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ANNALS OF MATHEMATICS 

Vol. 66, No. 3, November, 1957 
Printed in U.S.A. 

ON THE FILTERED DIFFERENTIAL GROUP 

By E. C. ZEEMAN 

(Received December 14, 1955) 

(Revised September 14, 1956) 

Some of the information contained in a filtered differential group 91 may be 
studied by relative homology groups, by a spectral sequence, or by an exact 
couple. We give a method for obtaining the complete information available in 
the form of a category t of groups and homomorphisms. We then represent 
this by a diagram A; more precisely, a function is defined from the groups of the 
category into the regions of the diagram, such that two groups are represented 
by the same region if and only if they are canonically isomorphic. The function 
preserves lattice properties, so that the relations between the groups in the cate- 
gory may be easily read from the diagram. In particular, the diagram offers a 
graphic and intuitive approach to spectral sequences. 

Section 1 describes the category, Section 2 the diagram, and in Section 3 we 
prove the validity of the representation. 

In Section 4 we describe the application to the homology of a fibre space. In 
this and other applications, a certain subcategory may be described as invariant 
(independent of the method of calculation, whether it be by sheaves or by singu- 
lar techniques, say). Sectiona 5 identifies the corresponding invariant part of the 
diagram. The spectral sequence from the E2 term onwards is shown to capture 
all the invariant information except for certain group extensions. We give an 
invariant basis from which everything may be calculated. Since the basis is itself 
calculated from the relative homology groups, we justify the use of the latter, 
instead of the original filtered differential group, in constructing invariants. 

In the final section we consider the analysis of the bifiltered differential group 
The problem is much harder, and as yet unsolved. The difficulty can be traced 
to the non-distributivity of a certain lattice. A simple example is given of a free 
abelian group of rank 5, with a differential and two finite filtrations of lengths 
2 and 3 respectively, whose resulting category contains all cyclic groups. 

I should like to express my warm appreciation to Saunders MacLane for valu- 
able criticisms and suggestions. 

1. Algebraic constructions 

DEFINITION. A filtered differential group 2I of length m is an abelian group A, 
together with an increasing sequence of subgroups {Ap}, where p takes integer 
values, -oo < p < oo, such that A, = 0, p < 0, and A, = A, p _ m; and 
an endomorphism d, such that dd = 0 and dAp c Ap . As a convention we allow 
p to takethevalues ?o oo andputA__ = 0 Ax = A. The homology group H(A, d) 
is defined in the usual way. 

REMARK. We have restricted ourselves to the above simple case to avoid 
557 
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558 E. C. ZEEMAN 

complication. In the following discussion, groups may be replaced by vector 
spaces over a field, modules over a ring, or by algebras. A more serious limitation 
is the finiteness of the filtration. In the case of an infinite filtration we can 
draw a similar "infinite" diagram and derive the same theorems. In most appli- 
cations, however, although there is an infinite filtration, there is a grading as 
well, which imparts a finite property to the filtration. We discuss this in Section 4. 

Generated categories. Let 65 be an arbitrary set of abelian groups and homo- 
morphisms. We shall give a set of building operations, and define the set 65 4 

of all groups and homorphisms which can be built from 65. We do this by con- 
structing inductively an increasing sequence of sets 5i . 

Let 6 = 65. Let 65i+1 comprise 65i together with 
(i) the range and domain of any homomorphism in 6i; 
(ii) the composite fg of two composable homomorphisms f, g in 65M; 
(iii) the natural 'injection F -* G, if the groups F, G are in 05i and F c G; 
(iv) the natural 'projection F/H -* F/G, if the groups F, G, H are in Pi and 

F D G D H; 
(v) the kernel, cokernel, image, and co-image of a homomorphism in 05i 

together with the induced isomorphism between co-image and image; 
and 

(vi) the inverse of any isomorphism in O . 
Let (M - U z50 Hi . 
It may be observed that 6 4 is in fact a Category of groups and homomor- 

phisms, in virtue of (i), (ii) and (iii) (which ensures that the identity homomor- 
phism on any group in 65 # is in 65 4). We say that 65 4 is the category generated by 
65. Notice that 65 ( = (M . In view of the following lemma, 65 0 represents, in a 
sense, the maximum information obtainable from 65. 

LEMMA 1. 65 4 is closed under the operations of 
(a) forming groups by taking intersections, (group-) unions, or quotients of 

groups, or kernels, cokernels, images or co-images of homomorphisms; 
(b) forming homomorphisms by injecting subgroups, projecting onto quotient 

groups, or by composing, decomposing, restricting or inducing homomor- 
phisms; 

(c) forming isomorphisms by inverting isomorphisms, or by using the first or 
second isomorphism theorems. 

PROOF. The proof of most of the lemma is immediate from the building opera- 
tions; that of the rest is a straight-forward application. We give one example, 
of proving 65 closed under intersection, and leave the remainder to the reader. 

Given F, G C H in (D ', we have to show that F n G e 65 4. For some i, F, G, 
H e H5i. Therefore the injections j:F -* H, j':G -* H are in 65+1 by (iii). The 
quotient H/G 65 i+2, by (v) since it is the cokernel of j'. The projection p: H 

1 We shall throughout use the terms injection and projection to mean the natural injec- 
tion and projection such as occur above. 

2 For the definition of category, see [4], Chapter IV. 
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ON THE FILTERED DIFFERENTIAL GROUP 559 

HIG is in i+3 by (iv). The composite pj e 65i+4 by (ii). The required intersection 
F n G e 6i+5 by (v), being the kernel of pj. 

The category W S. The main object of this paper is to examine the category 
generated by the filtered differential group 2l = fA, Ap , d }. We deduce at once, 
from the type of building operations to which we have restricted ourselves, that 
any group of 2[ $ is a subquotient group of A, or, more precisely, is obtained from 
A in a finite number of steps by successively taking subgroups and quotient 
groups. To assist the discussion we introduce two subsets V, S of the groups of 
2[ $. The set of all subgroups of A form a modular lattice under intersection and 
group-union, which admits d and dV as unary operators. Let 

V = {Ap ; n, +, d, d1}, 
namely the smallest sublattice containing the groups Ap and closed under the 
four operators indicated. We shall in future always use X, Y, Z,. to denote 
groups of V. 

LEMMA 2. V C . 
PROOF. {ApI C 2 , and W is closed under n and +. If X e V n WO, the re- 

striction of d:A -* A to d:X -* A is in St by Lemma 1, and hence also the 
image dX. Similarly the kernel d'X of the composite 

A d A v ) AIX 

is in 2I 4, where v is the natural projection. Therefore V n 2[ W, being closed under 
d and d' contains V, and so V C 4. 

THEOREM 1. The lattice V is finite and distributive, and is generated by the two" 
chains 

Z :0 = Ao c A, c * c AP c Ap+1 C ... c Am = A, 
T':0 = dAo C: dAl c .. c dA c d-'O c d-'A I c ..c: d-'A,, = A. 

A typical element X of V may be written 
X=(T, n T') + (T2 n Y') + *+ (T. n T') 

where T, C T2 c c T8 in ?, and T' D T' D * D T' in '. 
We shall reserve the proof of Theorem 1, and likewise of the following Theo- 

rem 2, until Section 3. Theorem 1 shows that V admits of a fairly concise de- 
scription. The category 2f 4 is not so readily accessible, owing to the duplication 
of information in the form of canonically isomorphic groups. However, if we 
work modulo the first and second isomorphism theorems, we are able in Theorem 
2 to refer the examination of ?I 4 back to that of V. Let us first attach a precise 
meaning to this statement. 

