

It is worthwhile noting that the conditions for 4 and C to be free are
both necessary for the above proof, as the following counter examples
llustrate.

Example 2.4. A4 not free.
Let 4 be cyclic of order p: and B=C=Z. Then
(AhB)nC=0, AQ(BAC)=A.

Again it is not sufficient merely to have 4 without torsion, for let 4 be the
additive group of rationals, and the same formulae hold.

Ezxamplet 2.5. C not free.

Choose I' infinite, and let A = F, B=Z, C = Z,.
Then AQ (Bt C)~ FQ Z,, of cardinal f‘; but

(AhB)hC= Gt Z,~ (G)2G) h Z,,

of cardinal 227, since G/2G is a vector space over the field of two elements

with cardinal 2F. The two groups cannot be isomorphic for 2o S T,
As before it is not sufficient merely to have C without torsion, for
consider :

Example 2.6. C without torsion, but not free.

Choose T' infinite, and let A= F, B= %, O = G.
Then
AR(BHNC) = FRG =K, say;

AnB)YhC=Gnh G, by Theorem 1 (i), = L, say;

and 8: K — L is strictly into, since by the definition of 6, it is clear that the
identity in & th @ cannot be in the image of # (for it “involves ’ an infinite
number of units of 4).

Remark 2.61. Although the natural isomorphism 6:K - L is not
onto, it is not known whether in fact K and L are non-isomorphic. In
this context we observe two simple corollaries.

COROLLARY 2.7. There are natural isomorphisms

FANFXGhNG(=L), and KhZ=L, LAZZK.

t This counter example was pointed out by the referee.
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Proof.
KhZ=(FRGF)\NZ=F h (Gh Z), by Theorem 2 (ii),
~FAhPF, by Theorem 1 (ii),
similarly ~ (GQF)MNZXGh(FMhZ)=QhG= L.
LANZ=Z(FAF)YWNZ=FQ (Fh Z) by Theorem 2 (iii),
~ FRQA, by Theorem 1 (i) = K

COROLLARY 2.8. Provided TI' is infinite, there exist (mon-natural)
isomorphisms
Fh@=~G@ GhFF,

and inclusions
GCKc@G, KZQ;, GcLcG, LEG.
Proof.
FPhG@=Fh (FdZ), by Theorem 1 (i),
>~ (FQF)th Z, by Theorem 2 (ii),

=~ FhZ, since I and I'? can be put into 1-1 correspondence
(although this is not natural), =~ G.

GhF=(FhZ)nF, by Theorem 1 (i),
>~ FQ(Zh F), by Theorem 2 (iii),
=~ FQF =~ F (non-naturally as above).

For the second part, ZC FC @G implies FhAZCFAFCFhG, te
GCcLc@. Again, since Z is contained in F as & direct factorf,
ZQQACFRQ, ie. GC K. Also by example 2.6, KcC L, and by above
Lc@,s0 GCKcC@G.

Finally we conclude that K22 G (and similarly L2 @F); otherwise
Gc L= KnZ, by Corollary 2.6, =~ Gt Z=F, plainly a contradiction
since the cardinal of G is greater than that of F (I" being infinite).

3. Proof of Theorem 2 (iv).

This does not depend upon the transfinite techniques used in §1, and is
included primarily for the symmetry of Theorem 2. If 4, B and C are
any abelian groups, there is a natural homomorphism

7t (Ah B)@C—~Ah (BRO),

t [1], p. 142.
JOoUR. 118. P
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defined by [5(y®c)] (@) =y(a)Rc, ac A4, ceC, ye Ah B, and 4 extended
linearly. We leave the reader to verify that  is indeed one valued, with
values in 4 d (B®C), and a homomorphism. In showing that 5 is an
isomorphism we treat each of the four cases separately.

Lemma 3.1. If A s free and finitely-generated, then n is an isomorphism
onto. .

Proof.
(AnhB)QC= (AR B)QU, by Lemma 2.2,
= AQ (B®C), by the associativity of ®,
= At (BQC), again by Lemma 2. 2.

By inspection we see that these isomorphisms coincide with # (the non-
naturality of the isomorphisms of Lemma 2.2 being cancelled out by its
double application, once one way and once the other).

Lemma 3.2. If Cis free and finitely-generated, then n is an isomorphism
onto.

