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1. Introduction

DIHOMOLOGY is a homology theory based on the use of pairs of cells
instead of single cells as in classical homology. The pairs considered have
some specified geometrical or topological relationship, which is called a
facing relation. The resulting double complex is handled by means of
spectral sequences. The technique is dual in a certain sense to the taking
of tensor products over a ring. For if K, L are A-complexes we feed the
A-structure into K®L by forming the quotient complex K®AL. So in
dihomology we feed the facing relation into K®L by forming a sub-
complex. There is no reason for restricting ourselves to pairs of cells, and
the theory extends quite happily to three or more. In fact in the proof
of the last theorem in the second paper (12) we have to use a quintuple
facing relation.

Dihomology lends itself to a variety of topological situations. The three
applications explored so far form the subjects of three papers of which this
is the first:

I. In this paper we introduce the notions of dihomology, and use it
to give short proofs of known equivalences between various homology
theories, between for example Cech and Vietoris homology, Cech and
Alexander cohomology, simplicial and singular-simplicial (co)homology,
and simplicial and singular-cubical (co)homology. Another application is
Dowker's Theorem on the homology groups of a relation (4). The equiva-
lences are natural and do not depend on any choice of chain map, because
they are induced by augmentation.

An example of the type of facing relation used is the Cech-singular
facing relation, in which a Cech simplex is related to a singular simplex
(or cube) if the support of the former contains the image of the latter.
This particular facing relation leads to the natural transformation T from
singular homology to Cech homology, and Y* from Cech cohomology
to singular cohomology. It also leads to the spectral ring relating Cech
and singular cohomology, which is examined in detail in the last section.
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II. In the second paper (12) we use dihomology to introduce the
simplicial spectral theory of a simplicial map, and the Cech spectral
theory of a continuous map. These are the simplicial and Cech analogues
of Leray's sheaf theory (9), and Serre's singular theory for fibre maps (10).
On a simplicial map all four theories are proved to be isomorphic. On a
continuous map the Leray and Cech theories are proved to be isomorphic,
and Y* is generalized to a natural homomorphism from Leray's spectral
ring to Serre's spectral ring. To illustrate the type of facing relation used,
suppose we are given a simplicial map from K to L: then a simplex of K
is related to a simplex of L if the image of the star of the former meets the
star of the latter.

III. In the third paper (13) we define a spectral sequence on a space
which is a topological invariant but not an invariant of homotopy type.
It is a mixed functor involving homology and cohomology together, and
relates local and global structure; on a manifold the sequence collapses
to the Poincare Duality isomorphism. As a functor it is a functor on a
category of maps (or carriers) and the spectral sequence on a space is that
associated with the identity map. To compare this spectral sequence
with the Cech-singular spectral ring which is described in this paper, one
might say that the latter measures how far a topological space falls short
of being a polyhedron, while the former measures how far a polyhedron
falls short of being a manifold. To illustrate the type of facing relation
used, suppose we are given a simplicial complex: then a simplex is related
to another if it faces the other. This particularly simple example suggested
the term 'facing relation'.

The idea of dihomology and the subject matter of III were contained in a
thesis submitted for a doctorate at Cambridge in 1954, and were announced
in (11). I studied under Shaun Wylie, to whom I should like to express my
gratitude for his unfailing fount of intuition and encouragement.

This paper is divided into six sections:
1. Introduction.
2. Facing relations.
3. Isomorphisms between homology groups.
4. Equivalences between homology and cohomology theories.
5. The spectral sequence of a facing relation.
6. The Cech-singular spectral ring of a space.

2. Facing relations
All complexes in this paper will be geometric chain complexes (see (8) 108).

A geometric chain complex is a combination of geometric and algebraic
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notions; it is an abstract cell complex ((8) 88), together with the associated
chain complex, and is defined as follows:

Definition; algebraic part. A geometric chain complex K is a graded
00

differential group K = £ Kp, with boundary d : Kp -+ Kp_v such that d2 = 0
— 00

and Kp = 0 if p < 0. For each p ^ 0, Kp is a free Abelian group with a
preferred base, whose elements are called the ^-cells of K. The dimension,
or degree, of a p-cel\ ap is p. The O-cells are called vertices. The augmenta-
tion homomorphism e : KQ->Z from KQ to the integers Z, which is defined
by mapping all the vertices to 1, satisfies ed = 0.

Geometric part. There is a (transitive and reflexive) partial ordering >•
amongst the cells of K, satisfying the three properties:

(i) If rfl is a face of ap, written ap >rg, then ap = TQ or p > q.
(ii) The boundary dap of a p-ce\l is linearly dependent upon its

(p — 1)-dimensional faces.
(iii) K has at least one vertex, and every cell has at least one vertex

as a face.

Remark 1. A geometric chain complex uniquely determines, and is
uniquely determined by, its underlying abstract cell complex. The under-
lying abstract complex consists of the cells (suffixed by dimension), the
partial ordering, and the incidence numbers between the cells. The
incidence number rfi between ap and rp_x is given by the coefficient in
the boundary formula dap = S V ^ i - i - We prefer the notion of the

i
geometric chain complex to that of the (logically equivalent) underlying
abstract cell complex, because the former is algebraically more convenient.
Although the topological situation generally presents us with an abstract
cell complex, we shall always pass straight to the resulting geometric
chain complex.

Remark 2. Occasionally it will be useful to regard K as a category (any
partially ordered set may be regarded as a category). An object of the
category K is a cell, and a map of the category K from a to T is a relation
CT>-T (i.e. there is either a unique map, or no map, from a to T according
to whether T is a face of a, or not).

A subset M of the cells of K is closed if oeM and CT>»T implies reM.
A subcomplex of K is the graded differential subgroup generated by a
closed subset of the cells of K. If M is a subset of the cells of K (not
necessarily closed), we denote by M the subcomplex generated by
(T; CT>-T some oeM}, which is the smallest subcomplex of K containing M.
Of particular interest are a and sta, where oeK and sta = {T; T>CT}.
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We now give seven examples of geometric chain complexes, all of which
we shall use later. .In each case the underlying abstract cell complex is
well known (see (7) and (8)), and, by the Remark 1 above, determines
the geometric chain complex that we are interested in. We use the
examples to introduce notation. In Examples iii, iv, v, and vi the under-
lying complex is semi-simplicial.

- EXAMPLE i. The point complex P.

The point complex has only one cell, a vertex. Thus Po = HQ(P) = Z,
the integers, and Pq =Hq{P) = 0,q^0.

EXAMPLE ii. Oriented simplicial complex K.

Let K be an oriented Euclidean simplicial complex triangulating the
polyhedron \K\. We do not necessarily assume K to be finite. Let K
also denote the resulting geometric chain complex, whose cells are
the oriented simplexes. As usual we write the homology group as
H*(K) = %Hp(K). If a is a simplex, let \a\ denote the underlying point

p
set of its interior, and if i f is a set of simplexes, let \M \ = (J |CT|. In
particular | st a | is an open subset of | -K"|. aeM

EXAMPLE iii. The total complex N(K) of a simplicial complex K.

Let K be a Euclidean simplicial complex. The total complex is defined
using ordered rather than oriented simplexes (see ((8) 100)). A p-cell a
of N(K) is an ordered set of p+ 1 vertices of K (possibly with repetitions)
which span a simplex of K; and N(K) is the geometric chain complex
generated by all such. A face of a is a subset, with the induced ordering.
In particular, if K is a cone with vertex x, we call N(K) a total cone with
vertex x, and it is easy to show that N(K) is acyclic. More generally, if K
is oriented as in the previous example, there is a natural chain equivalence
N(K)->K, inducing an isomorphism of homology groups (see ((8)
Theorem 3.5.4); we shall also show this isomorphism in Corollary 1.3).
As in the previous example, let | a | denote the underlying point set of
the interior of the simplex spanned by a, and let | M\ = (J \a\.