Canonical isomorphisms. An isomorphism 
F/H F 
G/H g 

8 A chain, in the sense of [1], is a simply ordered subset of a lattice. 
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560 E. C. ZEEMAN 

where F D G D H in 21 #, will be called a 2-isomorphism of 21 #. An isomorphism 
e is said to be a 2c-isomorphism if it is equal to the composite eie2 * er, where, 
for each i, either ei or eP1 is a 2-isomorphism. We say of two groups, F = G 
modulo the second isomorphism theorem, if there exists a 2c-isomorphism between 
them. 

Similarly an isomorphism 

F F+G 
FnG G 

is a 1-isomorphism, and the composite of such and their inverses is called a 
lc-isomorphism. A canonical isomorphism, or c-isomorphism, is an arbitrary 
composite of lc-isomorphisms and 2c-isomorphisms. Two groups in 21 are said 
to be canonically isomorphic, or equal modulo the first and second isomorphism 
theorems, if there exists in 21 a canonical isomorphism between them. Clearly 
this is an equivalence relation between the groups of 21 . We say of homomor- 
phisms, f = g modulo the first and second isomorphism theorems, if there are c- 
isomorphisms e, e' such that f = ege'. 

Notation. Recall that X, Y, Z, ... always denote groups of V. Let ?1 be the 
set of quotients X/Y, where X D Y. We make the convention of identifying 
X = X/0, so that V c ZD. Let S be the set of injections Y/Z -- X/Z, where 
X D Y D Z. Let 3 be the set of projections X/Z -> X/Y, where X Z Y Z Z. 
If X D Y D d-10, then d induces an isomorphism X/Y -- dX/dY. Let ( be 
the groupoid of isomorphisms between the elements of ZS generated by 1-iso- 
morphisms and those induced by d. Let j be the set of homomorphisms f = jep, 
jEaeE ,pE. 

This notation enables us to state, and in Section 3 will facilitate the proof of: 
THEOREM 2. 21 4 is finite, and 21 =C u a, modulo the second isomorphism 

theorem. 
We conclude this section by describing two well known significant subsets of 

DEFINITION. A graded group D is a set {D,; -xo < p < xo } of groups Dp 
suffixed by the integer p. The graded group associated with the filtered group 
is written 

GrA = {AI /AI ;-oo <pp < ?} 

A differential of degree -r on D is a set dr = {d'; - o < p < } of homo- 
morphisms d,:Dp Dpr, such that dpdp+, = 0. The homology group. H(D, dS) 
is defined in the usual way and is likewise graded. 

REMARK. It is customary to write a graded differential group as the direct sum 
of its homogeneous components. The value of this is purely notational, and Steen- 
rod has pointed out that it is mistaken from the point of view of considering 
the category of graded groups, since the image of a graded group under the func- 
tor Hom( , G) is then no longer a graded group. The reason for our preference 
for the above definition in the present context, is that the building operations 
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ON THE FILTERED DIFFERENTIAL GROUP 561 

do not include direct summation. We claim that this is not a limitation of the 
building operations, because the inclusion of such would not echo any useful 
application, and arbitrary summation, rather than enlarging the information 
available, would tend to confuse the issue. 

The relative homology groups. Let g be the set of relative homology groups 

H(Ap , Aq) - < q p <oo 

and homomorphisms 

j: H(A p Aq) H(At , Aqp), p < p', q < q', induced by injection, and 

d: H(AP A q) H(Aq., A) p _ q > s, induced by d. 

Let Dp be the image of the homomorphism y: H(A p) H(A) in A. The groups 
DP filter H(A); denote by Gr H(A) the associated graded group. 

The spectral sequence. For - o < p < xo and 0 ? r < xo, let 

Cr = A n 
d-1Ap-r Br = Ap ndAp+r, 

Er =Cr (Cr- + Br-1), Er = {E;-so < p < CO}. 

If r = o, d trivially induces dc, - O: E. > E.. If 0 < r < x, it is easy to 
show 

d(Cr) C Cp-r d(C rp- + B 1) c (Cr--1 + B r21). 

Hence d induces dP Ep - Epr . The collection { dp; - < p < ?O } defines a 
differential dr on E'. Let 

e= { (E, d') ; s _ r < oo}, 

be the sequence of differential graded groups. So is defined to be the spectral 
sequence of W. We prove in Section 2 the elementary properties: 

THEOREM 3. (Leray [5]). 
(i) Er = 0 unless 1 < p < m. 
(ii) En = Em +l=.mm= E' (i.e. dr = O for m r or ). 
(iii) Er~ = H(Er, dr), 0 < r < 00. 

(iv) EX 0 Gr H(A). 

2. The diagram A 

In the euclidean plane let [7r, p] be the unit square given by ir- 1 < x < 7r, 
p-1 < y < p, where 7r, p are integers. Let 

A = U {[7r, p]; 1 < ir < m, 7r -m- 1 p < ir} 

Thus A is the union of a set of unit squares (see Figure 1), which we shall denote 
by a, b, c,. ... etc. Write a _ b if a = [,x, p], b = [7r', p'], with 7r < 7r', p < p'; 
and write a < b if, further, a 5 b. The decomposition of A into a partially 
ordered set of disjoint pieces is, essentially, the only property of A we shall use. 

The union M of any subset of the squares of A we shall call a region of A. M 
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562 E. C. ZEEMAN 

Yt 

A g 

d1A5I--- -- - - - d'o A6 H 

d-145 

d-"lA4rw- | I 
3' 

d-1A 
- d~ 25 

- 

d-10- 
-~l~l - ja HH(A) 

dA '2 

dA6 

dA5 a 

dA4 -9 

O ' I | ? | |~I 9 

dA3S I 

? Al 32 A A4 4 6 A 

Foamm 1. The diagram A. (m -7). 
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ON THE FILTERED DIFFERENTIAL GROUP 563 

may be uniquely determined by a set '1 of formulae governing the range of in- 
teger values of 7r, p for which [7r, p] C M; we write M = A(4). In particular let 

A+ A(p O), AO = A(p = O), - = A (P < O). 

We define a function 8 (corresponding to d) from the regions of A+ to those of 
A-, by 

[7r, p] =[p, 7r-m-1], for [7r, p] C A+, and 

6M=U{8a;acMl, for Mc A+. 

M and SM are called 6-paired regions. In particular A+, A- are 6-paired. 
We shall define a function X from the groups of 2I into the regions of AX. W 

run into the technical difficulty, however, of confusing the actual groups of 2?$ 
with the formulae for them; in a particular example of XI, two different formulae 
may give rise to the same group, whereas in general they represent different 
groups. Two solutions to this difficulty would be either to regard the objects of 
the category V not as groups but as equivalence classes of formulae, or else to 
permit X to be many valued in special cases (as in the examples of Section 3). 
However, in order to keep the exposition free from logical niceties and as in- 
tuitive as possible, we use the following device. 

Definition. The filtered differential group 2? of length m is sufficiently general 
if any two formulae defining isomorphic groups of 2? also define isomorphic 
groups in an arbitrary filtered differential group of length m. 

A sufficiently general 2I does exist, for it will transpire that, since 2I 0 is finite, 
one may be constructed by combining suitable examples. From now on we shall 
assume that a[ is sufficiently general unless otherwise stated. 

DEFINITION OF X. Let 

X(Ap) = A(r < p), 

X(dAp) = A(p < p -m-), 

X(d'Ap) = A(p < p). 

