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AN1NALS OF IATHMUMATICS 

VWl. 72, No. 2, September, 1960 
Printed in Japan 

UNKNOTTING SPHERES 

BY E. C. ZEEMAN 

(Received November 27, 1959) 
(Revised April 20, 1960) 

For which dimensions n and k can a combinatorial n-sphere Sn, tamely 
embedded in euclidean k-space Ek, be knotted? 

At the lower end of the scale, when k = n + 2, we can construct knots 
by a generalisation of Artin's method [2] of spinning 1-dimensional knots. 
This is the lowest' dimension in which knots can exist, and the only one 
in which we know they do exist. 

At the upper end of the scale, it is easy to see that any Sn in Ek is 
unknotted if k > 2n + 2; one only has to put one's eye in general posi- 
tion and glance at it2. We improve this result down to about halfway, 
and show in Theorem 2 that any Sn is unknotted in Ek if k > (3/2)(n + 1). 
Nothing is known about the intervening dimensions n + 2 < k < 
(3/2)(n + 1). The first case affected by our theorem is the unknotting of 
S2 in E5 (see [8]). The first unsolved case is now S3 in E6. 

The theorem also focuses an essential difference between linking and 
knotting, for it is easy to link two n-spheres in dimensions as high as 
E2n+l (see [7]). 

The first half of the paper is devoted to establishing in Theorem 1 the 
equivalence of five different criteria of unknottedness. In the second 
half we use one of these criteria, equivalence by cellular moves to the 
boundary of a ball, to prove the unknotting theorem, Theorem 2. 

Definitions 

Let An be a standard n-simplex. Recall that a combinatorial n-ball 
(or combinatorial n-sphere) is a finite simplicial complex piecewise linear- 
ly homeomorphic to An (or &n+l). A combinatorial n-manifold M is a 
finite simplicial complex such that the link of each vertex is either a com- 
binatorial (n - 1)-sphere, if the vertex is in the interior of M, or a com- 
binatorial (n - 1)-ball, if the vertex is in the boundary A of M. Call M 
closed if M is empty. In the future whenever we say sphere, ball, or 
manifold, we shall always mean a combinatorial sphere, combinatorial 
ball, or combinatorial manifold, embedded rectilinearly in some euclidean 

1 When k = n + 1 the generalised Sch6nflies Theorem [3] is applicable, because Sn is 
tamely embedded, and so Sn is unknotted in the sense that it bounds a topological ball. 
It is not known yet whether it bounds a combinatorial ball, i.e., is unknotted in our sense. 

2 This is made rigorous by Theorem 1. 
350 
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UNKNOTTING SPHERES 351 

space. Define an equatorial decomposition of an n-sphere Sn to be a 
pair of n-balls B1, B2 such that B1 + B2 = Sn, B1 nB2 = S2 . 

Definition of unknottedness 

If Sn is embedded in Ek (or Sk), k > n, define Sn to be unknotted if 
there is a piecewise linear homeomorphism of Ek (or Sk) onto itself throw- 
ing Sn onto the boundary of an (n + 1)-simplex. If M is an n-manifold 
embedded in Ek, k > n, define M to be locally unknotted if each point in 
the interior of M has an arbitrarily small k-ball neighbourhood N in Ek, 
such that M n N is an (n - 1)-sphere that is unknotted in the (k - 1)- 
sphere N. For example a simplex is locally unknotted, and the boundary 
of a simplex is locally unknotted. 

Both unknottedness and local unknottedness are properties which are 
invariant under piecewise linear homeomorphism. Therefore if Sn is un- 
knotted, then it is locally unknotted. On the other hand consider the 
suspension in E4 of a knotted S1 in E3; this is a 2-sphere which is locally- 
knotted at the suspension points, and consequently is also knotted. The 
spun knots of Artin [2] are examples of spheres which are knotted, but 
locally unknotted. 