<reM

EXAMPLE iv. The nerve N(<x) of a covering a.
We generalize the previous example for Cech theory. Let a be an open

covering of a space X. A p-cell a of the nerve N(a) is a Cech simplex,
namely an ordered set of p+ 1 sets of a (possibly with repetitions) having
non-empty intersection; the intersection is called the support of a, and is
denoted by super. Define the nerve N(oc) to be the geometric chain
complex generated by all such cells. We write H*{X, a) for the homology
group of N(a); and taking inverse limits over a we obtain the Cech
homology group H^(X) of X.
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In the case when a is the star covering of a Euclidean complex K,
Example iv reduces to Example iii; N(ot) = N(K), and supo- = \sta\,aeK.

We emphasize once and for all that throughout
(a) all coverings will be open;
(b) for the nerve we use ordered simplexes (in order that the cup-product

be functorial);
(c) for Cech theory we use the set of all open coverings; and
(d) for Cech and Alexander cohomology we shall use cochains with

arbitrary supports.

EXAMPLE V. The Vietoris complex V(X) of a space X.
A p-ce\\ of V(X) is a Vietoris simplex, namely an ordered set of p +1

points of X (possibly with repetitions). Define V(X) to be the geometric
chain complex generated by all such cells. If xeX, then V{X) is a total
cone with vertex x, and so V{X) is acyclic. Of course the topology of X
is lost in V(X), but we may reinsert it by means of coverings. If a is an
open covering of X, a Vietoris simplex is said to be a-small if it is contained
within some set of a. Define the <x-small Vietoris complex V(X, a) of X to
be the subcomplex of V{X) generated by all a-small Vietoris simplexes.

EXAMPLE vi. The singular complex S{X) of a space X.
A p-cell of S(X) is a singular ^-simplex of X. Define S(X) to be the

geometric chain complex generated by all such (see ((8) 315)). The singular
homology group of X is defined to be the homology group of S(X), which
we write as 8H*(X). If a is a singular simplex, let im a denote its point-set
image. If a is an open covering of X, call a a-small if imo- is contained
within some set of a. Define the a-small singular complex S(X, a) of X to be
the subcomplex generated by all a-small singular simplexes. We write
8H#(X,oc) for the resulting homology group. The inclusion S(X,a)^S(X)
is a chain equivalence, inducing an isomorphism of homology groups
*H*(X,oc)-^+*H*(X) (see ((7) 197)).

EXAMPLE vii. The normalized singular cubical complex QN(X) of a
space X.

We define QN{X) to be the quotient complex of the singular cubical
complex Q{X) by the subcomplex QD(X) of degenerate cubes (see ((8) 321),
and (10)). It matters not for this paper whether degeneracy is defined
at the 'front' or the 'back' or on every coordinate of the cubes (see (6)),
whereas in (12) we shall specifically require degeneracy at the 'front'.
It is well known (6) that there are chain equivalences between S(X) and
QN(X). Therefore, where no confusion can arise, we shall use the same
symbol 8H#(X) to denote the resulting homology group. In particular
when X is contractible then S(X) and QN(X) are acyclic.
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In order to make QN(X) into a geometric chain complex, we have yet
to define the cells. . Now Q(X) is generated by all singular cubes of X,
and QD(X) by the subset of degenerate cubes; therefore the natural
epimorphism Q(X)->QN(X) maps the complementary set of all non-
degenerate cubes into a set of generators for QN(X), which we call the
cells of QN{X). The partial ordering on Q(X), given by the faces of the
singular cubes, induces the required partial ordering on the cells of QN{X).

If a is a cell of QN(X), then a is a coset containing a unique non-
degenerate singular cube, and we define im a to be the point-set image of
the latter. Given an open covering a of X, we can define, in a manner
similar to the previous example, the u-small normalized singular cubical
complex QN(X, <x) of X. We can prove that the inclusion QN(X, a) ^QN(X)
is a chain equivalence, either directly, or by transferring the result from
the singular simplicial theory. The direct proof uses a subdivision of the
w-dimensional cube into 3?l small cubes, analogous to the regular sub-
division of a simplex; the explicit formulae will be given in ((12) § 7).

The category (£

A chain map between two chain complexes is a homomorphism that
preserves the grading and commutes with the boundary. A geometric
chain map between two geometric chain complexes is a chain map that
maps cells to cells. Let d denote the category of geometric chain complexes
and geometric chain maps.

Notice that in Example ii a simplicial map between oriented simplicial
complexes induces a chain map which is not in general geometric, because
not all cells are mapped to cells (a simplex that is mapped degenerately
has algebraic image zero). However, in Example iii a simplicial map
between simplicial complexes does induce a geometric chain map between
the corresponding total complexes. Similarly in Example iv. In Examples
v, vi, and vii a continuous map between spaces does induce a geometric
chain map between the respective geometric chain complexes. In fact
Examples iii, ...,vii turn out to be natural from the functorial point of
view, particularly when we come to the multiplicative structure in § 4.

The augmentation
If we define e to be zero on Kp (p > 0) we extend the augmentation from

a homomorphism K0->Z to a chain map eK : K->P, where P is the point
complex. We denote by the same symbol eK any homomorphism induced
by the augmentation, and in particular the epimorphism eK : H*(K)->Z.
As usual we define K to be connected if eK : H0(K)-^+Z, and acyclic if
eK : H^(K)-^-Z. If / is a geometric chain map then e/ = e, and so the
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augmentation may be regarded as a functor from the category (£ to the
subcategory ^ comprised of one object P and the identity map. We
emphasize this seemingly trivial remark because upon it rests the
naturality of the many homomorphisms and isomorphisms that we shall
establish between various homology and spectral theories.

Double complexes

Given two geometric chain complexes K = 2>Kp, L = 2Lg, we form in
the usual way the double complex K®L, which is bigraded with skew-
commutative differentials dK = dK® 1, dL = a>K®dL, where OJK is the sign-
changing automorphism of K given by coK x = (— )v x for a homogeneous
element x of degree p in K. A cell of K® L is the tensor product a® r of
cells OEK, reL, and we write CT®T>-CT'®T' if a^-a' and T>-T\ Associated
with the double complex K®L there is a single geometric chain complex,
graded by n = p + q and with differential d = dK + dL. We shall use the
symbol K ®L to denote ambiguously both the double and the associated
single geometric chain complex. Consequently we may identify K®P = K
and P®L = L. The augmentations induce chain maps cK : K®L^-L and
€L: K®L->K. If D is a subcomplex of the double complex K®L we
shall also use D ambiguously to denote both the double and the associated
single complex.

Definition of a facing relation

A. facing relation $ between two complexes K and L is a set {a®r} of
cells of K®L satisfying the facing condition

a®TG^ and O-®T>CT'®T' implies CT'®T'G$.

A facing relation generates a subcomplex D of the double complex K®L.
Of course the facing relation $ and the subcomplex D are logically
equivalent, but the notion is so basic that it is worth having two sym-
bols to distinguish between the geometric and algebraic aspects. The
augmentations restricted to D induce chain maps €K:D^*L and
eL:D^K.

We next introduce the notion of facets. If aeK the right facet fta of a
is the subcomplex of L generated by {T; CT®TG2?}. It is a subcomplex
because of the facing condition. Similarly if TEL the left facet $ T of T
is the subcomplex of K generated by {a; <T®T£$}. The facets will have
both geometrical significance and algebraical usefulness, so it is important
to think of them both geometrically as sets of cells and algebraically as
chain complexes. We say that $ is tyt acyclic if all the left facets are
acyclic, right acyclic if all the right facets are acyclic, and acyclic if it is
both left and right acyclic.
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Examples of facing relations

We give as examples the seven facing relations that we shall use in
this paper.

EXAMPLE 1. The acyclic simplicial : total-simplicial facing relation.