In Figure 1, X(Ap) is the region to the left of the vertical line marked Ap, and 
X(dA.), X(d-'Ap) are the regions below the horizontal lines. Extend X to e by 
Theorem 1 and the lattice-homomorphism properties of Theorem 4 (i) below. 
Extend X to e by Property (ii) below. Theorem 2 and Property (iii) are suffi- 
cient to extend X to all the groups of I W#. 

THEOREM 4. (the representation theorem). Let 2I be sufficiently general. Let F, G, 
H denote groups in 2I 0. 

(i) If F. G c H, then X(F n G) = XF n XG, and 

X(F+G) =XFuXG. 

(ii) If F v G, then X(F/G) = XF - XG. 
(iii) XF = XG if and only if F and G are canonically isomorphic. 
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564 E. C. ZEEMAN 

(iv) 6(XF) XG if and only if d induces an isomorphism F -* G, modulo the 
first and second isomorphism theorems. 

(v) If XF, XG are neither equal nor a-paired, then F X G. 
Summarizing, wve may say that X offers accuracy and maximum economy. 
Interpretation of the regions of A. If M is a region of A, we say that M is per- 

permissible if M = XG, some G e W{ f. If X e we may write X in normal form as 
in Theorem 1. Therefore by Theorem 4(i) the region corresponding to a typical 
element of V is that below a zig-zag line running from top-left to bottom-right, 
as shown in Figure 2. Any permissible region is the difference between two such. 
Permissible regions are characterised by: 

/ 

FIG. 2 

LEMMA 3. M is permissible if and only if a < b < c, a,c C M implies b C M. 
PROOF. If M is permissible, 

M = XG = X(X/Y), some X, Y in V by Theorem 2, 

= XX - XY by definition of X. 

Suppose a < b < c and a, c C M. Then from the shape of XY (in Figure 2), 
a c4 XY implies {e; e > a} C A - XY; and similarly c C XX implies 

{e; e < c} C XX. 
Hence b C XX n (A - XY) = M. 

Conversely suppose M has this property. Let 
x = nex; xxt D M}, Y = U {(X n Y'); XY' n M = 01, 

where X', Y' run through V. Then XX -XY D M. Let b C XX - XY. If X" 
is maximal subject to b 1 XX", then M c AX", otherwise b CC XX by the con- 
struction of X. Hence there exists c C M n (A -XX") with c > b. Similarly 
if Y" minimal subject to b C XY", then XY" n M 5 0, otherwise b C XY. 
Hence there exists a C M a < b. By the given property of M, b C M. There- 
fore M = XX - XY = X(X/Y), and is permissible. 
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ON THE FILTERED DIFFERENTIAL GROUP 565 

COROLLARY 3.1. All rectangles, including the unit squares, are permissible. 
(See Figure 5). 

We call the groups corresponding to rectangles rectangular. Lemma 5 will 
shortly show that all the relative homology groups and spectral sequence terms 
are rectangular, and in Section 5 we shall see that any other group can be con- 
structed from rectangular groups. An arbitrary region of A may be interpreted 
as representing a subcategory of 21. In Section 5 we shall discuss the subcate- 
gory corresponding to the non-permissible region outlined heavily in Figure 1. 
We leave the reader to prove the following lemma, which is useful in reading the 
diagram. 

LEMMA 4. Modulo the first and second isomorphism theorems, 
(i) F is a subquotient group of G if and only if XF C XG. 
(ii) F is a subgroup of G if and only if XF C XG, and a > b, a C XF, b C XG 

implies b c XF. 
(iii) F is a quotient group of G if and only if XF C XG, and a < b, a C XF, 

b C XG implies b C XF. 
(iv) a < b if and only if there is a group G e 21[ , having a subgroup F and a 

quotient H such that XF = a, XH = b. 
Representation of the homomorphisms of 210 on A. We have in Theorem 3 and 

Lemma 4 given necessary and sufficient conditions on the regions XF and XG 
for there to be, modulo the first and second isomorphism theorems, an injection, 
projection or isomorphism, F -* G. By Theorem 2 an arbitrary homomorphism 
of 2$ is, modulo the first and second isomorphism theorems, the composition 
of one of each of these, and we may therefore represent it by suitable "moves" 
on A. Conversely we may be given two regions M, N of A, and a specific homo- 
morphism f between the corresponding groups. It is useful to be able to decom- 
pose f into the above primitive moves, or, more precisely, to determine the re- 
gions representing the kernel and image of f etc. 

THEOREM 5. Suppose f: F -* G is in a, and XF = M, XG = N. The following 
table gives formulae in the two cases when f is induced 10 by injection or 20 by the 
differential. 

10 20 

X(kernf) M - N M - -'(N n A-) 

X(co-im f) M n N M n 3-1(N n A-) 

X(imf) MnN Nn (Mn A+) 

X(cokern f) N - M N - 6(M n A+). 

Figure 3 displays cases 10 and 20 when M, N are rectangles; the shaded areas 
show the image and co-image. 

PROOF OF THEOREM 5. (10) Suppose f is induced by injection. We may write 
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566 E. C. ZEEMAN 

0~~ 
Case 20 

Y I co-image 

Case 1 N 

image~a 

FIG. 3 

F = X/Y, G = X'/Y', where Y c X, Y' C X', and may decompose f 
Xp X e X+ Y'j X' 
Y Xn Y' 

Therefore 

X(im f) = (X u XY')- XY' = XX - XY' 

= (XX - XY)- XY', since XY C 1XY', 

M - xY' = M n (XX' - XY'), since M n XY' C XX', 

- MnN. 

The other formulae may be deduced from Theorem 4(ii). 
(20) If f :X/Y - X'/Y' is induced by d, then dX c X', dY C Y' and im f 

(dX + Y')/Y'. Therefore 

X(im f) = X(dX) - XY', as above, 

= [X(dX)- X(dY)I n N, as above, 

X(dX/dY) n N 

= 8Xt(X + d-' O)/(Y + d-1 0)] n N 

= b(M n A+) n N. 

The other formulae follow similarly. 
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ON THE FILTERED DIFFERENTIAL GROUP 567 

RE.MARK. For general f c a the situation is not quite so simple. For example if 
f = jep, and e was a lc-isomorphism (rather than a 1-isomorphism as in case 10 
above) then X(imf) could be the union of any number of the components of M n N, 
as shown in Figure 4. 

We are now in a position to identify on the diagram the relative homology 
groups and spectral sequence. 
LEMMA 5. 

XH(Ap, Aq) = A(q < ir ? p, min(O, p -m) ? p ? max(O, q)), 
- 0 < q p < o. 

XE r = A(r p, min(O, p -m + r -1) p < max(O, p -r)), 
-o < p < oo,0 ? r < oo. 

The proof is immediate from the definitions of groups concerned and the prop- 
erties of X. It is shown diagramatically in Figure 5 for XEp. 

N 

M 

FIG. 4 

Description of Lemma 5. The XH(Ap , Aj) are characterised by being rectangles 
with one corner on x = y and the opposite corner on x = y + m + 1. In par- 
ticular XH(A) = AO and XDp = A0(r < p). 

The equation E0 = Gr A is echoed on the diagram by decomposing A into 
columns: in other words XEO, is the column A(ir = p). As r increases the columns 
XE; become shorter. In fact XE,+' is obtained from XE' by omitting the top square 
if it is in A+, and the bottom square if it is in A-. After at most m steps we are 
left with a single square in AO, namely XEp = XE' = [p, 0]. Figure 1 gives 
examples. 

Proof of Theorem 3. We use heavily Part (iii) of the representation theorem, 
which says that if XF = XG then F - G. In particular if XF = 0 then F = 0. 
Parts (i) and (ii) of Theorem 3 are immediate corollaries. 

