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ANNAlLS OF MIATHEMATICS 

Vol. 73, No. 3, May, 1961 
Printed in Japan 

IMBEDDING OF MANIFOLDS IN EUCLIDEAN SPACE 

BY R. PENROSE, J. H. C. WHITEHEAD*, AND E. C. ZEEMAN 

(Received June 17, 1960) 

1. The main theorems 

It is obvious, since the vertices may be placed in general position, that 
a finite, n-dimensional simplicial complex can be piecewise linearly im- 
bedded in euclidean (2n + 1)-space, R2n+'. This is the best possible result 
for an arbitrary complex since the n-skeleton of a (2n + 2)-simplex can- 
not be imbedded in R2n [4], [9]. On the other hand a compact, smooth or 
combinatorial n-manifold (see ? 2 for definitions) can be (smoothly or piece- 
wise linearly) imbedded in R2n [13], [19], [20]. Real projective n-space can- 
not be smoothly imbedded in R2n-' if n = 2k [14], [21], though there are 
better results for certain other projective spaces [8]. 

In this paper we are concerned with piecewise linear imbeddings in R9 
of compact, n-dimensional, combinatorial manifolds (see ? 2) which are 
(m - 1)-connected, where 0 < 2m ? n. The condition m > 0 means that 
such a manifold is connected. If a closed (i.e., compact, unbounded) n- 
manifold M is (m - 1)-connected and 2m > n, then it follows from the 
Poincare duality that M has the homotopy type of an n-sphere. There- 
fore, if it turns out that every such manifold is a (combinatorial) n-sphere, 
or even if it can be piecewise linearly imbedded in Rn+,, then (1.1) below 
is valid for 0 < m < n. Except when the contrary is stated, it is to be 
understood that all the manifolds to which we refer are combinatorial and 
that all our maps, in particular the immersions (see ? 2) and imbeddings, 
are piecewise linear. We prove: 

THEOREM (1.1). If 0 < 2m ? n, then every closed, (m - 1)-connected 
n-manifold can be imbedded in R2n-m'+. 

THEOREM (1.2). Let M be a compact, bounded n-manifold which is 
(m - 1)-connected (O < 2m ? n). If either 

(a) M x I can be imbedded in R2n-m, or 
(b) M is (m - 2)-connected ((- 1)-connected means non-vacuous), then 

M can be imbedded in R2n-m. 
It follows from (2.3) that the condition (a) is necessary for the imbed- 

dability of M in R2n-m. It is obviously satisfied if M can be imbedded in 
R2n-m-1, hence, by (1.1), if each component of M is (m - 1)-connected 
and 2m < n. 

* Deceased May 8, 1960. 
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614 R. PENROSE, J. H. C. WHITEHEAD AND E. C. ZEEMAN 

By the branch locus of a map f: M a R9 we mean the set of points 
x e M such that no neighbourhood of x is imbedded by f. Let K be a 
(rectilinear) triangulation of M such that f is barycentric in each simplex 
of K (we do not assume that f is simplicial with respect to K and a tri- 
angulation of Ru). Then the branch locus, B, of f is the union of all the 
closed simplexes a e K such that f I St (a, K) is not an imbedding, where 
St (a, K) denotes the union of all the closed simplexes of K which contain 
a. Therefore B is a compact polyhedron. Clearly f M - B is an im- 
mersion. We shall prove: 

THEOREM (1.3). Let M be a closed, (m - 1)-connected n-manifold, 
where 0 < 2m ? n. Assume that there is a map M a R9 whose branch 
locus is at most (m - 1)-dimensional, where q > 2(n - m). Then Mcan, 
be imbedded in R9+1. 

In particular M can be imbedded in R9+1 if it can be immersed in R9, 
provided M satisfies the conditions of (1.3) and q > 2(n - m). Thus if 
n = 2m and M can be immersed in R (whence q > n because M is closed), 
then it can be imbedded in R9+1. 