Simplicial moves 

A second approach to the knotting of spheres is given by generalising 
to n-dimensions the classical notion of equivalence of polygonal knots by 
simplicial moves across triangles. 

We say that two n-manifolds M1, M2 embedded in Ek, k > n, differ by 
a simplicial move3 across the (n + 1)-simplex A, if the interior of A 
does not meet M1, M2 1, and A is the join A = BC of simplexes B e M1, 
C e M2, such that M1 -M2= BC, M2 - M= BC. We denote the sim- 
plicial move from M1 to M2 by the symbol (B, C). Two n-manifolds M1, M. 
embedded in Ek, k > n, are equivalent by simplicial moves if there is a 
sequence M1, M2, *. , M, of n-manifolds in Ek, each one either differing 
from the next by a simplicial move, or else having the same underlying 
polyhedron as the next. 

Cellular moves 

In the proof of Theorem 2 we shall have to use a more complicated type 

3 If two manifolds differ by a simplicial move, then they are combinatorially equivalent 
by a Newman [4] move of type 3; however, the concept of differing by a simplicial 
move includes more than just a Newman move, for it also embodies the embeddings in 
Ek, with the interior of A not meeting I , M2 1I. 
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352 E. C. ZEEMAN 

of move, across a ball rather than a simplex. We say that two n-mani- 
folds M1, M2 embedded in Ek, k > n, differ by a cellular move across the 
(n + 1)-ball A, if the interior of A does not meet I Ml, I M21, and the 
boundary of A has Ml - M2, M2- Ml as an equatorial decomposition. 
Two n-manifolds M1, Mr embedded in Ek, k > n, are equivalent by 
cellular moves if there is a sequence M1, M2, * - *, M, of n-manifolds in El, 
each one either differing from the next by a cellular move, or else having 
the same underlying polyhedron as the next. 

In the above definitions we have not required the manifolds to be 
closed. If a manifold has boundary, then in a simplicial or cellular move 
the boundary must remain fixed, so that the boundaries of manifolds 
which are equivalent by either process must have the same underlying 
polyhedron. 

LEMMA 1. Two n-manifolds embedded in Ek, k > n, are equivalent 
by simplicial moves if and only if they are equivalent by cellular moves. 

The proof one way is trivial, because if two manifolds differ by a sim- 
plicial move then a fortiori they differ by a cellular move. For the 
proof the other way we first need a lemma about stellar subdivision. 

Subdivision 

We use the definitions and notation of Whitehead [6]. All complexes 
are assumed to be rectilinearly embedded in some euclidean space, and L 
is subdivision4 of K if every simplex of L is contained in some simplex 
of K. An elementary subdivision of a complex K consists of starring a 
single simplex A e K at an interior point a, or in other words replacing 
K = AP + Q by K* = aAP + Q, where P is the link of A in K, and 
Q = K - AP. A stellar subdivision of K is the result of a finite se- 
quence of elementary subdivisions. If L c K, a stellar subdivision of 
K, which we shall denote by aK, induces a stellar subdivision aL of L. 

Consider an embryo simplicial move: let A be an (n + 1)-simplex (in 
some Et, k > n) that is the join A = BC of a p-simplex B and a q-simplex 
C, where p, q > 0, p + q = n. Then (B, C) is a simplicial move across 
A between the bounded n-manifolds BC, BC. 

LEMMA 2. If aA is a stellar subdivision of A, then 6(BC), a(BC) are 
equivalent by simplicial moves across the simplexes of aA. 