Let K be an oriented simplicial complex. Let L = N(K), the total
complex of K. Let $ be the facing relation between K and L given by

We verify that $ satisfies the facing condition, for if a>-a' in K and
T>-T' in L and a®re<^, then

|8ta ' |n |s tT ' |=>|s ta |n |s tT|#0,

and so CT'QT'GJ. A more intuitive way of saying this is that stars expand
when passing to faces. Given reL, let a be the oriented simplex of K
underlying T (obtained by omitting any repetitions in T); then the left
facet $T is sta, which is a cone, and consequently acyclic. Therefore ^
is left acyclic. Similarly $? is right acyclic, because, if oeK, then the
right facet $0 is N(sta), which is a total cone.

EXAMPLE 2. The acyclic simplicial : singular facing relation.

Let K be an oriented simplicial complex triangulating X, and let a be
the star covering of K. Let L = S(X, «), the a-small singular complex of X.
Let 5 be the facing relation between K and L given by

5 = {CT®T; |stcr|=>imT}.

5 satisfies the facing condition because stars expand and images shrink
when passing to faces; more precisely, if a^a' in K and T > T ' in L and
a®TE^, then

I st a' I 31 st a I =3 im r => im r'

and so a'®r'e^. Given reL, then the left facet $ T = a, where a is the
simplex of K spanning those vertices of K whose stars contain im T (there
is always at least one such vertex because T is a-small). Therefore the left
facets are simplexes, and so $ is left acyclic. Notice that had we used
S(X) instead of S(X,<x), then the facet of too large a singular simplex
would have been empty, and so $T would not have been left acyclic,
which subsequently would have been technically inconvenient. If oeK,
then the right facet fta = # ( | s t a | ) , which is acyclic because it is the
singular complex of a contractible space |s ta | . Therefore $ is acyclic on
both sides.
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EXAMPLE 3. The acyclic simplicial : singular-cubical facing relation.
In Example 2 replace L = S(X, a) by L = QN(X, a), the a-small

normalized singular cubical complex of X. Then the same formula for $
gives a facing relation, which is acyclic for exactly the same reasons.

EXAMPLE 4. The acyclic total-simplicial : singular facing relation.

Let M be a simplicial complex triangulating X, with star covering a.
Let K = N(M), the total complex of M, and let L = S{X,<x), the a-small
singular complex of X. Then the same formula for $ as in Example 2
gives a facing relation between K and L, which is acyclic because the left
facets are total cones, while the right facets are contractible, as before.
The advantage of using the total complex (Example 4 as opposed to
Example 2) will become apparent in the functorial approach of § 4.

EXAMPLE 5. The left acyclic Cech : singular facing relation.

We may generalize the previous example by passing from the simplicial
theory on polyhedra to Cech theory on arbitrary spaces. Let I be a
topological space and a an open covering of X. Let K — N(cx), the nerve
of a, and L = S(X, a), the a-small singular complex of X. Let ^ be the
facing relation between K and L given by

5 = {CT®T; supa^imr}.

^ satisfies the facing condition because supports expand and images
shrink when passing to faces. ^ is kft acyclic because any left facet ^ T
is a total cone with vertex any vertex of K whose support contains im T ;
in particular if only a finite number of sets of a contain im T, and if a is
the corresponding simplex of the nerve, then the left facet $fT = -^(a)-
On the other hand, $ is not in general right acyclic, because the singular
homology groups of sup a may be far from trivial. Indeed the right facets
do in a sense capture the local singularities of X, as we shall see in
Theorem 4.

EXAMPLE 6. The acyclic Cech : Vietoris facing relation.

Let a be an open covering of a space X. Let K = N(a), the nerve of a,
and L = V(X, a), the a-small Vietoris complex of X. Let $ be the facing
relation between K and L given by

% — {CT®T; SUPCT=>T}.

5 satisfies the facing condition because supports expand and Vietoris
simplexes shrink when passing to faces. $ is left acyclic as in the previous
example, and is right acyclic because any right facet 5CT = P(sup a) is a
total cone.
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EXAMPLE 7. The acyclic facing relation of a relation R.
This is a generalization of the previous example. Let R be a relation

between two sets X, Y; in other words R is a subset of X x Y. Dowker (4)
observed that R gives rise to two complexes K,L; a simplex oeK is a
finite ordered set of elements of X (possibly with repetitions) all related
to one element of Y, and a simplex r eL is a similar subset of Y. We define
the facing relation g to be the set of all pairs a® r such that each element
of a is related to each element of T. $ clearly satisfies the facing condition,
and is acyclic because all the facets are total cones. I t does not matter if
we replace either or both of K and L by a complex formed of oriented
simplexes without repetitions, instead of ordered simplexes with repeti-
tions; the same facing relation does the job.

Remark 1. The above examples are all concerned with a single space;
on the space a single complex gives a homology group, and a facing
relation between two complexes will relate two different homology groups.
In the next paper (12) we shall start with a continuous map between two
spaces; a facing relation between two complexes on the two spaces will
give a spectral sequence of the map, while a quadruple facing relation
between four complexes will relate two different spectral sequences. In
the next paper, therefore, we shall introduce multiple facing relations.

Remark 2. A facing relation resembles a carrier. Assigning to a simplex
its facet is indeed a functor <7->$cr from the category of K to the category
of subcomplexes of L, like a carrier, but it is a covariant functor whereas
a carrier is contravariant: the facets have the carrier condition reversed,
namely if o-^a' then $cr<=: gfa'. Facing relations which have closed facets
obeying the carrier condition the right way round turn out to be mixed
functors involving both homology and cohomology at once; we examine
them in the third paper (13).

3. Isomorphisms between homology groups
The corollaries in this and the next section are classical. Our purpose is

to show how they are unified under the notion of a facing relation and all
follow from the one theorem:

THEOREM 1. Let D be the double complex generated by a facing relation $
between two complexes K and L. If $ is left acyclic, then the augmentation
of K induces an isomorphism eK : H^{D)-^-^H^.{L).

Proof. The proof follows a standard spectral sequence argument.
Consider the spectral sequences obtained from D and P®L = L, respec-
tively, filtering with respect to q (the degree of the elements of the right-
hand complex). The augmentation of K induces a homomorphism between
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the two spectral sequences. The homomorphism of the E° terms is
D->P®L, or can be written

where the direct sum is taken over all TEL. The d° differentials of the
spectral sequences are dK, dP respectively, and operate on the left of the
tensor products only. Therefore the homomorphism of the E1 terms is

But by the acyclicity of each $ T this is an isomorphism. Therefore eK

induces an isomorphism on all the Er terms, 1 < r < oo. The' spectral
sequences converge, because they arise from double complexes having
non-zero terms only in the positive quadrant p,q ^ 0 (therefore the filtra-
tion is restricted; see ((8) Theorem 10.3.9)). Therefore eK induces an
isomorphism on the J5J°° terms, and hence an isomorphism of homology.

The theorem is proved. We observe in passing that since the E1 terms
are concentrated on the axis p = 0, the spectral sequences collapse
E* = E<° = H*{D).

COROLLARY 1.1. If $ is left acyclic the augmentations induce a homo-
morphism

COROLLARY 1.2. If $ is acyclic Y is an isomorphism

COROLLARY 1.3. The homology groups of an oriented simplicial complex
and its total complex are isomorphic.

Proof. Use Example 1 and Corollary 1.2.

COROLLARY 1.4. The singular and simplicial homology groups of a
polyhedron are isomorphic.

Proof. Use Examples 2 or 4 and Corollary 1.2, and the isomorphism
s#*(X,a)-^»8/4(X). Similarly we have by Example 3:

COROLLARY 1.5. The singular-cubical and simplicial homology groups of
a polyhedron are isomorphic.

Remark. Other methods of proving Corollaries 1.4 and 1.5 are well
known, and do in fact give the same isomorphism. By comparison our
method enjoys certain advantages. First, it is natural and no choice is
involved. Secondly, it is free from orientation troubles. Thirdly, if we
generalize the simplicial to Cech theory, the isomorphism is seen to be a
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special case of the homomorphism T from singular to Cech homology
(Corollary 2.7). Fourthly, the method generalizes to give an isomorphism
between the singular and simplicial spectral sequences of a simplicial
map ((12) Theorem 7).