PROOF OF (1.1), assuming (1.3). Let f: Ma R2n-m be a map which is 
barycentric in each simplex of a triangulation K of M and which maps 
the vertices of K in general position. Then f imbeds each simplex of K. 
Let a1, a2 be simplexes of K, let a0 = a1 nf and let dim a0 = p > m, 
dim a1 = r, dim 2 = s. Then a, is the join of a0 and an (r-p-1)- 
simplex T. Since 

(r - p - 1) + s - (2n - m) ? m - p - 1 < 0 

and the vertices of K are mapped in general position, it follows that f 
does not meet the s-plane containing fa2. Therefore fal n fa2 = fa0 and 
it follows that f I St (a, K) is an imbedding if dim a > m (a e K). There- 
fore the branch locus of f is at most (m - l)-dimensional and (1.1) follows 
from (1.3) since 2n - m > 2(n - m). 

Let P, Q be compact polyhedra in a manifold M. We describe Q as 
quasi-complementary to P if, and only if, every compact polyhedron in 
M - P can be (piecewise linearly) imbedded in every neighbourhood of 
Q. For example, let K be a triangulation of M and let the vertices of K 
be separated into two disjoint subsets A, B. Let P be the union of the 
simplexes of K whose vertices are all in A and Q the union of the sim- 
plexes of K whose vertices are all in B. Then P, Q are quasi-comple- 
mentary to each other [2]. In particular, if L is the cell-complex dual to 
K, then it follows from the preceding remark, applied to the first bary- 
centric subdivision of K, that I Ln-m I is quasi-complementary to I Km-' L 
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ON IMBEDDING MANIFOLDS 615 

(Xr denotes the r-skeleton of a given complex X and I XI denotes the poly- 
hedron covered by a given complex X). In general P and Q may have 
points in common. For example, if M is a (combinatorial) n-sphere, then 
P, Q may be any proper, non-vacuous, compact, polyhedral subsets of M. 

THEOREM (1.4). Let M be a compact (possibly bounded), (m - 1)-con- 
nected, n-manifold, where 0 < 2m < n. Assume that there are compact 
polyhedra P c int M, Q c M such that dim P < m, Q is quasi-comple- 
mentary to P and some neighbourhood of Q can be imbedded in R1. Then 
M can be imbedded in R +' and in R if it is bounded. 

PROOF. Let U c M be a neighbourhood of Q which can be imbedded in 
Rq. Since P c int M, dim P < m and M is (m - l)-connected it follows 
from (2.9) below that, if M is bounded, it can be imbedded in M -P 
hence in U and hence in Ri. 

Let M be unbounded. Then, by (2.7), there is an n-element E c M such 
that P c int E. Let Mo = M - int E. Then M, can be imbedded in U 
and there is therefore an imbedding f: M,, - R9. We take R" to be a 
hyperplane in R9+1 and extend f to an imbedding M-a R"+1, which maps 
E on the join of f E and a point in R+' - R. This proves (1.4). 

LEMMA (1.5). Let Q be a compact polyhedron in a manifold Mand let 
Q have a neighbourhood which can be immersed in RI, where q > 2 dim Q. 
Then Q has a neighbourhood which can be imbedded in RI'. 

This follows from the properties of general position and from (2.1). 
PROOF OF (1.3). Let f: M-a R" be a map whose branch locus, B, is at 

most (m - l)-dimensional and let K be a triangulation of M such that f 
is barycentric in each simplex of K. Let L be the cell-complex on M which 
is dual to K. Then f I M - B is an immersion, B c Km'- and (1.3) follows 
from (1.5), (1.4) with P = I Km'- , Q = I Ln-m | 

Let M be a homotopy n-sphere (i.e., a combinatorial manifold of the 
homotopy type of an n-sphere), let E be an n-element in M and let M, = 
M - int E. Then it follows from a theorem in a forthcoming paper by 
A. M. Gleason that there is an immersion f: Mow Rn. Let h: E A A be 
a homeomorphism of E on an n-simplex A, let a e int AX, b e Rn+' -Rn 
and let k: A - Rn+' be defined by 

k((1-t)a + thx) = (1-t)b + tfx (x eE, t e I) . 
Then a map g: M - Rn+' is defined by gx = fx or khx according as x e MO 
or x e E. Since f is an immersion it follows that the branch locus of g 
consists, at most, of the point h-'a. Therefore we have, by (1.3): 

