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by (13). We subtract suitable multiples of Ln from Lx, ..., Ln_x in such
a way as to remove the terms in un, and write the results as

Li-^L^ZoLuU, (i=l, ..., n-l). (23)

Suppose that we can ensure, by a preliminary unimodular substitution
on %, ..., un, that the coefficients a(i satisfy

ae7 = M+o(M), aLti = o(M) for i # j , (24)

where M is arbitrarily small. We then define 9V ..., 6n_1 by

where a <^ M~n+1 A by comparison of determinants. The desired inequality
for C'(F) now follows from (13) by straightforward arguments, on using
the same continuity property of F as was used in §4.

It remains to be proved that we can satisfy the conditions (24). Let
the expressions for uv ..., un in terms of Lv ..., Lnbe

n

Then, arguing as in the Corollary to Theorem 2, we can ensure that the
elements in the first n— 1 rows of the matrix /?,-3- are approximately JV" times
the corresponding elements of the unit matrix. Now the matrix in (23)
is the reciprocal of the matrix j8w (i, j = 1, ..., n— 1). Hence (24) holds,
with M = N-1. This gives the desired result.

University College,
London.

ON DIRECT SUMS OF FREE CYCLES

E. C. ZEEMANf.

Introduction.

All the groups considered in this paper are abelian. If A, B are two
groups, we denote by A rh B the group of homomorphisms of A into B.
This is usually written Horn {A, B), but the shorter notation brings out
more clearly the dual relationship it bears to the tensor-product, (g). A
strong case for this duality is suggested by Eilenberg and Steenrod ([1],

12 April, J964; reftd 22 April, 1954.
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196 E. C. ZEEMAN

Ch. V), and the advantages of the notation are apparent in Theorem 2
below.

Let Z be a free cyclic group. Let F and 0 be respectively the weak
and strong f direct sums of a set of free cyclic groups indexed by an
arbitrary indexing set, F. Thus FcG, and F is free abelian but G is not
free (unless F is finite) J. An element geO is. uniquely determined by its
integer coordinates {gt}iGT. The condition for g to be in F is that only a
finite number of its coordinates are non-zero.

The main object of this paper is to establish

THEOREM 1. There are natural isomorphisms

(i) FfaZ^G, (ii)

The first half is well known §. The second half is obvious when F is
finite, and has been proved when F is countable by Specker [3]||. In §1
we extend his result to the general case by means of transfinite induction.
For this we need to assume

I. The Axiom of Choice,
and

II. The Axiom of Accessibility of Ordinals^.

These have been shown to be consistent with the usual axioms for set
theory by Godel and Shepherdson [2] respectively. We do not need to
assume the continuum.hypothesis. The main step in the proof is Lemma
1. 6, which represents, for example, the jump from N0 to c.

In the rest of the paper we discuss the " associativity " of the symbols
(g) and rh; and prove

THEOREM 2. If A, B, C are abelian. groups, there are natural
isomorphisms

(i)

(ii)

(iii) A <8> {B (h C) = {A fa B) rh C, provided both A and C are free;

(iv) A (\\(Btg)C) ={A(hB)(g)C, provided A or C is free and A or C is
finitely-generated.

f Some authors use "restricted" and "unrestricted" instead of "weak" and
"strong ".

J An immediate consequence of Theorem 1 (ii).
§ [1], p. 133.
|| My attention was drawn to Specker's paper by G. Higman.
f̂ See Lemma 1 . 7 below. My attention was drawn to Shepherdson's work by

M. H. A. Newman.
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Part (i) merely states the associativity of the tensor-productf. The
proof of (ii) is straightforward J* The proof of (iii) is in essence the same as
that of Theorem 1 (ii), and the necessary modifications are indicated in §2.
We also give examples to show the necessity of the conditions; and ask
the question: is F^G^FfaFI

Section 3 is concerned with proving Theorem 2 (iv), and giving
examples to show the necessity of the conditions.

The motivation behind the two theorems is homology theory in algebraic
topology. For instance, let F and 0 represent the groups of finite integral
chains and infinite integral cochains respectively, and Theorem 1 expresses
the duality between them. Theorem 2 is of interest in dihomology§,
where A, B represent integral chain groups and C a coefficient group.

I should like to acknowledge the fact that this paper grew out of
discussions with P. J. Hilton.