PROOF. The proof is by induction on the number r of elementary sub- 
divisions in a. First consider the case r = 1. Suppose that aA consists 

4 This is called a partition in [1] and [5]. 
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of starring the t-dimensional face X = x~x1. x, of A at the interior point 
x, where t > 1. Suppose that the vertices of X are labelled so that the 
first s of them lies in B, and the remaining t + 1 - s lie in C, where 
o < s < t + 1. We can write B = DxOx1. xs1, C = xx, +*xE, where 
D, E are (possibly empty) simplexes. Then a(BC) is equivalent to a(BC) 
by the simplicial moves Mt, mt1, *.., InM, in that order, across the t + 1 
(n + 1)-dimensional simplexes of aA, where m, is the move 

_ (Dxxoxl * * x,1, x+lxi+2* *xtE) , i = 0, 1, ** , s-1; 
(Dxoxlx xi-,, xi+lxi+2* xtxE) , i = S, s + 1, *, t. 

We now prove the inductive step. Suppose that r is the number of 
elementary subdivisions in a, so that aA = a1a2A, where 62 comprises 
the first r - 1 elementary subdivisions, and a1 is the last elementary sub- 
division, obtained by starring the t-simplex X in a2A, say. By induction 
the lemma holds for a2A. The required sequence of simplicial moves 
across aA is obtained from that across a2A, by replacing each move across 
an (n + 1)-simplex in the star of X by t + 1 moves as in the case r = 1 
above. 

Proof of Lemma 1 

Suppose M1, M2 are two n-manifolds in Et which differ by a cellular 
move across the (n + 1)-ball Q, whose interior does not meet I M1 + M2 1, 
and whose boundary Q has M1 - M2, M2- M1 as an equatorial decomposi- 
tion. 

Let A be an (n + 1)-simplex, B a vertex of A, and C the n-dimensional 
face opposite B. Let f: A - Q be a piecewise linear homeomorphism 
throwing BC, BC (= C) onto M1 - M2, M2- M1, respectively (one can 
easily be constructed using [1, Theorem 13.2]). For suitable subdivisions 
,8A, -yQ of A, Q the map f: /,A -yQ is a simplicial isomorphism. By [5, 
Theorem 1], there is a subdivision cx,/A of /3A that is a stellar subdivision 
of A. By Lemma 2, a/3(BC), a18(BC) are equivalent by simplicial moves 
across the simplexes of a,3A. The simplicial isomorphism f: a/3A , acyQ 
carries this over to an equivalence, e say, between awy(Ml -M2), 

a/(M2- M1) by simplicial moves across the simplexes of a-yQ. Extend 
the subdivision a-/Q to subdivisions DM1, 3M2 of M1, M2. Since the interior 
of Q does not meet I Ml I, I M2 1, the simplicial moves of e can be regarded 
as simplicial moves between DM1, DM2. Therefore M1, M2 are equivalent 
by simplicial moves M1 > 3M1 - M2 - M2. By induction on the 
number of cellular moves, if M1, Mr are equivalent by cellular moves, 
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354 E. C. ZEEMAN 

then they are equivalent by simplicial moves, and the proof of Lemma 1 
is complete. 

COROLLARY TO LEMMA 1. If an n-sphere Sn in Et bounds an (n + 1)- 
ball, then it is equivalent by simplicial moves to the boundary of an 
(n + 1)-simplex. 

PROOF. Let Sn bound the ball Q. Let A be an n-simplex in Sn, and let 
B = Ax be the unique (n + 1)-simplex of Q containing A. We may 
assume, having first subdivided Q if necessary, that x lies in the interior 
of Q. Then Sn differs from B by a cellular move across Q - B, which is 
an (n + 1)-ball by [1, Corollary 14.5b]. By Lemma 1, Sn is equivalent to 
B by simplicial moves. 

LEMMA 3. If two n-manifolds M1, M2 embedded in Et, k > n, differ 
by a simplicial move across the simplex A, then there is a piecewise 
linear homeomorphism of El onto itself throwing M1 onto M2, which is 
the identity outside an arbitrarily small neighbourhood of A. 

COROLLARY. If two n-manifolds M1, M, embedded in E', k > n, are 
equivalent by simplicial moves, then there is a piecewise linear orienta- 
tion preserving homeomorphism of Et onto itself, throwing M1 onto Ma. 