COROLLARY 1.6. (Dowker's Theorem (4).) / / K,L are the complexes
arising from a relation R, then H^^^H^L).

Proof. Use Example 7 and Corollary 1.2. The advantage of the proof
here is that it avoids having to pass to the derived complexes, and admits
of easy relativization (see Lemma 3).

4. Equivalences between homology and cohomology theories
Notation for categories

We have already denoted by £ the category of geometric chain
complexes and chain maps. Let ft be the category of simplicial complexes
and simplicial maps. Let ©, ©*, and 9? denote the categories of (Abelian)
groups, graded groups, and associative commutative rings, respectively,
together with structure-preserving homomorphisms. If R e 9? let (£R, 5?^
be, respectively, the categories of cochain complexes of 22-modules and
cochain maps, graded associative skew-commutative rings over R and
homomorphisms.

Let $1 be the category of non-empty topological spaces and continuous
maps. Suppose t h a t / : X-+X' is a continuous map, and that a,a' are
open coverings of X, X' respectively. We say that a simplicial map
fa : N(<x)-+N(oc') between the nerves is an approximation t o / i f

sup/aa=>/(SUpa)

for each vertex a e N(a); and consequently

for each cell oeN(a). We now define a category 2ICOV: an object (X, a) of
2ICOV consists of a space X together with an open covering a of X; a map
(/>/«) : {X,a)-*-(X',<x') of 9ICOV consists of a continuous map / : X->X'
together with an approximation fa : N(a)->N(a).

Let X, 2) denote arbitrary categories.

Functorial facing relations
Let K,L be covariant functors 3E->(£ from an arbitrary category X to

the category (£ of geometric chain complexes. We say $ is a functorial
facing relation on X between K and L if

(i) for each object X in X there is a facing relation ftX between KX
and LX; and

(ii) if/: X->X' is a map of X, and a®re%X, then {Kf)a®(Lf)re^X'.
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We say that ^ is left (or right) acyclic if each 'ftX is. A functorial facing
relation gives rise to a covariant functor D from 3E to the category of
double chain complexes and maps. If H : (£-> ©* is the homology functor
then we have functors HK,HL, and HD from X to (5*. We apply these
ideas to three of the facing relations of § 2.

EXAMPLE 4. The acyclic total-simplicial: singular facing relation is
functorial.

$f is defined on St, the category of simplicial complexes and simplicial
maps. The functor K : &->(£ assigns to each complex M its total complex
KM = N(M). The functor L : &->(£ assigns to each complex M, with
star covering a, its a-small singular complex LM = S(\M\,ot). The facing
relation ^M between KM and LM is given by

%M = {CT®T; |sto-|=>inriT}.

A simplicial map/ : M-+M' induces a geometrical chain map/ : KM^-KM'
between the total complexes. If <x denotes the star covering of M', then/
maps an a-small singular simplex of | M \ into an a'-small singular simplex
of \M'\, and so / induces a geometrical chain map / : LM-+LM'. (We
use the same symbol/to denote the induced chain maps.) If a®re^M,

I St/a | =>/| St a | =3/(im T) = im/r,

and sofa®fTE<^M'. Therefore $ is functorial on Si.

EXAMPLE 5. The left acyclic Cech : singular facing relation is functorial.

3r is defined on Utcov. The functor K : %cov->& assigns to the object
(X,ot) the nerve K(X,oc) = N(oc), and assigns to the map (f,fa) the
approximation fa between the nerves. The functor L : 9lcov->(£ assigns
to the object (X,oc) the a-small singular complex L(X, a) = S(X, a), and
assigns to the map (f,fa) the geometric chain map between the singular
chain complexes induced by / , which we also denote by / . The facing
relation $(X, a) between K(X, a) and L(X, a) is given by

<ft(X,ot) = [a®r\ supcr^inir}.

The facing relation is functorial, because if CT®TG$ then

sup/aCT3/(sup<7)=>/(imT) = im/r,

EXAMPLE 6. The acyclic Cech : Vietoris facing relation is functorial.

^ is defined on ^Icov. The functor K assigns to the object (X,oc) the
nerve K(X,a) = N(a), and assigns to the map (/,/a) the approximation/a

between the nerves. The functor L assigns to (X, a) the a-small Vietoris
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complex L(X, a) = V{X, a), and assigns to the map (/,/a) the geometric
chain map between the Vietoris complexes induced by / , which we also
denote by / . The facing relation ^{X, a) between K(X, a) and L(X, a) is
given by

$(X,a) = {CT®T; super =>T}.

$ is functorial, because if a®re^(X,oc) then sup/aa^/(supa)=>/r, and
SOfao®fTE%(X',a').

Limiting processes

Having introduced the category UTCOV, we mention here the usual
limiting device for getting rid of the coverings. Let J : 5lcov->-^) be a
functor into some category 9). We say that J is independent of approxima-
tion if any two maps (/,/<£) and (/,/!) from (X, a) to (Xr, a) in 9ICOV with
the same underlying continuous map / : X -> X' have the same image
under J.

LEMMA 1. If ty is a category in which inverse {direct) limits exist, then
a covariant {contravariant) functor J : 2tcov -»?) which is independent of
approximation induces a covariant {contravariant) functor \\mJ : 51-^-^).

The proof is classical and due to Cech (see ((7) Chapters VIII and IX)).

THEOREM 2. If $ is a left acyclic functorial facing relation between the
covariant functors K, L : X -> (E, then the augmentation of K induces a natural
equivalence between the functors HD-=-*HL from X to @*.

Proof.

eld the

Let / :X->Z

commutative

' be a map of X.
DX—-—i

\nf €K

DX' i

diagrams

HDX—^—5

\HDf!
HDX1——

The commutative diagrams

»LX

>LX'

>HLX

\HLf

>HLX'

which comprise the theorem.

COROLLARY 2.1. If $ is a left acyclic functorial facing relation between
K and L, the augmentations induce a natural transformation between the
functors T : HL-+HK.
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COROLLARY 2.2. If $ is acyclic then Y is a natural equivalence

Multiplicative structure

If K is a geometric chain complex, a multiplicative structure on K is a
chain map (not in general geometric) m\K^K®K carried by the
diagonal carrier ACT = CT®CT {OEK), and such that €K®Km = eK. We say
that K is multiplicative if it possesses a multiplicative structure. Suppose
now that K : 3E->(£ is a functor from an arbitrary category 36 into the
category (£ of geometric chain complexes. We say that K is functorially
multiplicative if for each object Xe£ there is a multiplicative structure
mX on KX, such that for each m a p / : X->X' in X the diagram

KX >KX®KX
mX. I

Kf \Kf®Kf
KX' —+ KX'®KX'

mX
is commutative.

It is well known (8) that all the examples of geometric chain complexes
in § 2 are multiplicative, although not all are functorially multiplicative.
For instance Example ii is not functorially multiplicative, because a
multiplicative structure on the chain complex of an oriented simplicial
complex depends upon some local ordering of the vertices (nor, as we
have pointed out, does Example ii give a functor into (£). However, all
the other examples are functorially multiplicative.

For instance, consider Example iii: in this case the functor N : &->(£
assigns to each simplicial complex K its total complex N(K), and assigns
to each simplicial map the corresponding geometric chain map between
the total complexes. The multiplicative structure m on N(K) is defined
on the cells of N(K) and extended linearly: ii a = (xox1...xp) is a, cell of
N(K), define

v
mo= ^l(xox1...xi)®(xixi+1...x).

If / : K->K' is a simplicial map, and if fxi = yi} i = 0,1, ...,p, then
the image of a under the corresponding geometric chain map is
fa = (yry2...yp). Therefore mfa=fma, since order is preserved b y / .
Consequently N is functorially multiplicative.