Notation, a, /?, y, ... denote subsets of F.
If ge G, g\fi denotes the element of G given by

0, otherwise.

A unit, ei of G(or F) is the element which has its i-th. coordinate equal to
unity and the remaining coordinates zero. The standard element, e, of G
is the element with all its coordinates unity.

j , k, I, r, s, cor, ... denote ordinals.
Ov O2 denote the classes of ordinals of the first and second kinds (i.e. with

or without a predecessor).
A, A', Nr, ... denote cardinals.
F, h, ... denote the cardinals of the set F, and the ordinal k, etc.

1. Proof of Theorem 1 (ii).

There is a natural embedding|| 9: F^>G<bZ, uniquely determined by
its effect upon the units of F

6 is clearly 1 — 1, so that to prove the theorem we have to show that it is
onto. We shall prove (Corollary 1.11) that given <f>:G-+Z, then <f> maps
all but a finite number of units to zero. Therefore there exists / e F, such

t N. Bourbaki, Alg&bre, Livre II, Ch. III.
% [1], p. 160, ex. 1.
§ Dihomology is a homology theory based on pairs of simplexes; see a forthcoming

paper by the author.
II In effect the Kronecker index between F and O.
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that (f>—9f maps all the units to zero. We shall then show (Lemmas 1.2-
1.7) that this condition is sufficient to ensure <f>—Of = 0 in 0 d\ Z. In other
words if A, c 0 rh Z, is the annihilator of F, c 0, then A = 0.

LEMMA f 1.1. Given geG, <f>sG(hZ, and a set {<xr} of disjoint subsets

of F, then there exist at most a finite number of r such that (f>(g\ <xr) ̂  0.

Proof. Suppose not. Then there exists at least a countable set
{a,J, n—l, 2, ... such that <f>{g\*n) = aa=fi0i an an integer. Construct
recursively a strictly increasing sequence of integers {ifcn}, by choosing
kx= I, Jcn = the minimum integer satisfying

Define hzG

Let <f>h = a,

some h'eG.

by

and choose

Take the

2*»

n- l
• S 2*- a m

w » = l

[ 0, otherwise.

n> a . Then

h It 2 m(g\ ccm) =
1

^-image:

I

n - l
a— 2 2&I"

I

|+n.

= 1, 2, ...,

am

by construction. Therefore <f>h' = 0 and

similarly; so that an = 0, contradicting our hypothesis.

COBOLLARY 1.11. Any (f>eG(\) Z maps all but a finite number of units
to zero.

Proof. Choose g = e, the standard element, {<xr} to be the set of
individual elements of T, and apply the lemma.

Consider now the following two statements concerning a cardinal

: For all geG, ^eA, jScT, ^=A3 we have <f>(g\P) = O.

: If gz G, 0 s A{, h is an ordinal of cardinal ^ A, and we are given

t After Specker [3], Satz III.
% We could allow <peO(t\Z for the second statement, x(A)» t>ut> *ni8 i8 u o t necessary for

the proof.
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any decreasing transfinite sequence {fa} of subsets of F, suffixed by j ,
1 < i < &> s u°h that f°r e a°h j> <I>(9\P}) = a> then (̂(71 H ft) = a.

Clearly T(F) is equivalent to the theorem, for it implies <j>g = <f>{g | F) = 0,
all <£eA, geG. Conversely if 6: F^GjhZ, and <f>eA, then <f> = 0; BO
that in particular <f>(g| j8) = 0, all j8, j8 = F.

LEMMA 1.2f. T ( N 0 ) .

Proof. Given geG, ^eA, jScF, jS countable; identify j8 with the
positive integers. Define heG by

0, otherwise.
Then

<j>h = <f>(h— 2 2imgmemj, since ^em = 0, each m,

= 22 "a, some integer a.

Therefore 22" divides <f>h, for arbitrary n, and so <f>h = O. Similarly <f>h' = 0,
where h'eG is given by

0, otherwise.

Hence <f>(g\P) = <f>(h—h') = O, as required.
This is sufficient to establish the theorem when F is countable, and also

yields the beginning of our inductive proof of the general case.

LEMMA 1.3. / /A<A ' < f , then ̂ {X') implies

_ Proof. Given geG, <f>eA, j8cF, j§ = A; then embed /?Csome j8',
P' = X, and define g' = g\p. Therefore <f>(g\^ = <j)(g'\^ = (f)(g'\^) = O,
by T(A').