PROOF. The corollary follows from the lemma by composing the piece- 
wise linear homeomorphisms given by the individual simplicial moves. 

For the proof of the lemma, suppose that the simplicial move is (B, C) 
across the (n + 1)-simplex A = BC. Let a, b, c be the barycentres of 
A, B, C, respectively; if X denotes the 1-simplex bc, then X contains a. 
Now XBC is a subdivision of A, and meets M1 n M2 in BC. Since M1 f M, 
is a finite complex, there is an arbitrarily small s-neighbourhood W of X, 
such that the join of any point in W to BC also meets -m n M2 in BC. 
Let Y = b'c' be a 1-simplex in W, that contains X in its interior, and 
such that b'bcc' is the order of points in Y. Let Z be a (k - n - 1)- 
simplex in W, that is perpendicular to A and has the same barycentre a 
as A. Let N= YZBC. 

Then N is a convex k-dimensional set in El, and is a closed neighbour- 
hood of the interior of A. Since N is contained in the s-neighbourhood 
of A, and s was arbitrarily small, we can choose N to be the arbitrarily 
small neighbourhood of A mentioned in the statement of the lemma. 
Since YZ c W, N meets M1 f M2 in BC. Let f: Y - Y be the piecewise 
linear homeomorphism that maps the segments b'b, bc' linearly onto the 
segments b'c, cc', respectively. Then f IY is the identity. Define f to be 
the identity on ZBC, and extend f linearly to N = YZBC. Then f: NON 
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is a piecewise linear homeomorphism throwing BC onto BC, such that 
f I N is the identity. Define f to be the identity on El - N. Then f is the 
required piecewise linear homeomorphism of Et onto itself, throwing M, 
onto M2, 

THEOREM 1. Let Sn be a combinatorial n-sphere embedded in euclidean 
k-space Ek, k > n. Then the following five statements are equivalent: 

(1) Sn in unknotted. 
(2) Sn bounds a locally unknotted combinatorial (n + 1)-ball. 
(3) Sn bounds a combinatorial (n + 1)-ball. 
(4) Sn is equivalent by cellular moves to the boundary of a combinato- 

rial (n + 1)-ball. 
(5) Sn is equivalent by simplicial moves to the boundary of an (n + 1)- 

simplex. 
PROOF. (1) implies (2) because there is a piecewise linear homeomor- 

phism of El onto itself, throwing the boundary of an (n + 1)-simplex 
onto Sn, and throwing the simplex onto a locally unknotted ball bounded 
by Sn. (2) implies (3) a fortiori. (3) implies (4) a fortiori. (4) implies 
(5) by Lemma 1 and its Corollary. (5) implies (1) by the Corollary to 
Lemma 3. The proof of Theorem 1 is complete. 

Example 

That (3) implies (2) in Theorem 1 is at first sight mildly surprising; let 
us try and explain this in an example. Let S1 be a familiar knotted 
polygon in E3 c E4, and V a vertex in E4 - E3. Then S1 bounds the disk 
VS1, which is locally knotted at V. The question is how do we construct 
a locally unknotted disk D spanning S1? Artin points out in [2] that the 
local knottedness of VS1 is an isotopy invariant, and yet Theorem 1 in 
effect says that we somehow use VS1 to construct D. The secret lies in 
Lemmas 1 and 3. 

Let Al, A2, * .. , Ar be the 1-simplexes of S1, in order; let B. be the disk 
Bi = V(A1 + A2 + ? + As), i = 1, 2, *., r. We can pass (Lemma 1) 
from the boundary B1 of the triangle B1 to Br = S1 by the simplicial moves 
B1 , B2 * * Br. For 1 < ? < r, B, is in fact a locally unknotted disk 
spanning Bi, with V on the boundary; only Br = VS1 has V interior, and 
is locally knotted. Lemma 3 meanwhile has been giving us a sequence of 
locally unknotted disks D, spanning BP, i = 1, 2, * * *, r, images of D, = B, 
under the piecewise linear homeomorphisms; in general D, is arbitrarily 
close to, but not equal to, B., i > 1. The final piecewise linear homeo- 
morphism of Lemma 3, which throws Br-i onto Br and Dr l onto Dr, moves 
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V, which hitherto has remained fixed, to the barycentre of Ar. Thus Dr 
has avoided the local knottedness of Br = VS' by, as it were, pushing it 
to the boundary, where it does not matter. 