(iii) Recall that d' maps E' into E' -,. Suppose [7r, p] c X(co-im d;). By Theo- 
rem 5, [ir, p] c XE; n A+, and 8[ir, p] C XEp-r. Therefore 'r = p and 

p = p - r > 0. 
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dAptr X 

Ap- Ap 

FIG. 5 

Hence if p > r, dr "maps" the top square of XEr onto the bottom square of 
XEp_r (as shown for ds in Figure 1). More precisely, 

XE; minus the top square, r < p, 
X(kern dp, X~,r?p 

XE , r > p. 

tthe bottom square of XE,, r < m -p, 
X(im d;r)P 

0,r ? m - p. 

Hence 

XHp(Er, d ) = X(kern d,) - X(im d +,r), 

= XE r , 

by the above description. Therefore Hp(Er, dr) - Er+l as desired. 

(iv) X(Dp/Dp-1) = XDp - XDpj = [p, 0] = XEp. 

Hence 

Gr H(A) = Dp/Dpl cc < p < cs }E`. 

The proof of Theorem 3 is complete. We should point out that it was some- 
what easy because it depended heavily upon Theorems 1, 2 & 4, which have yet 
to be proved in the following section. On the other hand, once the validity of the 
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ON THE FILTERED DIFFERENTIAL GROUP 569 

A 1 

FIG. 6 

diagram is established, many other arguments and constructions become equally 
visual and straightforward. We shall consider two further examples of construc- 
tions in this paper, the Massey4 exact couple below, and the basis for invariants 
in Section 5. For an example of an argument which is much assisted by using the 
diagram, the reader is referred to [10]. 

The exact couple. In & we have the exact triple 

H(Ap.-) LH(Av) 

d\ / 

H(Av; Av-i) 

Observe that H(A, , A_1) E 4 by - Lemma 5. Let K, = H(A,) and K' = {K',}. 
The set of triples as p varies may be combined to give the exact couple 

K1 -c---- K~ 
L/ 

El 

which we denote by V'. Let S2, R', * denote the sequence of derived4 couples. 
Then, from Figure 6, it is easy to show that 9' is 

Kr K' 

E/ 

4See Massey [6]. 
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where X (K,) = A(r < p, min(O, p - m + r -1) < p < 0), -oo < p < oo0 
1 < r < oo, a rectangle in A- u AO; that ar , 0r are induced by injection and 
r 

by d, that r = tm' r> m, and that K' = Dp, allp. 

3. The validity of the diagram 
This section is devoted to the proofs of Theorems 1, 2 and 4. 
LEMMA 6. (Birkhoff). The free modular lattice 9 generated by two finite chains 
?, ?' is finite and distributive. A typical element X e 9) may be written uniquely 

in the normal form 

X=(T1 n T') u (T2n T2) u ... u (T. 
n T'), 

where T1 c T2 cT8 in ?, and T vD T' D *. D T' in Z'. 
PROOF. See [1], Theorem 5, p. 72. This theorem is a stroke of good fortune for 

the filtered differential group. The analogous result for three chains is not true, 
so that the analysis of the bifiltered group presents greater difficulties: some of 
them are pointed out in Section 6. 

COROLLARY 6.1. The lattice 91 of subgroups of A generated by the chains ?, ?' 
in Theorem 1 is finite and distributive. 

PROOF. 91 is modular, although not free due to the relations dAp c Ap c 
d-cAp . Therefore there is a lattice-epimorphism ) -+ 91, giving the result. 

LEMMA 7. ? = 9. 
PROOF. It is sufficient to show 91 admits the unary operators d and d-', for 

then 

= {Ap ; n, +, d, d-'} C {91; n, +, d, d'} 9 C c. 

Let X e 9. We may put X/into normal form (not uniquely in general) by choos- 
ing the normal form of some element in 9 which maps onto X. Then 

dX = d(T1 n T') + d(T2 n T') + * + d(T. n T'). 

Therefore dX e 91 provided d(T n T') e 91 for each T e E, T' e E. If T' c d-'0 
then d(T n T') c d(d-'O) = 0. There remains the case when T = Ap, T' = 
d7Aq . We leave the reader to verify that 

d(Apn dAJ) = dApnA . 

The proof of the closure of 9 with respect to d1 follows dually, interchanging d 
with A', n with +, and using the dual normal form. 

Lemmas 6 & 7 and Corollary 6.1 prove Theorem 1. 
For the proof of Theorem 2 we use the notation , -,C, 3, , a introduced 

in Section 1. Also let-,Co = V,-i1 be the set of quotients of -,i , and t = U Cli . 
LEMMA 8. Given G e D, there is a unique 2c-isomorphism r(G): G - G such 

that G eZ,. 
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ON THE FILTERED DIFFERENTIAL GROUP 571 

PROOF. The proof is straightforward. l = D-. Given G ECi, i > 1, then 
G = F1/G1, some F1 D G1 in Si-l; F1 = F2/H2, G1 = G2/H2, some F2 D 
G2 D H2 in Zi-2; and so on. There is a sequence of 2-isomorphisms 

F, F2 Fi G. 
G1 G2 Ui 

say. The uniqueness follows from observing that G is a set of sets of ... sets 
of elements of A. The total set of elements of A involved in G, or in any half-way 
stage of a 2c-isomorphism , must be uniquely Fi . Similarly Gi is unique, and the 
2c-isomorphism is the unique natural one. 

COROLLARY 8.1. a = a, modulo the second isomorphism theorem. 
COROLLARY 8.2. Any 2c-isomorphism between two elements of Ze must be an 

identity. 
COROLLARY 8.3. The isomorphisms r give a one-one correspondence between the 

subgroups (quotient groups) of G in e and those of G in ZI. The corresponding in- 
jections (projections) commute with the ir's. 

PROOF. The proof follows from the consideration of successive commutative 
diagrams such as 

F'IH, j FilHi 
G1/H1 G1/Hi 

F1 j F1 
G, G, 

where F1 D FX D GD D H1 . 
COROLLARY 8.4. e is finite. 
PROOF. Suppose G Eri- - Z . This implies there is a strictly increasing 

chain in V of length i + 1. Since Q is finite, there is a maximum length k, of 
strictly increasing chains, and so i + 1 _ k. Therefore SA = -A+, ** = e 

Since o = S is finite, we deduce inductively that - , A is finite, 
LEMMA 9. (a) If e e e and j e 3 are composable, then ej = j'e' some j' e 3, 

e' C(E. 
If p e v and e e e are composable, then pe = e'p' some e' e 

P e A3. 
(b) If p e e3 and j e 3 are composable, then pj = j'e'p' some j' e 

pE e13, and some 1-isomorphism e' e (E. 
PROOF. (a) We consider a commutative diagram in the four cases when e 

or e-l is a 1-isomorphism or is induced by d, and we deduce the general case by 
composition. In each diagram the top half is given and the bottom half is de- 
duced. 
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572 E. C. ZEEMAN 

x 
7Xn Y\e 

Z \X+ Y 
X n Y <0\/ , X + Y where X D Z D X n Y. 

\Z+Y Yj' 
y 

X + Y 

e' 
, hr 

+ Y DZDY Xn Y 

i 

Z \e 
Z dx where X + Y D Z D Y. 