A similar argument shows that Examples iv, v, and vi are functorially
multiplicative, and an analogous formula for cubes shows the same for
Example vii (see ((8) 141, 361, and 367)).
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Cohomology ring
Let R be the coefficient ring. The cochain complex of K with coefficients

in R is defined in the usual way byf KfR = 2iKprf*R, with coboundary
p

8 = drftl. A multiplicative structure m on K induces a ring structure on
KfftR as follows: the cup product between a, beKfftR is given by
all6 = n(a®b)m, where fx : R®R^-R is the multiplication of R. The
ring structure on K ffiR is associative, and it induces an associative skew-
commutative ring structure on the cohomology group H*(K; R) oiK^R.

If both K and L are multiplicative, there is an induced ring structure
on {K®L)$R. The multiplicative property era = e ensures that the
homomorphism tK : LrfiR->(K®L)rpR induced by the augmentation of K
is a ring homomorphism. If $• is a facing relation between K and L,
generating the subcomplex D<^K®L, the facing condition and the
carriage of m by A together ensure that the annihilator AD of D is an
ideal of (K®L)rf*R. Therefore

becomes a ring, and the induced homomorphism €K : L^R^-DipR is a
ring homomorphism. Applying the universal coefficient theorem and
Theorem 1, we have:

LEMMA 2. If K and L are multiplicative complexes and $ is a left acyclic
facing relation between them, then eK : H*(L; R)-^+H*(D; R) is a ring
isomorphism, and Y* : H*(K; R)-+H*(L; R) is a ring homomorphism. If
the facing relation and the multiplicative structures are functorial on a
category X, there is a natural equivalence and natural transformation,
respectively, between the corresponding functors from X to 5?^.

Relativization
Let (£+ denote the category of chain complexes and chain maps. We

can embed (£ in (£+ because a geometric chain complex is in particular a
chain complex. If X is any other category with subobjects, denote by X+

the category of pairs of objects (X,A), where X=>A in X, and pairs of maps
(/,g) suoh that/induces g. We can embed X in X+ by formally adding an
empty object 0 to X (if there is not one already) and identifying X = (X, 0).
If K :£->(£ is a functor sending subobjects to subcomplexes, we can
relativize K; that is to say we can extend K to a functor X+ -*• d+ in the
usual way by defining K(X,A) to be the quotient complex KX/KA, and
K(f, g) to be the chain map induced by Kf.

f A ff> B stands for the group of homomorphisms of A into B, usually written
Horn (A,B). If A = I,AV is a graded group, A (ft B stands for the graded group
XAfB
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LEMMA 3. / / the functors K and L onX can be relativized, then the functor

D arising from a functorial facing relation $ between K and L can also be
relativized. If $ is left acyclic the natural transformations Y,Y* can be
extended to X+. If ^ is acyclic then Y, Y* are natural equivalences on £+.

Proof. We relativize the functor D; therefore the sequence

is split exact. The augmentation of K maps this into the split exact
sequence

Passing to homology, the five lemma ensures that when $ is left acyclic
the homomorphism between the resulting exact sequences is an iso-
morphism. Consequently the natural equivalence eK : HD-^+HL extends
to X+, and we may therefore extend Y to £+. If $ is acyclic, the extension
of eL : HD-^+HK shows that the extension of Y is a natural equivalence.

The dual result holds similarly since the application of the functor //> B
leaves the above sequences split exact.

COROLLARY 2.3. There are natural equivalences between simplicial and
singular-simplicial homology and cohomology theories on the category St+ of
simplicial pairs and simplicial maps.

Proof. Use Example 4, Corollary 2.2, and Lemmas 2 and 3. Similarly,
by using Example 3 adapted in the same way that Example 4 is an
adaptation of Example 2, we have:

COROLLARY 2.4. There are natural equivalences between simplicial and
singular-cubical homology and cohomology theories on 5t+.

COROLLARY 2.5. There is a natural equivalence between Gech and Vietoris
homology theories on the category 51+ of pairs of topological spaces and
continuous maps.

Proof. Use Example 6. In the category 2ICOV define (A,a)cz(X, £) if
A <=• X and a = £\A, the covering $ cut down to A. Therefore N(a) <=
and V(A, a) <= V(X, £), so that we can relativize the equivalence

As is well known, HK is independent of approximation because any two
simplicial approximations are contiguous and induce the same homology
homomorphism; while HL is independent of approximation by definition.
The result follows by Lemma 1 because the inverse limit of isomorphisms
is an isomorphism.

6388.3.12 Qq
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COKOLLAKY 2.6. There is a natural equivalence between Cech and

Alexander cohomology theories on the category 2J+.

Proof. Apply Lemma 2 to the preceding case and take direct limits.

Definition. A covering a of a space X is said to be locally acyclic if the
singular complex S(U°r\UlO ...C\UP) of every non-empty intersection of
a finite number of sets of a is acyclic. The space X is locally acyclic if every
covering has a locally acyclic refinement. The pair (X, A) is locally acyclic
if every covering of X has a refinement a such that both a and a | A are
locally acyclic. In particular a polyhedral pair is locally acyclic.

COROLLARY 2.7. There are natural transformations T : 8H%-+H* from
singular homology to Cech homology, and T* : ft* -> 8H* from Cech
cohomology to singular cohomology on the category W~. On the subcategory
of locally acyclic pairs and continuous maps the transformations become
equivalences.

Proof. Use Example 5, Corollary 2.1, and Lemmas 1, 2, and 3. The
taking of limits offers no difficulties because the singular and Cech functors
are independent of approximation. The local acyclicity of a pair (X,A)
provides a cofinal subset of coverings upon which the facing relation is
acyclic, and to which we may apply Corollary 2.2.

Remark 1. The homomorphism T* (and similarly T) is in reality part
of a more detailed structure linking Cech and singular cohomology,
namely the spectral ring of Theorem 4 in § 6. The geometrical interpreta-
tion of the E2 term will provide a more delicate test for Y* to be an
isomorphism than local acyclicity.

Remark 2. The second way in which we shall generalize T* (and
similarly T) is to establish (in (12), Theorem 5) a similar transformation
T* : £}*(f)->8E*(f) between the Cech and the singular spectral rings of
a continuous map.

5. The spectral sequence of a facing relation

We use the term stack to denote a local coefficient system for a geometric
chain complex, in which each simplex has its own personal coefficient
group. The notion crops up in sheaf theory: it generalizes Steenrod's
local coefficients, and is due independently to Wylie. Recall that we may
regard a geometric chain complex K (or, more precisely, its partially
ordered set of cells) as a category. Recall that © denotes the category of
Abelian groups and homomorphisms.

Definition. A covariant stack on a geometric chain complex if is a
covariant functor £> : K-> ©.
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We can then form the homology group H*(K; §) of K with coefficients
in $ as follows. The stack £ assigns to each aeK a group irja, and to
each pair ai^>a:> a homomorphism £>ji: ipcr*->• £)CT3 satisfying the associative
law fyWfyi = &ki. We define the chain complex to be the direct sum
C(K; £)) = 2 &v- A jp-chain may be written as a finite sum E/^a*

areK

where Wefyd^. The boundary is given by extending linearly the formula

i

where rfi is the incidence number between o£ and a*v_r in K. We verify
that d2 = 0 and define the homology group in the usual way.

Dually we can form the cohomology ring H*(K; £) with coefficients in
the contravariant stack £ : K -> $R of rings on K, provided K is multiplicative.
A cochain may be thought of as a function on the cells of K, the image of a
lying in §<r. The multiplication between cochains is given by the same
formula a\Jb = ix(a®b)m as in §4, provided we interpret JX correctly, as
follows. If ^EK, then mai is linearly dependent on cells of type aj® ok,
where CTJ',ak are faces of a1. Therefore (a®b)mai is linearly dependent
on terms of type hj®hk, where WeS^cri, hke&ok. Define /u(^®A*) by the
product §>**(&). $$ik{hk) in the ring Sfra1, and extend /x linearly. Therefore
(aUb)ois'£oi, and aUb is a cochain, which is what we wanted to prove.