The rest of the paper is devoted to proving: 

THEOREM 2. (THE UNKNOTTING THEOREM). If k > (3/2)(n + 1), every 
combinatorial Sn in Et is unknotted. 

By Theorem 1 it suffices to show that every Sn it equivalent by cellular 
moves to the boundary of an (n + 1)-ball, but before we can do this we 
need some definitions and lemmas. 

Definitions 

Let the hull of a q-simplex in E' be the linear q-dimensional subspace 
which it spans. Let the hull of a pair of simplexes be the linear sub- 
space spanned by their two hulls; if this coincides with the whole of El 
we say the simplexes are skew. Notice that if two simplexes are skew, 
the sum of their dimensions must be > k - 1. Given three simplexes, 
define a proper transversal of them to be a line which meets each simplex 
and its hull in exactly one point, and such that the three points are dis- 
tinct. Define the transversal set of the three simplexes to be the union 
of all proper transversals. Notice that the transversal set as we have 
defined it is a fairly awkward kind of set, possibly empty, and probably 
neither open nor closed. However it is contained in the hull of each pair; 
and although it is not in general linear, it is contained in an algebraic 
variety, so that we can deduce: 

LEMMA 4.5 If three simplexes of dimension < n lie in Et, k > 
(3/2)(n + 1), then their transversal set is contained in an algebraic 
variety of dimension < k. 

PROOF. We may assume all three simplexes to be of dimension n, be- 
cause if we prove the lemma for this case, it follows for any lesser 
dimensions. Also we may assume the three simplexes to be pairwise 
skew, otherwise the transversal set is contained in the hull of a non-skew 
pair, which is of dimension < k. Let A, B, C be the three simplexes, 
and X, Y, Z their hulls. Suppose that a proper transversal meets A in 
x. If [x, Y] denotes the linear subspace spanned by x and Y, then dim 
[x, Y] = n + 1. Since Y, Z together span El, dim ([x, Y] n Z) 
= 2n + 1-k. Hence dim [x, ([x, Y] n z)] = 2n + 2-k. But 
[x, ([x, Y] f z)j contains all the proper transversals through x. Therefore 

5 Whereas Lemma 4 holds for k _ (3/2)(n + 1), our proof of Theorem 2 only holds for 
k > (3/2)(n + 1). See the Remark after Lemma 5. 
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the transversal set of the three simplexes is contained in the algebraic 
variety traced out by the subspaces [x, ([x, Y] n Z)] as x varies through 
X, which is of dimension ? n + (2n + 2 - k) < k - 1. 

Beginning of the proof of Theorem 2 

We are given a combinatorial n-sphere Sn embedded in Et, k > 
(3/2)(n + 1), which we have to show is unknotted. Let V be a vertex 
in general position. The word "general" merely implies that V does 
not lie in any of the following finite set of subspaces of Et, each of 
which has dimension less than k ((iii) by Lemma 4): 

( i ) The hull of any simplex in Sn. 
(ii) The hull of any non-skew pair of simplexes in Sn. 
(iii) The transversal set of any three simplexes in Sn. 

Also since ISnI is compact, we can arrange for V to have a further 
property, which will be technically convenient: 

(iv) V lies on some (k - 1)-dimensional linear subspace which does 
not meet Sn. 