\X nZ j' 
XnY 

x 
i/ Z\ 

\e Y \dX where XD YD Z DO. 
Z ~~dZ' 

e'\Sd-Y 

dZ 

x 
I/ Z 

j/ \Pe 

Z-Y/ <Ad-Z' wherewdA D X D Y D Z. 

e'\d 'Y Y+ 

dY'Z 

The proof for projections is similar. 
(b) We are given the top half of the following commutative diagram, and 

deduce the bottom half. 

x 
AZ 

i p 

Y- where X D Y, Y, D Z. 

p' Y e' Y+ Y', 
Y n Y' Y 
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ON THE FILTERED DIFFERENTIAL GROUP 573 

PROOF OF THEOREM 2. Let a be the set of all homomorphisms f = TV'fr2 
between the elements oft, where f E a and r1, T2 are the unique 2c-isomorphisms. 
Using Corollary 8.1 we deduce that ?C u H = e u A, modulo the second iso- 
morphism theorem. ID is finite by Theorem 1, and so we may deduce in turn the 
finiteness of a, A, A, a, and, by Corollary 8.4, of e and 0. Using Lemmas 1 
& 2 we observe that 

W czGu a cZ E~ u V W. 
To prove Theorem 2 it is sufficient to show that Z u H is closed with respect to 
the building operations, and is therefore equal to WI. We consider each of the 
six operations in turn. 

(i) The range and domain of any f E a is in Z. 
(ii) Given f] = 7-P'fi72 and f2= C1f274, composable, we have to show 

flf2 E A. Since the range of f2 and the domain of f1 are in AZ, T2T3 is an identity 
by Corollary 8.2. Therefore 

flf2 T1 fif2T4, 

and it is sufficient to verify that flf2 E a. With the convention that j E a, e i EA, 
p, E 93, all i, we can write fi = some jielp, and f2 = some j2e2p2 . Therefore 

flf2 = jlelp1j2e2p2 

= jlelj3e3p3e2p2, some J3, e3, p3, by Lemma 9b, 

= jlj4e4e3e5p6p2, some j4, e4, e6, p5, by Lemma 9a, 

= J6e6p6, 

since each of the three sets a, A, 93, is closed with respect to composition. Thus 
fif2 E a as required. 

Parts (iii) and (iv) follow at once from Corollary 8.3 and the fact that a con- 
tains all injections and projections between the elements of -A. 

(v) If f E a, the decomposition f = jep shows that C contains the kernel, 
cokernel, image and co-image of f, and that a contains the induced isomorphism 
e. If f:F-x G is in W we decompose 

P f 

1i(F) 1j(G) 

f 
Y X X Y' X' X' 

_ _ > ,f 
_ , _ 

ifJ Z p e Z' j 'p' Yf 

This content downloaded from 139.140.212.138 on Wed, 24 Sep 2014 22:21:43 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


574 E. C. ZEEMAN 

for unique X D Y D Z, X' D Y' D Z'. The kernel of f is obtained by Corol- 
lary 8.3 as the unique subgroup of F corresponding to Y/Z c X/Z; the coker- 
nel, image and co-image occur similarly. The induced isomorphism 

e= r(co-im f)-1er(im f). 

(vi) An isomnorphism of 0, is of the form e = Ti eT2r, where e E d. Since (E is a 
1 -1 -1 -~- groupoid, e E e , and e-l = T2 e Ti E e . The proof of Theorem 2 is complete. 

The first step in proving the representation theorem, Theorem 4, is to estab- 
lish that in general X is one-one on V. Given a particular filtered differential group 
2, we say that 2I attaches G to M if G e W and XG = M. It will transpire that 
all groups attached to M by 2? are (canonically) isomorphic, but we have not 
shown this yet. Let J denote a free cyclic group, and J2 a cyclic group of order 2. 

EXAMPLE 1. Given a unit square b c AO, there exists an 2t attaching J to b 
and 0 to all other squares. For suppose b = [q, 0]; let A- J with a generator 
of filtration q, and let d = 0. 

EXAMPLE 2. Given a' = ba (implying a C A+, a' c A-), there exists an 2 
attaching J to a and a' and 0 to all other squares. For suppose a = [p, p -r], 
p > r. Let A be free abelian with two generators x, y of filtrations p, p - r re- 
spectively, and define d by dx = y, dy = 0. 

LEMMA 10. If 2? is sufficiently general then X I V is a lattice-monomorphism. 
PROOF. We may represent (as in [1] Chapter V) the elements of the free modular 

lattice 91 generated by X, V' by the regions of a rectangle 

El = [7r, p]; 1 < 7r< m, -m < p < m}. 

In other words there is a lattice-monomorphism X from 9M to the lattice of regions 
of E, with definition similar to that of X in Section 2. Now V is the quotient of 
9N by an equivalence relationship x, say. We claim that the relations 
dAp c APp C d-Ap are sufficient to generate x. Similarly the lattice of regions 
of A is the quotient of that of E by the equivalence relationship generated by the 
relations k(dAp) c X(Ap) C X(d-'Ap); this is what we are doing when we lop off 
anything outside the upper and lower zig-zag boundaries of A. Hence the lattice- 
monomorphism X induces the lattice-monomorphism X I V from V to the lattice 
of regions of A. 

Now suppose the above relations were insufficient to generate x: this would 
mean there was a group X E 3, arising from distinct elements (formulae) in 9M, 
and represented under X by distinct regions M, M' of A. We may suppose M D M', 
by suitable renaming, since X is also represented by M n M'. Therefore 2t at- 
taches 0 to M - M', and to any square a c M - M'. Since 9# is sufficiently 
general, this is also true for an arbitrary XI, a fact which may be contradicted by 
Examples 1 & 2. Thus the relations dA p c Ap c d'1Ap are sufficient to generate 
x, and the lemma is proved. 

LEMMA 11. Leta a', b be unit squares of A such that a' = aa. Then a' < a, and 
a' < b or b < a (or both). 
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ON THE FILTERED DIFFERENTIAL GROUP 575 

PROOF. Since a C A+, a = some [7r, p] with 1 < p _ ir < m. Therefore 

a' = ba =[p, '7r - M ] < [7r, 0] < [or, p]. 

The second part follows from the fact that the two regions U {c; a' < c } and 
U c; c < a } cover A (see Figure 1). 

LEMMA 12. Let 2t be sufficiently general, and suppose 2f attaches isomorphic 
groups to M and M'. Let b c A0 and a' = ba. Then 

(i) b C M if and only if b C M'; 
(ii) a C M - M' if and only if a' c M' - M; 
(iii) a C M - A' implies that b 4: M n M'. 

PROOF. (i) If b c M - M', then Example 1 attaches J to M and 0 to M" 
contradicting the hypothesis that W is sufficiently general. 

(ii) Suppose a C M - M' and a' 4: M' - M. Consider Example 2. If a' c M', 
then a' c M also, and 2[ attaches J 03 J to M and J to M'. Otherwise a' 4 Mll', 
and ?I attaches J or J 0 J to M and 0 to M'. The contradiction is obtained 
as in (i). 

(iii) By (ii) a' C M' - M. Assume that b c M n M'. Suppose b = [q, 0] 
and a = [p, p - r], p > r. There are two cases: 

10. If p - r < q, let A be free abelian with two generators x, y of filtrations 
p, q respectively, and such that 2y is of filtration p - r. Define dx = 2y, dy = 0. 
We have attached J (0 J2 to M and J to M'. 