COROLLARY 1.31. If T <T' and the theorem is true for G', then it is
also true for G.

Proof. Embed F c F ' , and hence GcG', and apply the lemma.

For the next lemma we need to recall two definitions:

The limit of a transfinite sequence of ordinals, limr^ is defined to be
3<k

the least ordinal ^ all rit j < k.

The ordinal tus is said to be singular if eoa = limr^, the limit of some

strictly increasing sequence%, where k<u>

t After Specker [3], Satz III.
% Recall that keOt means that k has no predecessor.
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We, observef that if <os is singular then se02 , but the converse statement
needs some accessibility axiom, and we discuss this in Lemma 1.7 below.

LEMMA 1.4. / / ws is singular, and V(A) for all A < tfSJ then T(N S ) .

Proof. Given g e 0, <j> e A, j8 C Y, £ = NS ; identify jS with the section of
ordinals defined by a>s. Thus ie/J implies l ^ i < c u s . By hypothesis
<x)s = lim riy where k < a>si ke 02. We now use this accessibility of ws to

decompose jS into subsets for which the result holds. Denote by y the set
{j, 1 < j < k}. Then y < NS5 and ^(y) by hypothesis. Decompose j8 into
disjoint subsets a3-, jS = U a3-, where

a, = {», limy,.. <» < r,[, 1 < j < fc.

Embed the set y in F, which is possible since y < N S ^ V, and define an
endomorphism ^: G^-G by

[0, it P.
This is indeed a homomorphism, being linear in the coordinates of h. We
deduce that <££eA, for

if j zyit ej 4 gf| *j X 0, since a3- <r3- < NS, and so Y(a3) by hypothesis.

Therefore ^ (e |y ) = 0, since T(y); but |(e|y) = flr|j8, so that (̂gr|j8) = 0
as required.

LEMMA 1.5. *F(A) implies x(A).

Proof. The proof follows closely the pattern of that of Lemma 1.4.
Suppose we are given the hypothesis of x(A), then we have to show

n ft) = a.

If ft 8 0J, then n f t = ft_ls

and the result is trivial; so assume keO2. Further we may assume the
result true for all k', k' <k; otherwise replace k by the first such k', for
which it does not hold, and we shall achieve a contradiction. Let y be

I W. Sierpinski, Legons sur les nombres transfini (Paris, 1928), p. 225.
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as in Lemma 1.4, and so, by hypothesis and Lemma 1.3, ^(y). Let

and decompose /? into disjoint subsets a3, j8 = U a,-, where ax = empty,
3 By

and

a .= n &—&, i<j<fc.

Embed y in F and define | as before. Then <££eA for if j ey ,

by the assumption above. Again <f>{g\fi) = 0, so that

as required.

Remark. The essential difference between Lemmas 1 .4 and 1 . 5 lies

in the fact that in the latter case we do not know whether T(a3) is true.
This is in effect the main obstacle in the transfinite induction and is solved
by the following lemma.

LEMMA 1.6. x(A) implies

Proof. Given geO, <£eA, jScF, /?= 2 \ (f>(g\p) = a, we have to show
a = 0. Suppose not.

Assuming the Axiom of Choice, choose an ordinal k, % = A. (We may
choose keO2, but this is not necessary.) Now identify jS with the set of
all transfinite f sequences of 0's and l's, of type k; this is possible since
both these sets have the same cardinal. An element of jS is therefore
uniquely determined by its coordinates, 0 or 1, at each I, 1 ̂  I < k.

Let us define a decreasing sequence j^ 1 } of subsets of j8, suffixed by j ,
1 < j < k, as follows:

Let jS,1 = the set of all sequences with 0 at each I, I <j. In particular

Now we cannot have ^(g]^1) = a, for all j , 1 < j < k\ otherwise

n pA == a # o,

by hypothesis x(A). But C\ jS,1 contains only one element, namely the

sequence of all zeros, and, since (f>e A, we have a contradiction. Therefore
there exists an ordinal jx (and we may choose the first such), with the

I Since all sequences in this proof are transfinite, we shall in general write " sequence "
for " transfinite sequence ". :
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properties 1 < jx < k, and <j>{g|jSJJ = a—av ax ^ 0. Also j±e Ov otherwise
Ph= H ft1 and (f>{g\pi

1) = a, j<j1? so that applying x(A) yields a

contradiction. Let yj_ = )SJ1_1—j8}x, namely the set of sequences with
coordinates

Oat?, l^lKfr-1,

l a t ^ - 1 ,

, free at Z, I
Then (̂gr | yx) = a— (a—%) = c^ ̂  0.