THEOREM (1.6). A homotopy n-sphere can be imbedded in Rn+2 if 
n = 2m and in Rn+3 if n = 2m + 1. 
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616 R. PENROSE, J. H. C. WHITEHEAD AND E. C. ZEEMAN 

We describe M as combinatorially equivalent to a smooth manifold Ml 
if, and only if, some triangulation, K, of M is the argument complex in 
a C'-triangulation of M1 [17]. This means that there is a homeomorphism 
f: M - M1 such that, for every closed n-simplex a e K, the map f I a can 
be extended to a regular C'-imbedding U(a) M1, where U(a) is an open 
neighbourhood of a in the n-plane which contains it. The manifold M, is 
said to be almost parallelizable if, and only if, M1 - p is parallelizable 
for some, and therefore every point p e M1. Let M be closed and let K 
and f: M - M1 be as above, where M1 is almost parallelizable. Let M be 
(m - 1)-connected (O < 2m ? n), let E c M be an n-element such that 
Km-1 c int E and let M0 = M - int E. Then fM0 is parallelizable. There- 
fore there is a smooth immersion f M0 - Rn+' [6, p. 269]. Let K0 be a 
triangulation of M0 such that, for every simplex a e K0, the restriction 
of f M0*Rn+' to some neighbourhood of f St (a, Kj) is a regular imbedding. 
Then it follows from Theorems 1 and 3 in [17] (Theorem 3 may be applied 
to every St (a, K0)) that M0 can be piecewise linearly immersed in Rn+' 
and hence in R'(n-m)+. Let L be the cell-complex dual to K and let Q = 
Ln-m . Then, as in the proof of (1.3), M0 can be imbedded in every 

neighbourhood of Q and some neighbourhood of Q can be imbedded in 
R2,n-m7+'. Therefore we have, by an argument in the proof of (1.4): 

THEOREM (1.7). Let M be a closed, (m - 1)-connected n-manifold 
(O < 2m ? n), which is combinatorially equivalent to an almost paral- 
lelizable smooth manifold. Then M can be piecewise linearly imbedded 
in R2(n-m)+2 

Theorems (1.6), (1.7) were pointed out to us by M. W. Hirsch. 
PROOF OF (1.2). Let Al x I be imbeddable in R2n-m. By (2.3) there is a 

closed, polyhedral neighbourhood N c M of A which is (piecewise linearly) 
homeomorphic to A x I and hence imbeddable in R2n-m. Let K be a tri- 
angulation of the pair (M, N) (i.e., a triangulation of M with a subcom- 
plex covering N) such that a given imbedding N - R2n-m is barycentric 
in each simplex of K n N. Extend this to a map f: K ) R'n-m which is 
barycentric in each simplex of K. We assume, as we obviously may, that 
K is a full subcomplex of K (i.e., that every simplex of K with all its 
vertices in k is contained in K) and that f maps the vertices of K in 
general position. Let P denote the union of all the closed simplexes of K 
which are at most (m - 1)-dimensional and do not meet A. Then the 
branch locus of f is contained in P. 

Let K' denote the first barycentric subdivision of K. The simplexes of 
K' are of the form c(J) ... c(^,), where c(a) denotes the centroid of a 
given simplex a e Kand af C C +j (i = 0, * *, p- 1). Let K, c K' be the 
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ON IMBEDDING MANIFOLDS 617 

subcomplex which consists of all simplexes c(ao)... c(a!,) e K' such that 
60? K. Then Ko = K' - O(K', K'), where O(k', K') denotes the union 
of the open simplexes of K' whose closures meet K'. Let MO = I Ko 
Since k is a full subcomplex of K it follows from (2.3), applied to both 
M and MO, that MO is homeomorphic to M. Therefore it is enough to 
prove that MO can be imbedded in R2-m. 