Facet homology

Suppose ^ is a facing relation between K and L. The right facets form
a covariant stack £jr- : K->& on K. The homomorphisms of the stack
are given by inclusions between facets. If we compose this functor with
the homology functor

we obtain the graded covariant stack on K of right facet homology. We
denote this stack by H^ffi) = %Hq(i$). Dually the graded contravariant

a
stack #* ($ ; R) on K of right facet cohomology is given by the composition
of functors

A >IL—>\±,R—>)HR.
Remark. Similarly there are left facet stacks on L. We have not

bothered to include in the notation the fact that H^ffi) is right rather
than left facet homology, partly because its use as a stack on K is sufficient
implication, and partly because in this paper all the facing relations are
left acyclic. Therefore the left facet homology is none other than ordinary
integer coefficients for L (which observation is essentially the proof of
Theorem 1).
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Notation for spectral sequences

We now define the category (£ of canonical homology spectral sequences,
or, more briefly, spectral sequences, and structure-preserving homo-
morphisms. An object of © is a spectral sequence E, which consists of a
sequence {Er, dr), 2 ̂  r ^ oo, of bigraded differential groups, together with
a filtered graded group H, with the following properties:

(i) For each r, 2 <r <oo, Er = £Er
pq, and Er

pq = 0 unless p,q^ 0. We

call p the filtering degree, q the complementary degree, and n = p + q the
total degree.

(ii) For each r, 2 ̂  r < oo, dr is a differential on Er of degree (— r, r — 1)
in p, q, and Er+1 = H(Er, dr). Formally d°° = 0.

(iii) The sequence converges, in the sense that Epq = E^q for
r>ma,x(p,q+ 1).

(iv) H is filtered by p, and graded by n, and the associated bigraded
group Gr (H) = E™.

As notation, we say that the sequence runs Epq => Hn.

A map of (£ from E to E' is a collection of structure-preserving homo-
morphisms/r : Er->E'r a n d / : H^-H', that commute with the differen-
tials dr, and are compatible with the isomorphisms Er+1 — H(Er, dr) and

Dually we define the category (E* of canonical cohomology spectral
sequences of rings, or, more briefly, spectral rings, and structure-preserving
homomorphisms. An object of (£* is a spectral ring, E*, which consists
of a sequence {Er, dr}, 2 ^ r ^ oo, of bigraded associative skew-commutative
rings with derivation, together with a filtered graded associative skew-
commutative ring H*, with the following properties:

(i) For each r, 2 ^ r ^oo, Er = 2E™, and E™ = 0 unlessp,q^0. Again
p,a

p is the filtering, q the complementary, and n = p + q the total degree.
(ii) For each r, 2^r<co, dr is a, derivation on ET of degree (r, — r+ 1)

in #,#, and Er+1 = H(Er,dr). Formally dm = 0.
(iii) The sequence converges for the same values as before; namely

EP.Q = E%« for r > max (p, q + 1).
(iv) H* is filtered by p, and graded by n, and the associated bigraded

ring Gr (H*) = Ex. We say that the spectral ring runs

E$* =^> Hn.

As in the dual case, a map of (£* from JS7* to E'* is a collection of
structure-preserving homomorphisms, commuting with the differentials,
and compatible with the isomorphisms.
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THEOREM 3. A left acyclic facing relation $ between K and L gives rise
to a spectral sequence E running Hp(K; Hq(^)) => Hn(L). The augmentation
of L induces a homomorphism Epfi->Hp(K), which is an isomorphism if the
right facets are connected, and which when composed with the edge homo-
morphism Hp(L)^-Ep0 gives Y. / / $ 4<s acyclic the spectral sequence
collapses to the isomorphism Y : H* (L) ^ j£°° = E2 £ H* (K). If $ isfunctorial
on X then E : X^-^is a covariant functor.

Proof. Filter with respect to p the double complex D generated by g,
and form the spectral sequence E running Hp{Ha(D)) => Hn{D). The term
E° = D = C(K; g). The differential d° operates only on the second factor,
so that Ell^C(K; #*($)). The differential d1 may be identified with the
boundary d of this chain complex, because d1 is induced by dK®l, and
in the formula for d the incidence numbers arise from dK, while the stack
homomorphisms H*Cft)ji are induced by the inclusion <ftoi<^<fto:>, or in
other words by the identity 1 : L-+L. Therefore ElazHp{K; Hq{%)) as
desired. The isomorphism Hn{D)-=^-Hn{L) is given by Theorem 1.

The augmentation of L induces the augmentation $cr->-P of right
facets, and hence H0Cfta)->Z; therefore it induces a stack homomorphism
H0C\$)->Z, onto the simple stack of integers, and a homology homo-
morphism ^ = ^ ( J f .

If the right facets are connected the required isomorphism may be traced
back to the isomorphism Hfffi^^+Z.

To identify the homomorphism Y = €Le^ with the spectral sequence
structure, we observe that in the diagram

the edge homomorphism e is induced by inclusion, so that the composition
eLe = €L in the sense that it is also a homomorphism induced by the
augmentation of L.

If $ is acyclic the spectral sequence collapses as in Theorem 1. If f̂
is functorial, then the functorial quality of E follows from that of D and
Theorem 2. The proof of Theorem 3 is complete.

DUAL THEOREM 3. R is the coefficient ring. A left acyclic facing relation
^ between multiplicative complexes K and L gives rise to a spectral ring E*
running HV(K\ H9C^; R)) =^> Hn(L; R). The augmentation of L induces a
homomorphism HP(K; jR)->jGrf>0, which is an isomorphism if the right facets
are connected, and which when composed with the edge homomorphism
E%'°->HP(L; R) gives Y*. / / g is acyclic the spectral ring collapses to the
isomorphism Y* : H*(K; R)^E2 = Eoo

izH*(L; R). Ifftis functorial on X
then E* : 36x9?-»-(£* is a functor contravariant on X and covariant on *R.
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Proof. Let E* be the spectral ring arising from the double cochain
complex DfR, filtering with respect to p. From the isomorphism
(K®L)ff»R^Kff>{LrfiR) we can identify Eo = DfR = n (W-R; tm's is

<reK

the ring of cochains on K with coefficients in the stack {ftarfiR}. Since II
is an exact functor, Ex = Yl H*(^a; R), and so the E2 term is the cohomo-

aeK

logy ring of K with coefficients in the right facet cohomology stack. The
rest of the proof echoes that of Theorem 3.

6. The Cech singular spectral ring of a space
In this section we apply the analysis of the preceding section to the

Cech singular facing relation of Example 5. Since limits are involved we
concentrate on cohomology, the direct limit of a system of spectral rings
being a spectral ring because the direct limit functor is exact. Therefore
we obtain for an arbitrary pair of spaces a spectral ring. The E2 term can
be identified with the cohomology of the pair with coefficients in a pre-
sheaf. The presheaf measures the local singularities of the space by means
of local singular cohomology, and reduces to the simple sheaf of rings R
if the pair is locally acyclic. In Lemma 6 we improve upon the last remark
and give a more delicate condition than local acyclicity which is necessary
and sufficient for the sheaf to be simple. When the sheaf is simple the
spectral ring collapses to an isomorphism between Cech and singular
cohomology; in particular Cartan showed in (1), Expose* 20, that this
occurred when the space is HLC.

There is a dual theory, which we do not give, of a semi-spectral sequence
relating Cech and singular homology. To define a semi-spectral sequence,
replace the isomorphisms H(Er, dr) £ Er+1 and GrH1^ E*0 in the definition
of a spectral sequence by homomorphisms H(ET, dr) -»• Er+1 and a mono-
morphism GvH^E™. The inverse limit of a system of spectral sequences
is semi-spectral, and not in general spectral, because the inverse limit
functor is only left exact. If we use a field of coefficients, then the limit
does retain its spectrality. The E2 term is less familiar than its analogue
above, since a dual theory of homology sheaves is not well developed.