Thus we have constructed:

j v an ordinal, 1 < jx < k;

y1} a subset of j8, namely a set of sequences with coordinates fixed

%, an integer, such that <f)(g\y1) =

We now propose to construct a (transfinite) sequencef of triples
{jr, yr, ar}. Let us denote by P(s) the fact that triples have been defined
for all r, 1 ̂  r ^ s, where s is an ordinal, 1 ^ s ^ Jc, with the following
properties:

(i) jr is an ordinal, 1 < j r ^ k, such that if r' < r < s, jr> <jr;

(ii) yr is a subset of jS, namely a set of sequences with coordinates
fixed I <jri free l"^jr; such that if r' < r < 5, then yr' D yr,
and if reO2, then y r = fl y/j

f'<r

(iii) ar is an integer, such that <j>(g\ yr) = ar^0.

We deduce at once that if P(s) is true, then ja<k. Otherwise ja = k,
and, by (ii), y8 is a set of sequences with coordinates fixed for I < k; in

other words ys is comprised of a single element. Therefore, since
0eA, a,8 = <f>(g\y8) = 0, contradicting (iii). From this we see that we
cannot have P(k) true, for otherwise, since jx> 1 a n d j r > j r - for r>r',
then j k ^ k, contradicting the previous statement.

Therefore, at some point, our construction of a sequence of triples to
satisfy the above properties must come to a halt. On the other hand we
will show that it can always be continued. The resulting contradiction is
the crux of the proof of the lemma, and will show that our original
assumption that a ̂  0 was invalid.

Let s be the least ordinal such that we can define triples for all r,
1 ̂  r < s, so that P(r) is true for all r, 1 ^ r < 3, but such that we cannot
have P(a) true. From the foregoing it is clear that a exists and 1 < 8 ^ k.

f We can construct the sequence uniquely, but this is not necessary to the proof.
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We now construct {js, y8, a8} so as to satisfy P(s), in each of the two cases
s e Ov or 5 e O2, thereby achieving the contradiction and proving the lemma.

Construction of {js, ys, as}, for seOv Define a decreasing sequence
{/?/} of subsets of j8, suffixed by j , 1 ̂ ' < h, as follows:

if j>js-x, let j9/ = the subset of ys_t) of sequences with 0 at each I,

fixed zero free

0 ... 0 1 ... 0 ... 1 ... 0 0 ... * *
I | I LJ |

1 k 3s-i

Then (as in the above case, s = 1),

4>{

Therefore there exists an ordinal j8 (and we may choose the first) such
that j ^ <j8 < h, <f>(g | jSjf) = as_x—as, a8 ^ 0. Then j , s Ox (as above); so
define y8 = j8f,_i—jS|4f. Thus y8 = a set of sequences with coordinates fixed
I <jB, free I ̂ j8, and y8Cya_r Further

<f>(91 Ys) = <*+-!- K-i-o-s) = «• # 0;

and so we have P(s) true as desired.

Construction of {j8i y8, a8}, for seO2. Define j a = limjr. Thusj8e02,

being the limit of a strictly increasing transfinite sequence of type s, se O2',
and j8 >jr, each r < s. Further j8 < k, since j r < h, each r < s, by the
remark above. Condition (i) of P(s) is therefore satisfied.

Define ys = PI yr = a set of sequences with coordinates at I fixed if

I < some j r , r <s; i.e. if I<j8, since j s eO 2 ; and free if I ̂ each j r , r<s;
i.e. if l^js. Further ysceach yr, r < s , and so satisfies property (ii).
Define a8 = <f>{g\ys). To complete the proof we must show as ^ 0, which
requires the use of Lemma 1.1.

Consider the disjoint subsets {ar} of /? defined by

ar = yr_x—yr, for r e Ov

By Lemma 1.1, <f>(g \ ar) ^ 0 for at most a finite number of r. Since se O2,
we may therefore choose t, t < 5, such that (̂gr | ar) = 0, all r e O1} t ^ »• < 3.
From this we may deduce that ar = a/} all r> t^r^s. Otherwise let r

Do not confuse j , — \ with j , - X .
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be the first such that ar ^ at. If r e Olt then r < s, and

Q = ^(g\<xr) = ar_x—ar — at—ar, a contradiction.