Singular points 

Call a point x e |SnI non-singular if Vx does not meet ISnI again; other- 
wise call it singular. Let &2 be the set of singular points. If &2 is empty 
we are finished by Theorem 1, because the cone VSn is then a combina- 
torial (n + 1)-ball bounded by Sn. Therefore assume t2 is non-empty; 
we shall eventually make a cellular move of Sn in order to remove the 
singularities VI2 of the cone. 

Suppose x, y are singular points collinear with V. The general position 
of V ensures that they can not lie in the same simplex (by (i) above); 
that they lie in skew simplexes (by (ii)); and that they are not collinear 
with any other singular point (by (iii)). Also property (iv) ensures that 
they both lie on the same side of V, and so we can call the one nearer to 
V a near-singular point, and the other a far-singular point. Let fil 
be the set of all near-singular points, and &i2 the set of all far-singular 
points. Then & = &i2 U f22 the union of two disjoint subsets. Notice 
that the limit of singular points is not necessarily singular, and so in 
general &il, &i2 are neither open nor closed in JSnJ. 

LEMMA 5. We can separate &il and f22 by an equator. More precisely, 
there is a subdivision aSn of Sn, and an equatorial decomposition 
B1 + B2 = asn, B1 n B2 = S n-1 of aSn, such that Q1 lies in the interior 
of B1 and fi2 lies in the interior of B2. 
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REMARK. The reason that we shall be able to prove Lemma 5 is that 
& is of sufficiently low dimension, due to the restriction k > (3/2)(n + 1). 
In fact Lemma 6, which we use to prove Lemma 5, dictates the lower 
bound for k in the statement of Theorem 2. If k = (3/2)(n + 1) we can 
still form the sets f2, and U2 because Lemma 4 holds, but they may link, 
and so Lemma 5 fails. Possibly this means that SI can be knotted in El 
when k = (3/2)(n + 1). The proof of Lemma 5 is easy when k = 2n + 1 
(for instance S2 in E') because &2 turns out to be just a finite set of points. 
In the marginal case, however, the proof is tricky because the closures 
of f21 and f22 may intersect (in non-singular points), and so Sn-1 must go 
through this intersection. For example if n = 2m, k = 3m + 2, then 
this intersection may contain much of the (m - 2)-skeleton of SI. 

Proof of Lemma 5 

Let A, B be two skew closed simplexes of SI (i.e., their hull is E'). 
Then dim A + dim B > k-1, and so dim A > k-n-1. Also dim 
(A nfB) < 2n-k < k-n-3. Therefore if A n B is non-empty; it 
is a simplex which cannot be skew to any other simplex of SI, and so 
contains no singular points (by (ii) above). 

Let the transversal set of V, A, B meet A, B in X, Y, respectively. If 
X, Y are non-empty they are homeomorphic linear convex sets of dimen- 
sion < 2n - k + 1 < 1(n - 1), since k > (3/2)(n + 1). However X, Y may 
not be closed, because we restricted our definition of transversal set to 
ne the union of only proper transversals, which have to meet A, B in dis- 
tinct points. To obtain the closures of X, Y we may have to add the 
intersections of some transversals which meet A n B. Therefore 

X-X= Y- Y=Xn YcAn Bc zSnl-Q2 

The three sets X, Y, X ri Y are triangulable, and have dimension 
- (n-1). We choose the order of the pair A, B so that X c f2, 

Y c f22. Now take the union over all such ordered skew pairs A, B. 
We obtain three triangulable set of dimension < 1(n - 1): 

U X = 21 

U Y= f2 

u(xn Y)=ni1n Sf22= f~l - fl= 22 - 22C ISnS _ f 

Let L be a subdivision of SI containing subcomplexes L1, L2, L, Li nL2 

of dimension < (n - 1) triangulating these three sets it2, &22, &21 nri22 
respectively. 