Let us describe a vertex c(a) e Ko as of the first kind if dim (a) < m 
and a n K = 0 (a denotes a closed simplex) and of the second kind if 
either dim (a) > m or a n K s 0. Then the polyhedron P is the union of 
the simplexes of Ko whose vertices are all of the first kind. Let Q denote 
the union of the simplexes of K, whose vertices are all of the second 
kind. Then Q is quasi-complementary to P. It consists of all simplexes 
c(a,). *.c(ap) e Ko such that either dim (a,) > rn, whence p < n - m, or 
a, n k + 0, which means that c(aO) ... c(a) e Ko. Moreover Q c M, - P 
and MO c N, whence f IM, is an imbedding. 

Let the images of the vertices of K, be shifted slightly so as to define 
a map fA: Mo - R2n-m, barycentric in each simplex of K,, such that foI ,o 
is an imbedding, f, M - P is an immersion and fo maps the vertices of 
Ko in general position. Since dim (Q - M,) ? n -m and (n- m)+(n-1)< 
2n - m it follows the fo Q is an imbedding. By (2.1) fo imbeds some 
neighbourhood of Q and (1.2) with Hypothesis (a) follows from (1.4). 

Now let M be (m - 2)-connected and let M1 be a copy of M such that 
l1 = M = M n M1. Let M2 = M U M,. Then it follows, trivially if m = 1 

(since M # 0) and from a theorem due to van Kampen [9, p. 177] and 
from the Mayer-Vietoris theorem [3] if m > 1, that M2 is (m - 1)-con- 
nected. Let E be an n-element in M1 and let M3 = M m-int E. Then M, 
is (m - 1)-connected and M3 is the (n - 1)-sphere E. Therefore it follows 
from (1.2) with Hypothesis (a) that M3 can be imbedded in R2-m. Since 
M c M3 this completes the proof. 

The problem of adapting these methods, for closed manifolds, to the 
smooth theory leads to the following question. Let Dn be the n-disc 
bounded by a unit (n - 1)-sphere Sn-' c Rn and let f: Sn-' - R9 be a 
regular imbedding of class Cr (1 ? r < co). Can f be extended to a 
regular Cr imbedding g: Dn Rq+' such that g(int Dn) c Rq+1 -Rq? 

The answer is "yes" if q > 2n, but there is an unpublished theorem 
due to R. H. Fox and J. W. Milnor (see [5]) which implies that, if 
n = 2, q = 3, there are imbeddings f for which the answer is "no". 
This is because f Sn-i is knotted in a certain way and does not bound 
any regular Cr disc whose interior lies in Rq+ - RQ. For larger values 
of n and q < 2n there may, possibly, be cases in which the answer is 
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618 R. PENROSE, J. H. C. WHITEHEAD AND E. C. ZEEMAN 

"no" even though f lS'is "good", say fSn-1 = Sn-1 (Rn c Re), because 
f is "bad". (Cf. [10].) For the case of imbeddings of bounded manifolds 
these difficulties are not always so serious. Some results along these 
lines have recently been obtained by M. W. Hirsch [7]. 

Many of the results given here lead to imbeddings which are locally 
unknotted, however [22]. (The piecewise linear imbedding f: M - RQ is 
locally unknotted if, for triangulations K of f M and L of Rq with K a 
subcomplex of L, we have St (v, K) unknotted in St (v, L) for every vertex 
v e K. That is, St (v, K) = E for some n-element E c St (v, L).) It fol- 
lows from the results of [22] that any (piecewise linear) imbedding of an 
n-manifold M in RQ must be locally unknotted if 2(q - 1) > 3n. Thus, in 
particular, the imbedding of (1.1) is necessarily locally unknotted unless 
2m = n. Also, it is not hard to adapt the proof of (1.2) to obtain locally 
unknotted imbeddings in all its cases (although the case m = 1, n = 3 
appears to need special consideration). 

2. Definitions and lemmas 

A map f: X - Y, where X, Y are arbitrary topological spaces, is called 
an imbedding if, and only if, it is a homeomorphism onto fX. A map 
f: X - Y is called an immersion if, and only if, every point x e X has a 
neighbourhood N, c x such that f I No is an imbedding. 