If re02, then ar = a( for all / , t^r' <r; therefore

n yr«), by condition (ii),
r'<r I

= at, by x(A), a contradiction.

In particular when r = s we have as = at, and at^0 by hypothesis
Thus as^0, and hence all the requirements for P(«s) are satisfied.

This completes the proof of Lemma 1.6.

We must now verify that Lemmas 1.2—1.6 are sufficient to achieve
a transfinite induction. We need to assume

I. The Axiom of Choice.

II. The Axiom of Accessibility of Ordinals: if s e O2, and 2Nr < NS for
all r, r<s, then cos is singular.

This latter axiom is slightly weaker than the usual Accessibility Axiom
which says "if seO2 then ws is singular". It was introduced by Tarski,
and enables us to avoid discussing the Continuum Hypothesis. Shepherdson
[2] shows that it is consistent with the Zermelo-Fraenkel system of axioms
for set theory (provided these are themselves consistent), by constructing
a super-complete inner model of the universe, in which the class of ordinals
is the section of the ordinals of the universe by the first inaccessible ordinal
of the universe, if such exists. It is not known whether a universe with
inaccessible ordinals exists.

LEMMA 1.7. If

(6) \<X and W(\') implies

(c) o)s singular and T(A) all A < NS implies

(d)

Proof. We may assume F infinite, otherwise the lemma is trivial:

By I, P = fy. some ordinal t. Suppose the lemma is not true, and suppose
5 is the first ordinal for which T(NS) does not hold. By (a), s>0. If
s e Ox, then Y(2M*-1) by (d). (There is a small detail here, that if we do not
assume the generalized continuum hypothesis, and NS_! < F < 2s*-1,
then we must embed 0 in G', F = 2N'-\ and use corollary 1.31.) Then
^ K ) by (6), since N8 ^ 2*>-\
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If 5e O2, either 2Wr > NS, for some r, r<.s, whence *F(NS) by (d) and (6),
as above; or cus is singular by II, and T(NS) by (c). We have the desired
contradiction in each case.

This completes the proof of Theorem 1.

Remark 1.8. Ulamf has tackled a similar set-theoretical problem in
showing that there must exist non-measurable sets in the unit interval;
i.e. that there exists no real-valued function / o n the subsets of (0, 1) such
that

1° there is at least one subset A for which f{A) > 0,

2° for each point p, f(p) = 0,
/CO \ 00

3° for each countable disjoint sequence {A^, f(\JAn) = 2 f(An).

However this problem lacks the analogue of Lemma 1.1, which is used in
achieving the induction A->2X of Lemma 1.6. Consequently he can only
obtain (by a different proof) the induction Nr->Nr+1; and to reach c, for
instance, he must assume either the continuum hypothesis, c = N15 or
the weaker hypothesis: "if seO2 and o>s-<c, then cos is singular".
Whereas in the above proof we may reach c without any assumptions.

2. Proof of Theorem 2 (iii).

The theorem states that if A and C are free then

, naturally.

We notice that if B=C = Z this reduces to Theorem 1 (ii); moreover
the proof for the general case is only a modification of the above.

We show first (Lemma 2.1) there is a natural embedding

Then, as before, the more difficult step is to prove that 6 is onto. For
this we must choose a fixed arbitrary base {e%&v for A, but it is important
to notice that the definition of 6 is independent of the choice of base, so
that the natural character of the isomorphism is preserved. The base
enables us to embed A®BcA(hB (Lemma 2.2), and to ' define
A, d{AfoB)(U C, the annihilator of A<g)B. Then, given <j>e(A rh B) <h C,
we are able (Corollary 2.31) to choose / e A0 {B (h C), such that <f>—dfe A.

The proof that A = 0, and hence of the theorem, follows by Lemmas

f S. Ulam, "Zur Masstheorie ", Fund. Math., 16 (1930).
[Added in proof. I. Kaplansky has pointed out to me that Lemma 1.6 may also be

proved by using a secbndresult of Ulam'a concerning ^'O-valued measures, for which the
induotion A. -> 2X holds.] . „
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1 .2-1.7, with only a few formal changes in notation, e.g. replacing G by
A<t\B.