Sheaves
Suppose (X,A)etyL+; that is to say X is a topological space and A a

subspace. We shall consider sheaves on X of J?-modules and graded
72-rings. The constant presheaf R(X,A) is given by assigning

(i) to each open set U, ^X, either 0 or R according to whether U
meets A or not; and

(ii) if U^V either the identity homomorphism on R if U does not
meet A, or the zero homomorphism otherwise.
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We use the same symbol R(X,A) to denote the resulting constant sheaf,
and we shall abbreviate both to R when there is no fear of confusion. The
stalks of R(X,A) above points of the closure A of A are zero, and above
other points are isomorphic to R.

The local singular cohomology presheaf SR(X,A) = &B = £ ®Je is given
by assigning p

(i) to each open set U, c X, the singular cohomology ring
sH*(U,UnA; R);

and

(ii) if U <= V, the restriction homomorphism
sH*(U,UnA; R)->sH*(V,VnA;R).

We denote the resulting graded sheaf by &R = £ &R- The stalks above
v

interior points of A are zero, and the stalks elsewhere depend upon the
local structure of X, and the way in which A is embedded in X; for
example think of the curve sin I/a;, x > 0, in the Euclidean plane (we
discuss this example in a Remark after Lemma 5). The augmentation
of the singular complex S(U,Uf)A) induces a presheaf monomorphism
i2-» QR, and a sheaf monomorphism R^- QR. We say that <5R is constant
if R—^-> <&R is an isomorphism. Similarly we may confine our attention to
dimension zero, and say that &R is constant if R^+(£R. Certainly if
(X, A) is a polyhedral pair the local acyclicity ensures that QR is constant.

Local connectedness
A space X is locally path-connected (LPC) if to each xeX and neighbour-

hood U of x, there exists a smaller neighbourhood V = V(x, U), xe F<= U,
such that any two points in V may be connected by a path in U. The pair
(X,A) is defined to be LPC if V may be chosen such that any two points
in VnA may also be connected in Ur\A. This condition implies not
only that X and A are LPC but that the embedding A <= X is not too bad.

A space X is homologically locally connected (HLC) if it is LPC, and
to each xeX and neighbourhood U of x, there exists a smaller neighbour-
hood V = V(x, U) such that any singular p-cycle in V, p > 0, bounds in U.
The pair (X, A) is defined to be HLC if it is LPC, and if V may be chosen
such that any ^-cycle in V n A, p > 0, also bounds in Un A.

A space X is cohomologically locally connected (CLC) over R if it is LPC,
and to each xeX, neighbourhood U of x, and singular cocycle/eS(U)rf*R
of positive dimension, there exists a smaller neighbourhood V = V(x, U,f)
such tha t / | V cobounds in V, where f\ V denotes the restriction of/ to a
cocycle in 8(V)rf*R. The pair (X,A) is defined to be CLC over R if it is
LPC, and X is CLC over R, and if to each cocycle geS(Ur\A)rf*R of
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positive dimension, there exists a smaller neighbourhood V = V(x, V, g)
such that g | V n A cobounds in V n A.

The last definition is a new one adapted to our particular needs. The
next lemma relates it to the concept of HLC. However, it is not known
whether CLC over Z (the integers) implies, or is a weaker condition than,
HLC. Local acyclicity, on the other hand, is a stronger condition and
clearly implies HLC. Local acyclicity plays much the same role as HLC
together with paracompactness, and is therefore useful for spaces which
are not too bad locally and yet do not happen to be paracompact.

The space X is paracompact if every covering has a locally finite
refinement. The pair (X,A) is paracompact if, further, to every covering
a of A there is a locally finite covering £ of X such that f | A refines a.

The pair (X,A) is normal if X is normal, and if every pair of subsets
of A closed in A can be enclosed in disjoint open sets of X.

LEMMA 4. A space X is HLC if and only if it is CLC over Rfor all R.

Proof. Suppose X is HLC. Given x, U,f let V = V(x, U) be constructed
by the HLC property. The inclusion j : V^*U induces

j* = 0:°Hp(V)^°Hp(U), p>0,
between the singular homology groups, and so also

j * = 0 : 8H*>(U; R)^8H*>(V; R), p>0.

Therefore X is CLC over R for all R.
Conversely, choose R sufficiently large so that for each x,U,p (p>0)

there exists a (group) homomorphism f = f(x,U,p) : Sp(U)^-R with
kernel the boundaries of Sp{U). In particular we are given that X is
CLC over this R, and, / being a singular cocycle, we may choose
V = V(x, U,f). Therefore/I V = Sg = gd for some cochain g : S^W^R.
If c is a singular £>-cycle in V, then fc = (/| V)c = gdc = 0, so that, by
our construction of/, c bounds in U. The lemma is proved.

We now relate these concepts to the local singular cohomology sheaf QR.

LEMMA 5. (i) S^ is constant on X if and only if X is LPC.
(ii) <&% is constant on X,A, and (X,A) provided {X,A) is LPC.

Proof, (i) Suppose X is LPC, and let / be a 0-cocycle on a neighbourhood
U of x. Let a, b be two points in V = V(x, U); since they are connected
by a path in U, and since/is a cocycle, fa =fb. Hence f\ V is a constant,
so that / gives rise to an element in the stalk above x which is in the
image of the monomorphism R-> (5^. Hence S^ is constant on X.

Conversely suppose X is not LPC at x: there exists a neighbourhood U
of x such that x is not interior to the path component W of x in U. Choose
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r # 0 in R, and le t /be the O-cocycle on U such that fW = 0,f(U-W) = r.
The restriction of / to any smaller neighbourhood V does not vanish or
cobound. Consequently the cohomology class of/ gives rise to a non-zero
element in the stalk above x which is not in the image of R^- &R. There-
fore &% is not constant on X.

(ii) In the relative case suppose (X,A) is LPC. Then &R is constant
on X and A since each is LPC. Let U be a neighbourhood of xeX, and
consider the exact sequence

0->sH°{U,UnA; R)->SH°{U; R)^sH°(UnA; R).

By the same argument as in the absolute case the sequence reduces in
the limit to

0^0->R-^R if

and 0^R-^+R->0 if x$A.

The second term shows that QR is also constant on (X,A). Lemma 5 is
proved.

Remark. We cannot prove the converse to Lemma 5(ii) because it can
happen that &R is constant on X,A, and (X,A), but (X,A) is not LPC.
For example consider the sin \jx curve embedded in Euclidean 3-space.
In this case, however, the singularities are caught by (&R(X,A)^0, as is
confirmed bj^ the next lemma.

LEMMA 6. (i) <&R is constant on X if and only if X is CLC over R.
(ii) QR is constant on X,A, and (X, A) if and only if (X, A) is CLC over R.

Proof, (i) The proof is similar to that of Lemma 5. Suppose X is CLC
over R. This condition is designed to ensure that the stalks &R{X) vanish
for p > 0. Lemma 4 then shows that (&R is constant on X.

Conversely suppose X is not CLC over R. Then either X is not LPC,
whence &R is not constant, or else there exist an x, U, and £>-cocycle / ,
p > 0, such that f\ V never cobounds for any smaller neighbourhood V.
Thus / gives rise to a non-zero element of <Ŝ  in the stalk above x implying
&R not constant.

(ii) In the relative case, suppose (X,A) is CLC over R. Then <&R is
constant on X and A. Let U be a neighbourhood of x e X, and consider
the exact triple

'H*(U\ R) >sH*(UnA; R)

sH*(U,Uf\A;R)
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In the limit this reduces to

or

according to whether x lies in A or not. The bottom term shows that &R

is constant on (X,A).
Conversely suppose that §R is constant on X and {X,A). Then X is

CLC over R by the absolute case. We may reverse the argument about
the last three diagrams and deduce from the right-hand term that for
x e A the stalk R ^ lim 8H*(U C\A; R). This is an expression of the second

u
condition for the pair (X,A) to be both LPC and CLC over R. The proof
of Lemma 6 is complete.