LEMMA (2.1). Let f: X - Y be an immersion of a locally compact 
metric space X in a Hausdorff space Y and let f IA be an imbedding, 
where A is a compact subset of X. Then there is a compact neighbour- 
hood N c X of A such that f I N is an imbedding. 

PROOF. Let N, {x e XI 8(x, A) ? 1/i} (i = 1, 2, * * .), where 8 is a metric 
for X. Then there is an integer k such that Ni is compact if i ? k. As- 
sume that f I Ni is not an imbedding for any i. Then, there are points 
xi, x' e Ni such that xi # xf, fxi = fx! = yt, say, because Ni is compact 
if i > k and Y is a Hausdorff space. Since f is locally 1-1 and f I A is 1-1 
it follows without difficulty that some subsequence of the sequence {yj} 
converges to each of two distinct points in fA. This is absurd and (2.1) 
follows. 

By a (compact) polyhedron we mean a subspace of RQ, for some q, which 
can be triangulated by a finite, rectilinear, simplicial complex. It is to be 
understood that all the triangulations of polyhedra and subdivisions of 
complexes to which we refer are rectilinear. A map P - Q, where P, Q 
are polyhedra, is called piecewise linear if, and only if, it is simplical 
with respect to suitable triangulations of P, Q. Thus P, Q are piecewise 
linearly homeomorphic if, and only if, they have isomorphic triangulations. 
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ON IMBEDDING MANIFOLDS 619 

This is an equivalence relation because two triangulations of the same 
polyhedron have a common subdivision. More generally, if P0, P are poly- 
hedra such that P0 c P and if K0, K are triangulations of P0, P, then there 
is a subdivision of K with a subcomplex which is a subdivision of K0 [15]. 
As stated in ? 1, all the maps between polyhedra to which we refer will 
be piecewise linear. Thus "homeomorphic", with reference to polyhedra, 
will always mean "piecewise linearly homeomorphic". If K is a triangu- 
lation of a polyhedron P and if X denotes either a subset of P or a sub- 
complex of K, then N(X, K) will denote the union of all the closed sim- 
plexes of K which meet X. The symbol N(X, K) will denote either a 
polyhedron or a complex, according to the context (or the choice of the 
reader). 

By an n-element (n-sphere) we mean a polyhedron which is homeo- 
morphic to a closed n-simplex (boundary of an (n + 1)-simplex). By a 
(combinatorial) n-manifold we mean a polyhedron, M, with a triangu- 
lation K such that St (v, K) is an n-element, for every vertex v e K. This 
property is independent of the choice of K. We denote the boundary of 
a manifold M by M and int M = M - M. 

Let M be a bounded n-manifold and let En c M be an n-element such 
that MnEn = En-,, say, is an (n - 1)-element in En. Then Etn int En-, 
is also an (n-1)-element [1, Theorem 14.2]. Let M0=M-int En-int En-l. 
Then we have [11, Theorem 8a], [1, Theorem (14.3)]: 

LEMMA (2.2). MO is homeomorphic to M. 
Let M be as in (2.2) and let K be a triangulation of M such that K is a 

full subcomplex of K (see the proof of (1.2)) and let K' denote the first 
barycentric subdivision of K. Then we have [16]: 

THEOREM (2.3). N(M, K') is homeomorphic to M x I. 
Let A, B be polyhedra such that B = A U E, where E is a k-element 

(k > 0) and A n E is a (k - 1)-element in E. Then the ordered pair (A, B) 
will be called an elementary expansion (of order k) and (B, A) an ele- 
mentary contraction (of order k). A polyhedron P will be said to expand 
into Q, and Q to collapse into P, if, and only if, either P = Q or there is 
a sequence of elementary expansions (As, A,,1) (i = 1, ... , r - 1), of 
arbitrary orders, such that A, = P, A, = Q. A polyhedron P will be called 
completely collapsible if, and only if, it collapses to a point. Obviously 
an element is completely collapsible. Let P be a polyhedron in an n-mani- 
fold M. By a regular enlargement (in M) of P we mean an n-manifold, 
N, such that P c N c M and N collapses into P. By a regular neighbour- 
hood of P we mean a regular enlargement N c M of P which is a closed 
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620 R. PENROSE, J. H. C. WHITEHEAD AND E. C. ZEEMAN 

neighbourhood of P (i.e., Pn M- N = 0). If P is an n-manifold it is a 
regular enlargement of itself. Therefore (2.2) is a special case of (2.5) 
below (the proof of (2.5) depends on (2.2)). 