The notation g | j8, for g e A rh B, j3 C T, is again dependent upon the base
chosen above, being used only as a tool in proving 6 onto, and is defined as
follows:

g | j8 is the element in A (b B uniquely given by

[ge\ »e]8,

[ 0, otherwise.

LEMMA 2 .1 . If A, B, G, are any abelian groups, there is a natural
homomorphism 6: A®(B<hC)->(A(hB)(\\C) which is 1-1 provided A is
free.

Proof. Define 6 by linear extension of the formula

[6(a®y)](g) = y(g{a)) in C, for aeA,

We leave the reader to verify that 6 is indeed one-valued with values in
(A(hB){U C, and a homomorphism. If A is free, and given XGA®(B rh C)
such that 6x = 0, we must show x = 0. Let {e1} be any base for A; we may

n
write x== £ em®ym (after a suitable relabelling of the e's concerned).

Now given any m, 1 < m < n, and any b e B, let g e A (U B be the element
defined by </em = 6, gre1" = 0 for i ^ m.

Then 0 = &e(gr)= S ym(<7(em))==ym(&). Therefore ym = 0> since this
m—l

is true for arbitrary beB; and so, in turn, x = 0.

LEMMA 2.2. If A is free, then any base of A induces a (non-natural)
embedding A®B<zAft\B, which is an isomorphism onto if and only if A is
finitely-generated.

Proof. Let the base be {e^er- Then any element in A(&B may be
written uniquely as Se'®6t-, or as {6,}i6r where only a finite number of the
6, are non-zero. Again, an element in A rh B is uniquely determined by
the images {6,}ier of the base elements e\ We thus have a representation
of A<S)B and A rh B as the weak and strong direct sums of a set of groups
indexed by F, each isomorphic to B. This yields at once the desired
embedding and the lemma.

LEMMA f 2.3. Assume A and C are free. LetgeA<\\B,<f>e(A<hB)<hC,
and let {aj be a set of disjoint subsets of T; then there exist at most a finite number
of r such that <f>(g \ a,.) ^ 0.

t Of. Lemma 1.1.
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Proof. Suppose not. Then V must be infinite and there exists an
infinite set of r such that <f>(g\ <xr) = cr ^ 0 in C. Choose a base {d8} for C.
There are two oases:

(i) There is a base element, d say, such that there exists a countable set
of r for which the ^-coordinate of cr, an integer ar say, is non-zero. Let
£: 0->Z be the homomorphism defined by taking the ^-coordinate of an
element in C. Then £<£ e (A rh B) rh Z, and there exists a countable set
{«„,}, n=l, 2, ..., such that Z<f>(g\ctn) = an

We may now proceed as in Lemma 1.1. Define h e A (U B by

f 2k»gei, iexn,

0, otherwise; etc.

The contradiction is obtained as before,

(ii) There is no such base element.

Then we may pick out countable subsets {cn} ofcr, and {dn} of base elements,
such that the ^-coordinate of cn, cn

m sayf,

, m = n,

We do this recursively as follows.
Suppose we have chosen cm and dm for m < n, obeying the above formulae.

Certainly cv ..., cn_x have non-zero coordinates on only a finite subset, D,
of base elements, and D clearly contains d1, ..., dn~x. By our assumption,
there is at most a finite set of cr which have a non-zero coordinate on at
least one d8eD. Choose cn to be not one of these, and so cn

m = 0, m < n.
Further, choose dn to be any d8 such that cn

s ^ 0. Thus cn
n = an, say, ^ 0,

and since dn $ D by construction of cn, we have cm
n = 0,m<nby definition

of D. Hence cn and dn are defined, and the formulae satisfied for m ^ n.
Now let I'.C^-Z be the homomorphism defined by

{ 1 § = some n,

0, otherwise;

so that tpn = an, and we reach the same conclusions as in (i).

COROLLAHY 2 .31 . Given <f>e(A(hB)(UC, and the base {e1} of A, then

there is a finite subset /?(<£) of V, such that §g = <j>(g\ /? (</>)), for any geA(\\B.
(Proof as for Corollary 1.11.)

t In general there will also exist d> ^ any dm, such that c,,* ^ 0.
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Apart from the formal changes in notation in §1, which we leave to the
reader, this completes the proof of Theorem 2 (in).

It is worthwhile noting that the conditions for A and C to be free are
both necessary for the above proof, as the following counter examples
illustrate.

Example 2 .4 . A not free.