We now transfer the situation from k dimensions to n dimensions. Let 
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f: L Anfl~l be a piecewise linear homeomorphism throwing L1 + L2 into 
the interior of an n-dimensional face An of An+, (this being possible since 
L, + L2 i L). Let Ki -fLi, i = 1, 2, 3. We now appeal to Lemma 6 
below. Let aSn be a subdivision of Sn that contains a subdivision B1 of 
f-1 B as a subcomplex, and let B2 = aSn - B1. Then, by [1, Theorem 
14.2], B1, B2 is an equatorial decomposition of aSn, and by construction 
the interiors of B1, B2 contain ila, f22, respectively. The proof Lemma 
5 is complete, subject to: 

LEMMA 6. Let K1, K2 be two finite complexes of dimension < (n - 1) 
in the interior of Any and let K3= K1 n K2. Then there is a combina- 
torial n-ball B in An, whose interior contains K11 - K31, whose bound- 
ary contains K3, and whose exterior contains IK21 -K31. 

PROOF.6 Let Q be a vertex in general position in An, Q does not 
lie in the hull of any pair of simplexes in K1 + K2, because any such hull 
is of dimension less than n. Therefore no two distinct points of 1K1 + K2I 
are collinear with Q. Hence the join QK1 is a non-singular cone on K1, 
and QK1 n K2= K1 n K2= K3. We elongate the cone QK1 to a simplic- 
ially isomorphic cone QK in the interior of Aq, keeping the subcone QK, 
fixed, as follows: to each vertex x1 e K1 define a vertex x e K, such 
that x = x1 if x1 e K3 and Qx1x are collinear with x # x1 if x1 e K1 - K3. 
Join up the vertices x with simplexes in 1-1 correspondence with those 
of K1, to form the complex K. The purpose of this is to get 
1K1j- K31 c JQKJ - 1K. Meanwhile if x e IKI and y e IK2 - K31, 
then y 0 Qx, and so QK n K2 =K3. 

Let FaAn be a subdivision of An containing QK, K2, and hence K3, as 
subcomplexes. Let M = SQK2(,tAn), the second derived complex of 3/\n 

modulo QK, in the sense of [6, page 251]. Let B = N(QK - K, M), the 
union of the closed stars in M of all simplexes in QK - K. Any point 
of 1Kj - K31 lies in the interior of some simplex of QK - K, and hence 
in the interior of its star. Therefore 1K1 - K31 lies in the interior of 
B. If A e K1-K3, C e K2-K3, then any simplex of h3An containing 
C is subdivided twice in M, and so the closed star of A in M cannot con- 
tain any interior points of C. Therefore C, and consequently IK2 - K31, 
lie in the exterior of B. It follows that K3 lies in the boundary of B. 
To complete the proof of Lemma 6, it remains to verify that B is a ball. 

We use the techniques of [6, ? 12] to prove by induction on n that B is 
an n-ball. The inductive hypothesis is that if QK is a cone in an n-mani- 
fold M, satisfying conditions (by [6, Lemma 4]) 

(i) no simplex in M - QK has all its vertices in QK, 
6 J am indebted to Henry Whitehead for simplifying this proof. 
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(ii) if A e M -QK then QK n lk(A, M) is either empty or a closed 
simplex, then B = N(QK - K, M) is an n-ball. 

The induction starts trivially when n = 0. Assume the statement 
true for n-1. Then it suffices to prove that B is an n-manifold, because 
by (i) and (ii) and [6, Theorem 2], B is then a regular neighbourhood 
of QK, which is collapsible by [6, Corollary to Lemma 2], and so B is 
an n-ball by [6, Theorem 23 Corollary 1]. 