Let K be a triangulation of the pair (M, P) and let K" be its second 
barycentric subdivision. Then we have: 

THEOREM (2.4). N(P, K") is a regular neighbourhood of P. 

THEOREM (2.5). Any two regular enlargements in M of the same poly- 
hedron are (piecewise linearly) homeomorphic. 

For the proofs of (2.4), (2.5) see [16, p. 293]. We have altered some of 
the terms used in [16] so as to emphasize the distinction between a 
"collapse" and an arbitrary retraction by deformation; also to retain the 
ordinary meaning of "neighbourhood". 

If N is a regular enlargement of P and P collapses into P0, then N is a 
regular enlargement of P0. Therefore it follows from (2.5) that every 
regular enlargement (in M) of P is homeomorphic to every regular en- 
largement of P0. By (2.4) a regular enlargement of a point is an n- 
element. So we have: 

COROLLARY (2.6). Every regular enlargement of a completely collaps- 
ible polyhedron is an n-element. 

We now come to the main lemma. 

LEMMA (2.7). Let M be an n-manifold and let P c int Mbe an (mi-1)- 
dimensional polyhedron (O < 2m < n) such that the inclusion map 
i: P - M is homotopic in M to a constant. Then there is an n-element 
E c int M such that P c int E. 

PROOF. Let C = v * P be a cone with P as base (P c C) and vertex v. 
Assume that i can be extended to an imbedding h: C - int M and let K 
be a triangulation of the pair (M, hC). Obviously C, hC are completely 
collapsible and (2.7), with E = N(hC, K"), follows from (2.4), (2.6). We 
proceed to prove the existence of h. 

Since i - const. it can be extended to a (piecewise linear) map 
f: C - int M. Let P0 be a triangulation of P and let C0 be the triangu- 
lation of C which consist of the simplexes v * a and their faces, for every 
simplex a e P0. We describe f as normal if, and only if, it is an imbed- 
ding in case 2m < n and satisfies the following condition if 2m = n. 
If fx = fy, where x, y e C, x # y, then each of x, y is interior to an m- 
simplex of C0 and f -fx contains no point other than x, y. Points such as 
x, y will be called singular (with respect to f). 

Assume that f is normal. Then it is an imbedding if 2m < n. So we 
assume that 2m = n. Let x, y e C be such that x # y, fx = fy and let 
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ON IMBEDDING MANIFOLDS 621 

x e int (am), where am is an m-simplex of CO. If m = 1 and am contains 
more than one singular point let x be the one nearest to P n ua. Let 
am-, = P na Om and let A be a 1-element in am which joins x to a point 
z e int (qm-l) and is such that int A does not meet am or the set of singular 
points. We shall show how the singular points x, y can be eliminated in 
the way indicated by the diagram. 

Let C1, M1 be triangulations of C, M with respect to which f is simpli- 
cial, C1 being a triangulation of the pair (C, A) and a subdivision of CO. 
Let C", M,'' be the second barycentric subdivisions of C1, M, and let Pl' 
be the subcomplex of C1' which subdivides PO. Clearly x, y, z are vertices 
of C1 and f is simplicial with respect to C', M,''. Let 

Elm = N(A, C1") , Elm = N(y, C1") En = N(fA, M1"). 