Let A be cyclic of order p: and B = C = Z. Then

Again it is not sufficient merely to have A without torsion, for let A be the
additive group of rationals, and the same formulae hold.

Example^ 2 . 5 . C not free.

Choose T infinite, and let A = F, B = Z, C = Z2.

Then A <g> (B <h C) ̂  F® Z2, of cardinal f; but

(A rh B) (hC^G(UZz^(O/2O) rh Z2,

of cardinal 22P, since G/2G is a vector space over the field of two elements
with cardinal 2*\ The two groups cannot be isomorphic for 22T" > P.

As before it is not sufficient merely to have C without torsion, for
consider:

Example 2 .6 . C without torsion, but not free.

Choose T infinite, and let A = F, B=Z, C = G.
Then

A®{B\C)^F®G = K, say;

(A (b B) rh C ̂  G <h G, by Theorem 1 (i), = L, say;

and 6:K->Lis strictly into, since by the definition of 9, it is clear that the
identity in G(\\ G cannot be in the image of 9 (for it "involves " an infinite
number of units of A).

Remark 2.61. Although the natural isomorphism 9\K->L is not
onto, it is not known whether in fact K and L are non-isomorphic. In
this context we observe two simple corollaries.

COROLLARY 2.7. There are natural isomorphisms

(=L), and KfaZ^L,

This counter example was pointed out by the referee.
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Proof.

K(UZ= (F® O)(hZ^F(U(O(hZ),bj Theorem 2 (ii),

^ F fa F, by Theorem 1 (ii),

similarly ^ (Gg)F)(hZ^G(U(F(bZ)^Grt\G = L.

L<hZ^(F<UF)<hZ^F<g(F<hZ)hy Theorem. 2 (iii),

^ F<g>G, by Theorem 1 (i) = K.

COROLLARY 2.8. Provided F is infinite, there exist (non-natural)
isomorphisms

FtUG^G, GtUF^F,
and inclusions

GdKcG, K^G; GcLcG, L&G.

Proof.

F <h G ̂  F (h (F <h Z), by Theorem 1 (i),

^ (F®F) rh Z, by Theorem 2 (ii),

= F <hZ, since F and F2 can be put into 1-1 correspondence
(although this is not natural), = G.

G(hF^(F(hZ)(hF,by Theorem 1 (i),

^F®(Z<hF), by Theorem 2 (iii),

^ F<g>Fc^. F (non-naturally as above).

For the second part, ZaFcG implies F faZczF(hFcFd\ G, i.e
GcLcG. Again, since Z is contained in F as a direct factorf,
Z® G C Fig) G, i.e. GcK. Also by example 2.6, KcL, and by above
LcG, so GcKcG.

Finally we conclude that K^G (and similarly L$=G); otherwise
GcL^KfaZ, by Corollary 2.6, ^GfaZ^F, plainly a contradiction
since the cardinal of G is greater than that of F (F being infinite).

3. Proof of Theorem 2 (iv).

This does not depend upon the transfinite techniques used in §1, and is
included primarily for the symmetry of Theorem 2. If A, B and 0 are
any abelian groups, there is a natural homomorphism

rj: (A<UB)<g)C-+A<h(B<g>C),

t [l], P-142.
JOUB. 118.
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defined by biiyigtc)] (a) = y(a)®c, azA, czG, yeAfaB, and 77 extended
linearly. We leave the reader to verify that 77 is indeed one valued3 with
values in A(h{B(g)C), and a homomorphism. In showing that 77 is an
isomorphism we treat each of the four cases separately.

LEMMA 3.1 . If A is free and finitely-generated, then 77 is an isomorphism
onto.

Proof.

{A <h B)®C^ (A®B)®C, by Lemma 2.2,

= A<S>{B<S>C), by the associativity of ®,

= A fa (B® C), again by Lemma 2.2.

By inspection we see that these isomorphisms coincide with 77 (the non-
naturality of the isomorphisms of Lemma 2.2 being cancelled out by its
double application, once one way and once the other).

LEMMA 3.2. If G is free and finitely-generated, then 77 is an isomorphism
onto.

Proof.

(A (h JB)<8>C ̂  C rh {A <h B), by Lemma 2.2,

^ (C®A)faB, by Theorem 2 (ii),

^ A (h (C (\\ B), similarly,

^A(h (C®B), by Lemma 2.2, ̂ A<h{B<8>C).

Again by inspection, we see that these coincide with 77.