Proof.
(AnB)QC=Ch(4dh B), by Lemma 2.2,
=~ (C®A4)h B, by Theorem 2 (ii),
=~ A i (C i B), similarly, ‘
=~ Ab(CRQB), by Lemma 2.2, == 4 h (BRC).
Again by inspection, we see that these coincide with 7.

Lemma 3.3. If Ausfreeand Cfinitely generated, then nis anisomorphism
onto.

Proof. To show that = is 1-1 we only need the second condition.
Let¢,, ..., ¢, be a canonical set of generators for C'; that is to say the set of
linear dependence relations amongst them is generated by the equations
tnCm =0, 1 <m < n, where t, are integers, some possibly zero. Suppose
7z =0, ze (A h B)®C; then we must show 2=0. We may write (non-

n
uniquely) 2= X ¥4,Q¢,,, Y4t B.
me=1

For any ac 4,

n
2 ¥,(@)®c,, = nz(a), by definition of 7,
1

=0in BRC, since nz = 0.
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Therefore, by our choice of c,, we may deduce if ¢, = 0, y,,(a) = 0, each
acd, and so y,,=0; ift, #0, 1, divides y,,(a), each a€ 4, and so we may
defive y,," = y,,/t,, In 4 B.

Hence 2= I £,/ ®Cn =Y, Qtmmn="0, as desired.
tn#0

‘To show 7 is onto, we need both conditions.

Let {a'};er be a base for 4. Given z'e A h (B®0) we have to find
ze (4 dh B)QC, such that nx =2'.

' is uniquely determined by the set: {x’(a)};cr in BRQC.

Con
We may write (non-uniquely) 2'(a))= = y,.(¢')Qc,,, where the -
=1
Ym (@) are suitable elements in B. "
.~ For fixed m, the set {y,,(@)}cr define, by linear extension, y,,¢ 4 h B.

Lett x=2ym®cm, and by definition of 7, no=2a" as desired. This
1
completes the proof of Lemma 3. 3.

Lemma 3.4, If A s finitely-generated and C is free, then 7 is an
isomorphism onto.

Proof. As in the previous lemma, to show that 7 is 1-1 we only need
the second condition. Let {¢} be a base for C. *Suppose 7z =0,
ze (AhB)QC. We ma.y write, uniquely, z = Zy,®c’, a finite sum. Then
Zy(@)@c' =0, and so y,(a) =0 in B, each ac 4. Hence each y;=0, and
in turn z = 0, as desired.

To show that 7 is onto we need both conditions. Given z’¢ 4 th (BRO),
since 4 is finitely-generated, 2’4 C % BQc, summed over a finite set I ofs.

‘Define {;: B C—B by
b, j=t,
Li(b®d') = { o
0,. j#q,
and extending linearly.
Let x = ZC,x ®cin (A B)QC.
Then nx(a) Z {2’ (a)@c- = x'(a), each ac 4, and so gz = 2, as desired.

This completes the proof of Lemma 3.4 and Theorem 2 (iv).

We conclude the paper by giving two examples, in which 5 is not onto,
to show the necessity of the conditions, and one to show that % need not
be 1-1.

Ezxample 3.5. Both A and C free but neither finitely-generated.
Let A =C=F, countable free, and B=2Z. Then
AhB)QRC=GRXF=K, An(BQU FOhF=L,
and as in Example 2.6, 9: K- L is not onto.

t The z, in fact, must be unique, independently of the choice of yn(ai) above, but this
is not necessary to the proof.
P2



212 ON DIRECT SUMS OF FREE CYCLES.

Example 3.6. Both 4 and C finitely generated but neither free.
Let A=C=2, B=2Z.
Then (AhB)®C =0, but Ah(BQOC)=Z,hZ,= Z,.
Example 3.7. 5 not 1—1, C being neither free nor finitely-generated.
Let A = F, countable free,

B= Zy+Z4+... the weak sum of cyclic groups of all orders,

C = the additive group of rationals.

Let ye A h B be given by mapping & set of base elements of A4, one onto
each generator of a cyclic group. Then y is of infinite order, and if ¢ # 0 in
C then y®c #0. Thus (44 B)QC #£0.

But if x¢ BRO,

x€(Zy+...4+2,)Q 0, for some p,
= (Z,QC)+-..+(2,80)=0.

Therefore BRC=0.
Hence 4 h(BRQC) = 0, so that 7 cannot be 1-1.
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1. We consider a sequence of positive numbers:
M, =M, M,, M, ...),
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I =a, b].
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