The maps f I A, f I Eim are imbeddings and it follows from (2.6) that E!I, 
hence also fEim, and En are elements. Moreover Em n Pl' is the (m - 1)- 
element N(z, P,'). Let Em-1 = Ek - int N(z, Pi'). Then Em-l is an 
(m - l)-element, fEtm c En and 

En n fEom = fEm-1 En n fEim = fEl C En -fEm-1 

Let Eln be the second barycentric subdivision of the complex En and let 

E2n = N(fEom E1n), En-1 = En n E2n = N(fEm-1, Ein) 
Then E2n, En-' are regular neighbourhoods in En, En of fEm, fEm-l. 
Therefore they are elements. Let 

En = En -t E2n - int En-l c En - fEom 

Then E3n is an n-element, by (2.2), and fElm c Ekn. Therefore f I Elm can 
be extended to an imbedding g: E1m - Ef. Define fl: C - int M by f, = f 
in C - Elm, f = g in Elm. The points x, y are non-singular with respect 
to fA and no new singular points have been introduced. The other singular 
points, if any, can be eliminated in the same way. 
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It remains to prove that i has a normal extension. Let f: C - int M be 
any (piecewise linear) extension of i. Let {En} be a finite set of n-ele- 
ments in M whose interiors cover int M and let 9y: Ej -k A be a homeo- 
morphism on an n-simplex A. Let T be a subdivision of CO such that, for 
each simplex a e T and some j(a), 

(2.8) f St (a, T) c intE,(,) 

(f need not be simplicial with respect to T). Let W be the union of P, 
Tt- and, possibly, some k-simplexes of T not in P (O _ k < m, T- = 0). 
Assume that f I W is normal in the above sense, with W, regarded as a 
subcomplex of T, playing the part of C,. 

Let z be a k-simplex of T not in W and define 

A: f E -E A / (j = j(z)) 

by A(x) = Jf(x). Since E, is a polyhedron and f, pd are piecewise linear 
it follows that f -'Ej is a polyhedron and that * is piecewise linear. There- 
fore there is a triangulation K, of f-'Ej, such that * is barycentric in 
each simplex of K,. Moreover we may assume that K, is a subcomplex 
of a subdivision of T. Then it contains a subcomplex which subdivides 
St (z-, T) and every simplex of K, is contained in a simplex of T. We also 
assume that K, has at least one vertex in int (z). Let b1, ..* *, b, be the 
vertices of Kj, ordered so that bl, * * *, b, are the ones in int (z). Let 
c* ... c, C int A be points which are in general position with respect to 
each other and to #bp,?1, *, *b. Let #,: f-'Ej A A be the map, bary- 
centric in each simplex of K,, which is defined by #1b, = c, or #b, ac- 
cording as i < p or i > p. If k = m let cl, ..., c be such that no m- 
simplex of #1Kg with one or more of cl, ... y, c, among its vertices contains 
a point #ia6 f #112, where a, and a2 are disjoint closed m-simplexes of 
K, n(W Ur). Define f1: C - int M by 

f1x = Adilx if x e f-'Ej 
= fx if x e C -int St (T. T) . 

The map fj I W U z is normal and we take c, so near to #b, (i = 1, * * p) 
that f1 satisfies (2.8). Then it follows inductively that i has a normal ex- 
tension, C - int M, and the proof is complete. 

LEMMA (2,9). Let M, P be as in (2.7) and let M be connected and 
bounded. Then M can be imbedded in M - P. 

PROOF. Let E be as in (2.7) and let A be a 1-element which joins a point 
x e k to a point in k and does not meet M U E anywhere else. Let K be 
a triangulation of the pair (M, A U E) and let E, = N(A U E, K"). Clear- 
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ly A U E is completely collapsible. Therefore E, is an n-element and 
k n E, is the (n - 1)-element N(x, K"). By (2.2), M is homeomorphic to 
M - int Eo - int N(x, K"), which is in M - P. 