LEMMA 3.3. If A is free and Cfinitely generated, then rj is an isomorphism
onto.

Proof. To show that 77 is 1-1 we only need the second condition.
Let cl5 ..., cn be a canonical set of generators for C; that is to say the set of
linear dependence relations amongst them is generated by the equations
tmcm = 0, 1 < m ^ n, where tm are integers, some possibly zero. Suppose
7)x = 0, xe (A (h B)0 G; then we must show x = 0. We may write (non-

n

uniquely) x= S ym<8>cm, ymeA(hB.

For any azA,
n

2 ym{a) <8>cm = -qx (a), by definition of -q,

= 0 in B(g) C, since r\x — 0.
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Therefore, by our choice of cm, we may deduce if tm — 0̂  ym(a) = 0, each
ae A, and so ym = 0; if tm # 0, tm divides ym(a), each aeA, and so we may
define ym' = yjtm in A <h B.

Hence x = 2 tmym'®cm = 2ym'®tmcm = 0, as desired.

To show 77 is onto, we need both conditions.
Let {a}}ieT be a base for A. Given x'sAfc (B<S)C) we have to find

xe(A(hB)(g)C, such that r\x = x'.
x' is uniquely determined by the set \x'{atyizV in B(g>C.

We may write (non-uniquely) x'(ai)= £ ym(ai)®cm> where the
m = l

ym(a{) are suitable elements in B.
For fixed m, the set {ym{o>)}i&v define, by linear extension, ymeA(hB.

n
Letf x = Zym<g>cm, and by definition of rj, t\x = x' as desired. This

1

completes the proof of Lemma 3.3.

LEMMA 3.4. If A is finitely-generated and C is free, then rj is an
isomorphism onto.

Proof. As in the previous lemma, to show that rj is 1-1 we only need
the second condition. Let {c1} be a base for C. 'Suppose 77a; = 0,
x e {A (h jB)(g) C. We may write, uniquely, x = Sy^c1', a finite sum. Then
Sy,-(a)(g)c' = 0, and so y{(a) = 0 in B, each a GA. Hence each y{= 0, and
in turn x = 0, as desired.
. To show that 77 is onto we need both conditions. Given x' e A rh (J3<g) C),

since A is finitely-generated, x'AdTi B<S>c{, summed over a finite set /of*.

Define t>i:B®C-+B by

( b, j = i,
0,-j^i,

and extending linearly.
Let x = S £fa;'(g)c' in (4 rh J5)®C.

z
Then ??a;(a) = S £,-a;'(a)(g)c- = x'(a), each a e^4, and so r\x = a;', as desired.

1

This completes the proof of Lemma 3.4 and Theorem 2 (iv).
We conclude the paper by giving two examples, in which v\ is not onto,

to show the necessity of the conditions, and one to show that TJ need not
be 1-1.

Example 3.5. Both A and C free but neither finitely-generated.

Let A = C = F, countable free, and B — Z. Then

and as in Example 2.6, rj: K~> L is not onto.

f The x, in fact, must be unique, independently of the choice of ^m(a«) above, but this
is not necessary to the proof.

P 2
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Example 3.6. Both A and G finitely generated but neither free.

Let A = G = Z2, B = Z.

Then (A rh B)® 0 = 0, but A <\\ (.B® C) ^ Z2 rh £2 ^ Z2.

Example 3.7. ^ woi 1 -1 , C being neither free nor finitely-generated.

Let A = F, countable free,

B = Z2-\-Z3-\-... the weak sum of cyclic groups of all orders,

C = the additive group of rationals.

Let ye A rh B be given by mapping a set of base elements of A, one onto
each generator of a cyclic group. Then y is of infinite order, and if c ^ 0 in
G then y<g>c =£ 0. Thus (A rh B)<S>G ^ 0.

But if x e B®C,

x e {Z2-\-...+Zp)<g> (7, for some #,

Therefore 5 0 ( 7 = 0.
Hence A rh (-B<S>C) = 0, so that 17 cannot be 1-1.
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ON THE CLASSES C{Mn} OF INFINITELY DIFFERENTIABLE
REAL FUNCTIONS

NICOLAS PASTEDES*.

1. We consider a sequence of positive numbers:

Mn= (M1} M2, M3, ...),

and a given closed interval:

I=[a,b].

* Received 8 October, 1953; read 19 November, 1953.