2?. If p -r > q, let A - J 0 J2, with generators x, y of filtrations p, p- r 
respectively, and such that 2x is of filtration q and 2y = 0. Define dx = y, dy = 0. 
J is attached to M and J (0 J2 to M'. The contradiction is as before, 

PROOF OF THEOREM 4. 
Property (ii). The function X was defined for 2, and extended successively to 

SI , C2, by property (ii) 

X(F/G) = XF - XG, 

and so to A, which is the set of all groups of W4 by Theorem 2. Property (ii) is 
therefore automatically verified. Moreover, if F D G D H in W4, then 
XF D XG X XH, and 

X _F_ = X(F/H) - X(G/H) 

(XF - XH) - (XG - XH) = XF - XG = X(F/G) 

implying that 2-isomorphic, and hence 2c-isomorphic, groups are represented 
by the same region. 

Property (i). The lattice-homomorphic property has been established for 
groups in 2 by Lemma 10. Suppose F, G c H in 91#. By Corollary 8.3 and the 
above, it is sufficient to consider the case when F, G, H e Z. Suppose F = X/Z, 
G = Y/Z, where X, Y D Z in 2. Then 
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X(F + G) = X X + Y = X(X + Y) - XZ, by Property (ii), 

= (XX u XY) - XZ, by Lemma 10, 

= (XX - XZ) u (XY - XZ) 

= X(X/Z) u X(Y/Z), by Property (ii), 

= XF u XG. 
Similarly for intersections. 

Property (iii). Gi-ven F, G c H in 2L, 

X (F F G) = XF - (XF n XG), by Properties (i) and (ii), 

= XF - XG 

= (XF u XG) - XG = X (F + G) 

Therefore 1-isomorphic groups are represented by the same region, and hence 
ic-isomorphic and c-isomorphic groups also. 

Conversely, suppose XF = XG, where F, G e 2L. By Lemma 8 and (ii) above, 
there exist 2c-isomorphisms F - X/Y, G X'/Y', where X D Y, X' D Y' in 
V, and XX - XY = XF = XG = XX' - XY'. Therefore 

X(Y n Y') = X(X' n Y), X(X n X' + Y) = XX. 

By the monomorphic character of X on V, 

Yn Y' = X'n Y. X n X'+ Y = X. 

There is a 1-isomorphism 

X n X' X n X' XnX'+Y X 
Y n Y' X nX'n-Y Y Y' 

By symmetry and composition we may establish the required canonical iso- 
morphism 

F-->X <X nX' X' -G 
Y Y n Y' y' 

Property (iv). If a c A +, a is the top-right square of some Xc; , and ba is the 
top-right square of X (dC0) = XB.rp-. Hence if a c XX, X e V, then c; C X by 
Lemma 4, and so B'r- C dX, ba c XBr__ c X(dX). Similarly if a ct XY then 
ba C X(d Y). 

Suppose a(XF) = XG, where F, G e 2L. Since XF c A+, we may, by Lemma 8 
and (iii) above, choose a c-isomorphism F X/ Y, X D Y d d'O in V. Then 

XG = a(XF) = {6a; a c XX - XY} = X(dX) - X(dY) = x(dX/dY). 
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ON THE FILTERED DIFFERENTIAL GROUP 577 

By (iii) there is a c-isomorphism dXldY -> G. Meanwhile d induces an isomor- 
phism X/ Y -- dX/dY, and so, modulo the first and second isomorphism theorems, 
an isomorphism F -- G, as desired. 

The converse is immediate. 
Property (v). Suppose we are given distinct regions N, N' to which any 2[ 

attaches isomorphic groups. We shall show that they must be a-paired. In other 
words if XF, XG are neither equal nor a-paired, and { is sufficiently general, 
then F X G. 

_C a 

a C: 
b 

FIG. 7 

Since N, N' are distinct, either A - N' or N' - N 0 0. Suppose a c N - N'. 
Then a C1 AO, by Lemma 12 (i). Therefore a has a a-pair, a' say; by Lemma 12 (ii) 

(1) if a c N - N'then a' c N' - N. 
Also 

(2) N n AO= 0, 
for suppose b C N n AO. Then either b Cr N' contradicting Lemma 12 (i), or 
b c N' contradicting Lemma 12 (iii). 

(3) If a c N n A+ and b' C N n Az thena a> b', 
otherwise there exists c C AO, a > c > b', which is contained in N by Lemma 3, 
contradicting (2). We now deduce the stronger statement 

(4) N cannot meet both A+ and A-. 
For let a C N - N', and its a-pair a' c N' - N by (1). We may suppose without 
loss of generality that a C A\+, and so a' = ba. Assume the converse of (4) that 
b' c N n A-. Let bb = b'. From (3) a > b', and by Lemma 11, a < b. Therefore 
a' < a < b, a' C N', and so b ct N' by (3). Hence b c N - N', b' c N' - N 
by (1), implying b' C N'. Let c be the least upper bound of a and b', and let 
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c' = ac. Then a < c < b, and a' < c' < b' since 6 preserves the partial ordering. 
Since a', b' c N', c' C N' also by Lemma 3. Now a, c have the same p-coordinate 
by construction, and so a', c' have the same 7r-coordinate, implying that c' < a. 
But a c N, therefore c' cj N by (3). Consequently c' c N' - N, and c c N - N' 
by (1). The existence of b', c c N with b' < c contradicts (3), thereby establish- 
ing (4). (See Figure 7.) 

The statements (2) and (4) imply that N is contained either in A+ or A-. 
We may suppose without loss of generality that N c A+. By (1) N' - N contains 
the a-pair of some a c N, and so N' meets, and is therefore contained in, A-. 
Consequently N, N' are disjoint and composed of a-paired squares; i.e. N' = aN, 
as desired. The proof of Theorem 4 is complete. 

4. Application to the homology of a fibre space 
In this section we are concerned with the graded filtered differential group, 

a phenomenon which arises frequently in practice. An example is the singular 
cubical chain group of a fibre space, [8]. At first sight this appears to be a differ- 
ential group with infinite grading and infinite filtration. However the filtration is 
really finite in each homogeneous component, and as we never actually use the 
direct summation of homogeneous components we may dispense with it. The 
resulting equivalent algebraic description is as follows: 

DEFINITION. A graded filtered differential group *9 is a sequence of groups 
- nA; -0 < n < oo }, each of which possesses a finite filtration, namely an in- 

creasing sequence of subgroups {IAp _ oo < p < ?0 }, such that nA, = 0, 
p < 0, and nA, = 'A, p ? n (implying that nA = 0, n < 0); together with a 
sequence of homomorphisms 'd: A n-* A, such that nd n+ld = 0, and 
nd(nA,) C n-'Ap 

The infinite category *et generated by *9f is seen to be the union of finite 
categories _ 4, together with homomorphisms induced by d between them. 
For each n, we may represent nI upon a diagram nA. The groups of n2 are 
generated (as in Theorems 1 & 2) by the two chains: 

n .n A c . =nA -1_c nA, C ... (=nAn-1 cnAx 
nZ':O C .n'd( +'Ao) C * c n+ld(n+'A) c nd-1(O) c d'(n-'A0) C nA . 

The squares , p] in nA range over the set of integer values 

0 < r < n, r-n - 2 < p ? min(r + 1, n). 

As before 
a+ = nA(p > )) nA- n nA(p < 0). 