ST. JOHN'S COLLEGE, CAMBRIDGE AND PHYSICS DEPT., SYRACUSE UNIVERSITY 
MAGDALEN COLLEGE, OXFORD 
GONVILLE AND CAIUS COLLEGE, CAMBRIDGE 

REFERENCES 

1. J. W. ALEXANDER, The combinatorial theory of complexes, Ann. of Math., 31(1930), 

292-320. 
2. A. L. BLAKERS and W. S. MASSEY, The homotopy groups of a triad (II), Ann. of Math., 

55 (1952), 192-201. 
3. SAMUEL EILENBERG and NORMAN E. STEENROD, Foundations of Algebraic Topology, 

Princeton, 1952. 
4. A. I. FLORES, Uber die Existenz n-dimensionaler Komplexe, die nicht in den R2n ein- 

bettbar sind, Ergebn. Math. Kolloqu., 5 (1933), 17-24. 
5. R. H. Fox and J. W. MILNOR, Singularities of 2-spheres in 4-space and equivalence of 

knots, Bull. Amer. Math. Soc., 63 (1957), 406. 
6. M. W. HIRSCH, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242-276. 

7. , On imbedding differentiable manifolds in euclidean space, Ann. of Math., 73 
(1961), 566-571. 

8. I. M. JAMES, Some embeddings of projective spaces, Proc. Camb. Phil. Soc., 55(1959), 
294-298. 

9. E. R. VAN KAMPEN, Komplexe in euklidischen Riumen, Abh. Math. Sem., Univ. Ham- 

burg, 9 (1932), 72-78; 152-153. 
10. J. W. MILNOR, On manifolds homeomorphic to the 7-sphere, Ann. of Math., 64 (1956), 

399-405. 
11. M. H. A. NEWMAN, On the foundations of combinatory analysis situs, Proc. Kon. Akad. 

v. Wetensch. Amsterdam, 29 (1926), 627-641. 

12. H. SEIFERT and W. THRELFALL, Lehrbuch der Topologie, Leipzig, 1934. 

13. ARNOLD SHAPIRO, Obstructions to the imbedding of a complex in a euclidean space: I, 
Ann. of Math., 66 (1957), 256-269. 

14. RENt THOM, Espaces fibr6s en spheres et carres de Steenrod, Ann. Sci. Ecole. Norm. 

Sup., 69 (1952), 109-182. 
15. J. H. C. WHITEHEAD, On subdivisions of complexes, Proc. Camb. Phil. Soc., 31 (1935), 

69-75. 
16. , Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc., 45 (1939), 

243--327. 
17. , On C'-complexes, Ann. of Math., 41 (1940), 809-824. 
18. , The immersion of an open 3-manifold in euclidean 3-space, to appear in Proc. 

London Math. Soc.. 
19. HASSLER WHITNEY, The self-intersections of a smooth n-manifold in 2n-space, Ann. of 

Math., 45 (1944), 220-246. 
20. WEN-TSiYN Wu, On the realization of complexes in euclidean spaces, I, II, Acta Math. 

Sinica, 5 (1955), 505-552; 7 (1957), 79-101. 
21. and GEORGES REEB, Sur les espaces fibres et les varietes feuilletees, Paris, 

1952. 
22. E. C. ZEEMAN, Unknotting spheres, Ann. of Math., 72 (1960), 350-361. 

This content downloaded from 139.140.212.138 on Wed, 24 Sep 2014 22:08:54 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 613
	p. 614
	p. 615
	p. 616
	p. 617
	p. 618
	p. 619
	p. 620
	p. 621
	p. 622
	p. 623

	Issue Table of Contents
	Annals of Mathematics, Second Series, Vol. 73, No. 3 (May, 1961), pp. 437-648
	Some Upper Semi-Continuous Decompositions of E<sup>3</sup> into E<sup>3</sup> [pp. 437-457]
	The Factorization of Operator Valued Functions [pp. 458-495]
	Integral Manifolds of Perturbed Differential Systems [pp. 496-531]
	Projective Modules Over Algebras [pp. 532-542]
	Parallelizable Flows and Lyapunov's Second Method [pp. 543-555]
	On Homogeneous Cohomology Spheres [pp. 556-565]
	On Imbedding Differentiable Manifolds in Euclidean Space [pp. 566-571]
	Type I C<sup>*</sup>-Algebras [pp. 572-612]
	Imbedding of Manifolds in Euclidean Space [pp. 613-623]
	Schemata Over Local Rings [pp. 624-648]