Therefore we must verify that if x is a vertex of B, then lk (x, B) is 
either an (n - 1)-sphere or an (n - 1)-ball. Let M* = lk (x, M); then 
certainly M* is either an (n - 1)-sphere or an (n - 1)-ball, because M is 
manifold. If x = Q then lk (x, B) = M*. If x e K, then lk (x, B) = 
N(QK* - K*, M*), where K* = lk (x, K); the pair M*, QK* satisfy con- 
ditions (i) and (ii) by inheritance from M, QK, and so by induction lk (x, B) 
is an (n - 1)-ball. Finally if x e B - QK, then lk (x, B) = st (Q, M*), 
which is an (n - 1)-ball. The proof of Lemma 6 is complete. 

Completion of the proof of Theorem 2 

Using Lemma 5, define Tn= VSn-1+B2. Then Tn is a sphere, because 
Sn-1 is comprised of only non-singular points and the cone VSn-1 is an 
n-ball meeting the n-ball B2 only in their common boundary Sn-1. The 
cone VB, is an (n + 1)-ball, because B1 contains only non-singular and 
near-singular points. The move from aSn to Tn is a cellular move across 
this ball, because the boundary of VB1 has an equatorial decomposition 
B1 = aSn - Tn, VSn-1 = Tn - aSn, and the interior of VB1 does not meet 
the spheres jSnj, IT P, because the only points where it might do so are the 
far-singular points, but these are too far away. Meanwhile Tn bounds 
the non-singular (n + 1)-ball VB2. Therefore Sn is equivalent by cellu- 
lar moves Sn aSSn , Tn to the boundary of a ball, and so is unknotted 
by Theorem 1. 

GONVILLE AND CAIuS COLLEGE, CAMBRIDGE 

REFERENCES 

1. J. W. ALEXANDER, The combinatorial theory of complexes, Ann. of Math., 31 (1930), 
292-320. 

2. E. ARTIN, Zur Isotopie zweidimensionalen Fldchen im R4, Abh. Math. Sem. Univ. 
Hamburg, 4 (1926), 174-177. 

3. MORTON BROWN, A proof of the generalised Schdnflies Theorem, Bull. Amer. Math. 
Soc., 66 (1960), 74-76. 

4. M. H. A. Newman, On the foundations of combinatory analysis situs, I and Il, 
Nederl. Akad. Wetensch, 29 (1926), 610-641. 

This content downloaded from 139.140.212.138 on Wed, 24 Sep 2014 22:18:01 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


UNKNOTTING SPHERES 361 

5. J. H. C. WHITEHEAD, On subdivisions of complexes, Proc. Cambridge Philos. Soc., 31 
(1935), 69-75. 

6. , Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc., 45 
(1939), 243-327. 

7. E. C. ZEEMAN, Linking spheres, Abh. Math. Sem. Univ. Hamburg, 24 (1960), 
149-152. 

8. , Unknotting spheres in five dimensions, Bull. Amer. Math. Soc., 66 (1960), 
198. 

This content downloaded from 139.140.212.138 on Wed, 24 Sep 2014 22:18:01 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 350
	p. 351
	p. 352
	p. 353
	p. 354
	p. 355
	p. 356
	p. 357
	p. 358
	p. 359
	p. 360
	p. 361

	Issue Table of Contents
	Annals of Mathematics, Second Series, Vol. 72, No. 2 (Sep., 1960), pp. 201-420
	The Smoothing of Combinatorial n-Manifolds in (n + 1)-Space [pp. 201-215]
	A Stone-Weierstrass Theorem for C*-Algebras [pp. 216-244]
	The Behavior of the Solution of a Differential System Near a Periodic Solution [pp. 245-266]
	Periodic Resolutions for Finite Groups [pp. 267-291]
	Determination of the Cobordism Ring [pp. 292-311]
	Extension of Holomorphic Maps [pp. 312-349]
	Unknotting Spheres [pp. 350-361]
	The Spectral Characterization of a Class of Almost Periodic Functions [pp. 362-368]
	On Discrete Subgroups of Lie Groups [pp. 369-384]
	Riemann's Mapping Theorem for Variable Metrics [pp. 385-404]
	Sur La Rationalité Des Représentations D'Artin
[pp. 405-420]