The function na, given by 
nb6(n[, p]) = n li[p _ 1, T - n-1] 

maps the regions of nA+ onto those of nl/A-. 
Figure 8 is drawn for n = 4. 
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Yt 

41 

4d-1(3A2 --g- 

4d-13A1) - 

H4( B 
4d-- - 

4d-1(O) 
x 

5d(5A) 4E 

5d(5A4)- 

5d (5A) H4(F) - 

5d(5A2 

5 J~~~~~~ 
5d(5A1)- - : 

0 I I 

0 4AO 4A1 4A2 4A3 4A 

FIGURE 8. The diagram 4A. 

i h 
The fibre space. Let F > E - B be a fibre space, with fibre F, base B and 

projection h. Suppose, for simplicity, that the fundamental group of B acts 
trivially on the homology of F. Then we may identify on 'A the regions which 
represent the homology groups Hn(F), Hn(E) and Hn(B) (as shown in Figure 8 
for n = 4). The squares n[O, O] and n[0, n] represent the images of i* and h* re- 
spectively, by Theorem 5. The region "A0(1 < ir < n - 1) represents a measure 
of the non-exactness of 

Hn(F) '[ Hn(E) witHn(B). 

The squares '[n, 1] and '-'[O, - 1] (marked with circles on Figure 8) are '5-paired, 
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and represent the transgressive elements of dimension n in the base, and dimen- 
sion n - 1 in the fibre, respectively. The fact that they occur in the middle of 
Hn(B) and Hn-i(F) indicates, by Lemma 4 that we cannot in general extend 
the "isomorphism" 6: n[n, 1] n-1[0, -1] either way into a homomorphism 
between Hn(B) and Hn-1(F). However n[n, 1] does occur at the top of XPn , 
where Pn is the subgroup of Hn(B) corresponding to the two lowest squares; and 
n-1 [0 -1] occurs at the bottom of XQn-1 X where Qn-1 is the quotient group of 
Hn-l(F) corresponding to the two highest squares. Now we can apply Theorem 
5 and obtain the transgression 

Pn Qn-1 
induced by d. Alternatively, if Hn(E) = Hn-(E) = 0, then n[n, 1] occurs at the 
bottom and n-[0, -1] at the top, enabling us to define the suspension 

H,(B) +- Hn-i(F) 
induced by d1. 

We denote by nfl the heavily outlined region of nA in Figure 8. Its full sig- 
nificance will appear in the next section. Meanwhile we illustrate its use by con- 
sidering the situation when the fibre is totally non-homologous to zero. This is 
described algebraically by E2 = E', and, on the diagram, by attaching zero 
groups to all the squares contained in nir n (nA+ u nA'-). As a result we see that 
i* becomes a monomorphism, and h* an endomorphism. 

We conclude this descriptive section by mentioning that similar diagrams 
can be drawn for cohomology, but that they do not display the multiplicative 
structure. 

5. The invariant subcategory 

Suppose the three spaces of a fibre space are polyhedra. The terms E', r > 2, 
of the associated spectral sequence are "invariant" in the sense that they are 
independent of the method of calculation, whether it be by singular cubical 
homology (Serre [8]), by singular simplicial homology, by the use of sheaves 
(Leray [5]), or by dihomology, [9]. We seek for all such invariant groups in 2I W. 
In order to preserve simplicity, we return to the discussion of an (ungraded) 
filtered differential group of length m, as in Section 1, and manufacture a suitable 
definition of invariance. The generalization to the graded case presents no diffi- 
culties and is left to the reader. 

DEFINITION, A homomorphism f: 2I -- 2I' between two filtered differential 
groups of length m is a homomorphism f:A -+ A' which preserves the structure, 
that is fA, c A' , each p, and fd = d'f. 

If i/ is a formula defining a group of 2{ W (in terms of the Ap and d), then f 
induces a homomorphism '(f):/(() V /(I'). The term E' of the spectral se- 
quence is an example of such a formula. Define i1 to be invariant5 if if(f) is an 

6 If we were interested in a spectral sequence from only the rtb term onwards, we could 
equally well replace E2 by Er in the definition of invariance, and throughout Section 5. 
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ON THE FILTERED DIFFERENTIAL GROUP 581 

isomorphism for all homomorphisms f which induce an isomorphism E2(f). If 
s1 is invariant, then the group 4/(2I) E 2 # is called invariant; and a homomorphism 
in I 4 is said to be invariant if its range and domain are. It follows immediately 
that the set of all such groups and homomorphisms form a subcategory Q, 
which we call the invariant subcategory of L . Glancing at the building operations, 
we notice that anything we can build from invariants is also invariant, 
i.e. Q = QB. 

If a group is invariant, then its canonical isomorphs are also invariant, and 
so, using Theorem 4 (iii), we may call the corresponding region on A invariant. 
In order to identify the invariant regions on A we define 

P U XE2 = A (min(O, r -m- 1) < p < max(O, r - 2)). 

F is marked with a heavy outline in Figure 1, as is the corresponding region 
nfl in Figure 8. 

THEOREM 6, A permissible region is invariant if and only if it is contained in F. 
PROOF. Suppose G e 2L W, and XG Ct F. We wish to show G is not invariant. 

Choose a c XG- r. If a' is the 6-pair of a, then a' cV r also. Let i1 be a formula 
giving G. Let 2[ be as in Example 2 in Section 3. Let 2I2 = 0, and f: 21 -+ 212 
be the trivially unique homomorphism. Since E2(2(1) = E2( I2) = 0, E2(f) is an 
isomorphism. But 4t(11) $ 0, 4I(2I2) = 0, and so i/(f) is not an isomorphism. Hence 
s/ is not invariant, and neither is G. 

Conversely suppose G e I , XG c r. The filtration 

XG(r < p), p = 0 1, , m 

of the region XG imposes a filtration on G. Let a;, GP be the associated graded 
group, where XGp c XE, . If f: 2-- A' induces an isomorphism of each Gp, then 
by repeated application of the five lemma,6 we deduce that it does also on G. 
Each Gp is filtered (vertically) such that Gr Gp is the direct sum of groups corre- 
sponding to squares in r. By the same argument it is sufficient to show that f 
induces isomorphisms of the latter. But each square represents the kernel, image 
or co-image of some d', r > 2. Since f commutes with d, and so with each d', 
by Theorem 3 (iii) it induces an isomorphism on each E', r > 2, and conse- 
quently on each kernel, image or co-image. Thus G is invariant. 

COROLLARY 6.1. (52 C 22 C Q3; in other words, the spectral sequence terms 
and exact couples for r > 2, and anything built therefrom, are invariant. 

COROLLARY 6.2. Any invariant group may be obtained by group extensions from 
V2 # modulo the first and second isomorphism theorems. 

Corollary 6.2 may be interpreted by the optimists as saying that apart from 
certain group extensions, the spectral sequence captures all the information 
available from a filtered differential group. The pessimists, however, will point 
out that it is inadequate in not providing these group extensions. The exact 
couple is better, but still insufficient, for the inclusions in Corollary 6.1 are in 

6 The "five" lemma is given in [41, p. 16. 
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general both strict. An example of an invariant group which cannot be built from 
,'2 is the group attached to the rectangle A (3 ? ir < 4, -2 ? p ? 1) in Figure 1. 

We seek therefore for an economical basis or list of invariant groups and homo- 
morphisms from which to generate all invariants. The reason why any such list 
must necessarily be rather complicated is that the region F is not permissible. 
Therefore, to capture group extensions, we are forced to have the basis regions 
overlapping one another. If, on the other hand, we are willing to sacrifice group 
extensions (if we are working with vector spaces over a field, say) then an obvious 
approach is to decompose r as simply as possible into disjoint permissible regions, 
namely the columns. Thus we are led intuitively to the spectral sequence term 
E2-quite apart from its two fundamental advantages, the properties in Theorem 
3 and its relations to other known invariants when used. 

Definition of d3. Given a filtered differential group 2f of length m, let 53 comprise 
the groups 

Rpq = the image of ;:H(Ap, Aq,-) H(Ap_+, As), 0 _ q < p < m; 

and the homomorphisms 

j: Rp q Rp.,q , p < p' q < q', induced by injection, and 

d:Rp q R I-l,s, p > q > s + 1, induced by d. 

