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We give a definition of isotopy and of knotting of an arbitrary space 
in an arbitrary space. The definition is of most interest when the 
spaces are manifolds. To avoid pathology, and to obtain theorems, 
we confine ourselves to combinatorial theory. 

DEFINITIONS. Let F be a finite simplicial complex, and let I denote 
the unit interval. An isotopy of F is a piecewise linear homeomor-
phism h: IX Y-+IX Y such that 

(i) h(tX Y)=tX F, O ^ / ^ l ; (therefore for each t there is a piece-
wise linear homeomorphism ht: Y—>Y, such that h(t, y) = (t, hty))\ 

(ii) Ao is the identity on F. 
If X is another complex, two piecewise linear embeddings/, g: X—*Y 
are isotopic if there is an isotopy h of F such that hif=g. Isotopy is an 
equivalence relation on the set of all piecewise linear embeddings of 
X in F. Let Iso(-X"C F) denote the set of equivalence classes. There 
is a natural map from I s o ( X C F ) onto H o m ( X C F ) , the set of 
homotopy classes of piecewise linear embeddings, because isotopic 
maps are clearly nomotopic. If this map is one-to-one we say that X 
unknots in F ; otherwise we say X knots in F. 

EXAMPLES, (i) The circle knots in the 3-sphere, as is well known, 
because there are many isotopy classes but only one homotopy class. 

(ii) A point unknots in a closed manifold, and knots in a bounded 
manifold, because there is one isotopy class for the interior of the 
manifold, and one for each boundary component. For the rest of this 
paper, however, we shall confine ourselves to closed manifolds. (There 
is a relative theory which is more appropriate for bounded mani
folds.) 

MOTIVATION. We choose this definition of isotopy, because it seems 
the most natural intuitive concept associated with the notion of piece-
wise linear embedding. In effect, we say that two embeddings ƒ, g of 
X in F are equivalent if we can, not only slide fX onto gX, but slide 
the pair fX(Z Y onto the pair gXC. F, through a continuous family of 
equivalent piecewise linear embeddings. Our definition is stronger 
than Mazur's ambient isotopy, since it involves the embeddings ƒ, g 
specifically (see [6, §§2, 3]). I t is in fact the strongest available com
binatorial definition of isotopy, and so Theorems 1 and 2 below are in 
their most powerful form. 
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Mazur leaves the embeddings out of his definition of isotopy, be
cause he is interested in adding knots in spheres. We put the embed
dings into our definition because we wish to compare lso(XC.Y) 
with Hom(-X"C Y). Although Iso(-X"C Y) is a more natural geometrical 
set than Hom(XC Y), the latter is better known because it is closely 
allied to the algebraic invariants of homology and homotopy. There
fore in order to bridge the gap between geometry and algebra it is 
desirable to know when Iso(ZC Y) = Hom(XQ Y), namely, when X 
unknots in F. 

THEOREM 1. If Sn, 5* are combinatorial spheres, then Sn unknots in 
Sh, provided k^n+3. 

THEOREM 2. If Mn, Qk are connected closed combinatorial manifolds, 
then Mn unknots in Qk, provided that 

(a) k^n+4, 
(b) Mn is (2n — k +1)-connected, and 
(c) Qk is (2n — k+3)-connected. 

The proofs of Theorems 1 and 2 are long technical combinatorial 
arguments, and similar to those in [7; 9]. The proof of Theorem 1 
depends upon an idea of John Stallings'. He himself has an analo
gous theorem, unknotting spheres in spheres, which is more general, 
and in particular unknots Sn in Sn+2 when the complement is a 
homotopy S1, but is a topological form of unknotting rather than a 
combinatorial unknotting (similar to his solution of the Poincaré 
conjecture [8]). 

Theorem 1 is used in the proof of Theorem 2. However, we cannot 
use Theorem 1 to improve hypothesis (a) of Theorem 2 to include the 
case k = n+3, because, although the connectivity hypotheses (b) and 
(c) would then imply that Mn and Qk were spheres when n^S (see 
[8]), they would not necessarily be combinatorial spheres, but only 
combinatorial manifolds triangulating spheres. 

To show that hypotheses (a), (b), and (c) of Theorem 2, or perhaps 
a weakened version of them, are necessary, we give the following 
counterexamples : 

THEOREM 3. (a) Sn knots in Sn+2, n^l. 
(b) SrXSq knots in S2«+1, if Sq admits a continuous r-field of tangent 

vectors. 
(c) Sn knots in SlXS*n. 

In the proof of (a) the knot is constructed by Artin's method of 
spinning a 1-dimensional knot (see [2]), and is proved to be knotted 
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by computing the fundamental group of the complement. In the 
proof of (b) the knot is constructed so that it contains two linked q-
spheres in S2q+l. In the proof of (c) the knot is constructed by con
necting two small linking w-spheres by a pipe running round the 51 , 
and is proved to be knotted by a theorem of Irwin [4], using homo-
logical linking in the universal covering space of 5 1 X5 2 n . 

Theorems 1 and 3(a) almost enable us to answer the question posed 
in [9], and say: the only euclidean space in which we can knot Sn is 
(n+2)-dimensions. The single outstanding case is (w + l)-dimensions, 
because, although the Schoenflies-Mazur-Brown Theorem (see [3; 5]) 
gives an unknotting of Sn in 5n + 1 , it is topological, rather than com
binatorial in our sense. 

To bring home the difference between knotting spheres and knot
ting other manifolds, we conclude by indulging in a few numbers to 
illustrate the theorems: 

S60 knots in 562, unknots in S63, but knots again in S1XS100. 
5XX54 9 knots in 5 " , and unknots in S101. 
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