The regions XRpq are characterized by being maximal rectangles contained in r. 
THEOREM 7. e3 is a basis for the invariant category Q3; in other words, At - , 

modulo the first and second isomorphism theorems. 
REMARK. In forming a basis for $3, we could do with fewer homomorphisms 

than in A, although we cannot dispense with any of the groups Rp, . It is easy 
to write down a minimal set of homomorphisms. 

LEMMA 13. Any permissible invariant region M is contained in some invariant 
rectangle R. 

PROOF. Let R be the smallest rectangle in the plane containing M, and let 
a, b be the top-left and bottom-right unit squares of R respectively. There must 
exist al, a2 C M such that a, has the same ir-coordinate as a, and a2 has the 
same p-coordinate as a. Hence a, < a ? a2 . Since M is permissible, a c M by 
Lemma 3; similarly b c M. Also M is invariant, and so M c r by Theorem 6. 
Therefore a, b c F, and by observing the shape of r we deduce R c r, proving 
that R is invariant. 

PROOF OF THEOREM 7. Clearly e3 c A3. To generate Q from e3 we may use 
the processes mentioned in Lemma 1, of taking images, unions and quotients 
etc. Since we are working modulo the first and second isomorphism theorems, 
it is sufficient to generate one group for each permissible invariant region. We 
first demonstrate this for rectangles. 

Suppose we are given the rectangle R, c F. Let a, b be the top-right and 
bottom-left squares of R. Let R1, R2 be maximal invariant rectangles with a as 
top-right square, and b as bottom-left square, respectively. Using Theorem 6 and 
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Figure 1 we observe that: if a c1 A, R, represents a group F, e QA; if a c i\, Rf 
represents a group F1 which is the image of some d e d . Similarly R2 = X2 F2, where 
F2 is either a group in l3 or the co-image of some d e a. The image of the homo- 
morphism F1 -- F2 , induced by the appropriate j in A3, gives a group F such that 
XF = R. Moreover F E 3 4, as desired, by Lemma 1. 

Now let M be an arbitrary permissible invariant region. M is contained in 
some invariant rectangle R, by Lemma 13. We may choose F E t3 , XF = R, 
as above. Let {H.} denote the set of all rectangular subgroups of F such that 
XHi n M = 0, and let H = Ui Hi. Let IGi} denote the set of all rectangular 
subgroups of F such that XG1 c XH u M, and let G = U. Gs. Then X(G/H) = 
XG - XH = M. By Lemma 1 G/H e Q3 4, so that we have generated a group at- 
tached to the arbitrary region M, and the theorem is proved. 

COROLLARY 7.1. . ) D Q, modulo the first and second isomorphism theorems. 
PROOF. e3 is defined by means of the relative homology groups and homo- 

morphisms ,. Therefore e0 c 1, and Q3 = e c . # = S #, modulo the first 
and second isomorphism theorems. 

REMARK. The significance of Corollary 7.1 is that if we are looking for all 
the invariant information, and we know the relative groups and homomorphisms 
.A, there is nothing to be gained from going back to the original chain group 21. 
In other words 7.1 justifies Eilenberg's use of , as the fundamental concept in 
defining the spectral sequence in [3], the Deheuvels constructions from & in 
[2]. Deheuvels constructed a set of "partial homology groups", which correspond 
to our rectangular groups, together with their subgroups, and thereby obtained 
a large part, but not all, of Q3. 

6. The bifiltered differential group 
The following problem due to Eilenberg is suggested by Massey in [6] (problem 

number 7). What are the relations between the various spectral sequences arising 
from a bifiltered differential group? More particularly, suppose to the filtered 
differential group of length m, 21 = {A, A,, d}, we add one subgroup A' of A, 
stable under d. Write Z) = {2X, A'). Let 21' denote the filtered differential group 
{A', A' n A, d I A'), and W" = IA/A', (A' + A p)/A', d"}, where d" is induced 
by d. What is the relation between the spectral sequences associated 
with 2', 21, 21"? 

The situation arises, for instance, when considering a fibre bundle and the 
subbundle over a subset of the base (or alternatively a subbundle using only a 
subset of the fibre). 

In our terminology, the second question reduces to the problem of analyzing 
the category Z $ generated by Z. The purpose of the present section is to show 
why this is so much more complicated than the analysis of 21 , and why it is 
yet unsolved. The reason may be traced back to the non-distributivity of a certain 
lattice. 

Suppose we try to apply the techniques of the foregoing sections. Let 3* be 
the lattice {A,, A'; n, +, d, dU1J. Let Z2*, a* be defined as in Section 1. Then 
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we can show, as in Theorem 2, that 0 = -* u a*, modulo the second iso- 
morphism theorem, so that the analysis of Z 4 is reduced to that of the lattice 
V*. However this is where the difficulty is encountered, in that Lemma 6 no 
longer holds, and V* is not in general distributive. Some of the drastic conse- 
quences of this are as follows: in general 

10. We cannot represent V by a diagram (since any lattice of subsets is dis- 
tributive). 

2?. We cannot use the ideas of inclusion, intersection, quotient etc. between 
equivalence classes of canonically isomorphic groups, as we have, in effect, been 
able to do in the foregoing (for a group may have distinct canonically isomorphic 
subgroups). 

30. V* is no longer finite (although Z is finite). 
4?. V# contains an infinite number of non-isomorphic groups. 
5?. The sequence 

r 
(2,) El) * E(2f") 

is not exact. 
We give one simple example, which is sufficient to demonstrate all these points. 
EXAMPLE. Let A be a free abelian group of rank 5 with generators x1, X2, X3, 

x4, x5. Let Ao = A; Al be the subgroup of rank 2 generated by xl, X2 ; A2 be 
the subgroup of rank 3 generated by xl, X2, X3 ; A3 - A. Let d be given by 
dxi = dx3 = dx4 = 0, dx2 = xi and dx5 = X4. Thus 2f is a filtered differential 
group of length 3. Let A' be the subgroup of rank 2 generated by x1 , X2 + X3 + x4. 

1?. V* is not distributive, for 

A2 n (dA + A') is of rank 2, but 

(A2 n dA) + (A2 n A') is of rank 1. 

2?. The diagram 

dA +A' 

dA<k A2 n (dA + A ' 

dA nA' 

gives a sublattice of V*, and so there are 1-isomorphisms 

dA dA +A A' 
F = <- _ _ _ _ G 

dA n A' A2 n (dA + A') dA n A' 

Consequently F and G are c-isomorphic, and of rank 1, but F n F 2 F n G 0. 
Therefore if [F] represents the equivalence class of groups canonically isomorphic 
to F, [F] n [F] is ambiguous. 
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ON THE FILTERED DIFFERENTIAL GROUP l85 

3?. Define7 inductively 

Xi = A', 

Yq = [Xq + (A2 n d10)] n (dA + Al) 

Xq+i = [Yq + (A2 n (dA + A'))] n (Al + A'). 

Let Z, = A, n (Yq + dA). Then Zq is of rank 2 generated by xi, qx2 ; the veri- 
fication is left to the reader. The Zq form an infinite subset of V*, showing that 
V* is not finite. 

40. The group Jq = AijZq is cyclic of order q. Therefore Z ) contains all cyclic 
groups. 

50. The sequence 

E2(') - 2 E S) - 2 

is not exact, since the center group is free cyclic, while the other two are zero. 

GONVILLE AND CAMES COLLEGE, CAMBRIDGE 
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