We are now in a position to state and prove the theorem about the
Cech-singular spectral ring, which'is the purpose of this section.

THEOREM 4. There is a functor E* : 5t+ x *R ->•(£*, contravariant on the
category %+ of pairs of topological spaces and continuous maps, covariant
on the category SR of rings, with values in the category (E* of spectral rings,
and with the following properties:

If {X,A)G91+ and Reft then the spectral ring E*(X,A; R) runs

where

(1) The E2 term is the cohomology ring of the pair (X, A) with coefficients
in QR, the local singular cohomology presheaf over R. If (X,A) is normal
and paracompact the sheaf <£R can be used instead.

(2) The Eoo term is related to the singular cohomology ring of (X,A) over R,
suitably filtered.

(3) There is a functorial homomorphism HP(X,A; R)^-EP>0 from the
Cech cohomology ring of (X, A) over R, which when composed with the edge
homomorphism E$>O->8HP(X,A; R) gives the natural transformation Y*
from Qech to singular cohomology.

(4) / / (X,A) is locally acyclic, or normal paracompact CLC over R, in
particular if (X,A) is a polyhedral pair, then the spectral ring collapses to
the isomorphism T* : H*(X,A; R)~E2 = E^SH*{X,A; R).

Proof. Relativize by Lemma 3 the functorial left acyclic Cech singular
facing relation of Example 5, and apply the dual Theorem 3. We have
a functor E* : $T+ v x 5R -> (£*, but before we can take limits over a we
must verify:
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LEMMA 7. E* is independent of approximation.

Proof. An object (X,A,a) of 2I+V is comprised of a pair (X,A) and a
covering a of X. A map (/,/a) : (X, A, a)-> (X', ^4', a') of $t^v consists of a
continuous m a p / : X^-X' mapping A to A' and a simplicial approxima-
tion / a : N(ac)^N(a'). If (/,/„) and (/,/<£) are two such with the same
underlying continuous map/, then f£,f* are both carried by the acyclic
Cech carrier O : N(ot)-*-N(ot,') given by OCT = {a'; sup a' <=/(sup CT)}. There-
fore/^,/^ differ by a chain homotopy h also carried by O. Meanwhile the
maps between the singular complexes are the same/ : S(X,<x)-*-S(X',a).
If cr ® T e $(X, a) and a'eOa, then

sup a' =>/(sup cr) ^/(im T) = im/r,

and so CT'®/TE$(X',CO. Therefore A®/ carries D(Z,a) into D(X',a).
Moreover it is easy to verify (and it will be shown in (12), Lemma 3) that
h®f is a chain homotopy between the chain maps

If a e N(oc | A) and a' e <Dcr, then

A' n sup a' z>fA n/(sup a) =>/(4 n sup a) # 0,

and so a'eN(o'\A'). Therefore h carries N(oc\A) into N(a.'\A'). Con-
sequently h®f carries D(A,<x\A) into D(A',<x'\A') and induces a homo-
morphism, h say, of the quotients D(X,A,.<x)^-D(X', A',<x). Also induced
upon the quotients is the formula expressing the fact that h is a homotopy
operator between the induced chain maps

: D(X,A,oc)->D(X',A',«').

Therefore by ((2) 321), the induced homomorphisms between the spectral
rings are equal. Lemma 7 is proved.

Returning to the proof of Theorem 4, we can now take direct limits
by Lemmas 1 and 7, and obtain the required functor E* : $(+ x 9?->(E*.

(1) To identify the E% term of the spectral ring E*(X,A,(x; R) we first
observe that it is the cohomology ring of the relative nerve with coefficients
in the right facet cohomology stack, and secondly notice that this is none
other than the cohomology of the pair (X,A) with respect to a, with
coefficients in the local singular cohomology presheaf <5R. If j8 refines a
the homomorphism E$(X,A,<x; R)^>-E*(X,A,fi; R) is the unique homo-
morphism induced by restriction, so that taking direct limits merely gives
us the cohomology ring of (X,A) with coefficients in the presheaf QR.
If, further, (X, A) is normal paracompact then by ((5) 68) the cohomology
in any presheaf of the zero sheaf is zero, so, by a standard argument, the
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homomorphism (BR -> <&R from presheaf to sheaf induces an isomorphism
of cohomology.

(2) By the dual Theorem 3, the E^ term of E*(X,A,a; R) is related to
8H*{X,A,a; R), the a-small relative singular cohomology ring of (X,A).
If jS refines a, restriction induces an isomorphism

'H*(X,A,a; R)^>°H*(X,A,p; R),

and so we can identify the direct limit with 8H*(X,A] R).
(3) The presheaf monomorphism R->&R induces a homomorphism

H(X,A,oc\ R)-+E%'°(X,A,a; R), which in the limit gives the required
homomorphism from Cech cohomology. It is functorial because R ->• &%
is induced by augmentation. The identification of Y* comes from
Corollary 2.7 and the dual Theorem 3.

(4) If (X,A) is locally acyclic, there is a cofinal set of coverings on
which $ is acyclic and the spectral ring collapses. The limit therefore
also collapses to the isomorphism Y*. If (X,A) is normal paracompact
we can calculate E2 by using coefficients in the sheaf <&R, and if (X,A) is
also CLC over R the sheaf isomorphism of Lemma 6 causes an isomorphism
H*(X,A; R)-^+E2. The E2 term is therefore concentrated on the axis
q = 0, and so the spectral ring collapses. Theorem 4 is proved.

Remark 1. D. B. A. Epstein has shown that the functor E* satisfies
the homotopy axiom, and therefore the spectral ring is an invariant of
homotopy type.

Remark 2. The functor E* could just as well have been defined using
singular cubes instead of singular simplexes. A chain equivalence
QN(X) ->S(X) can be used to define a natural equivalence between the
two resulting functors E*.

Remark 3. If when applying tfiR to D we insert a condition about
compact supports, we obtain a functor E* relating Cech and singular
cohomology with compact supports.

EXAMPLE. The Hawaiian earring.

Let us examine an example for which the spectral ring E* is non-trivial.
We want a space whose Cech and singular cohomology groups differ.
One of the simplest examples is the Hawaiian earring, which is the
familiar countable bunch of circles in the Euclidean plane, defined by

00 A \
X = U Fn, where Fn is the circle through the origin with centre I—, 01.

n=l \n I
X is not a polyhedron because it has a singularity at the origin, where
it is not HLC. Since X is 1-dimensional, in all dimensions greater than 1
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the Cech and singular cohomology groups vanish (see (3)), but in
dimension 1 they are non-zero and different, due to the singularity. As
we shall see, both groups are embedded in the spectral ring.

Since X is not HLC, we can choose, by Lemma 4, a ring R over which
X is not CLC (for instance choose R to contain a subgroup isomorphic
to 85i(X); or perhaps the integers might suffice). Let Xn denote the
space X with the circle Tn filled in. Since Xn is a polyhedron,
Sl(Xn; R) = 8Hl(Xn; R) = a free i?-module on n — 1 generators. Taking
limits X = C\Xn, we see that the Cech group S1 = SX{X\ R) is a free
jR-module with a countable number of generators. Meanwhile the inclusion
X^Xn embeds 8H\Xn\ R) into the singular group *HX = *W-{X\ R).
Taking limits, we have that Y* : H*-+8HX is a monomorphism. Complete
the exact sequence

By our choice of R the group Q does not vanish (for instance if j :
then je8H1(X)fj)R = 3H1 gives rise to a non-zero element of Q).

Since X is normal paracompact, we may use the sheaf (&R to calculate
the E2 term of the spectral ring E*. &% = R because X is LPC. SJJ = 0,
q JJ 2, because X is 1-dimensional (see (3)). (S^ vanishes everywhere except
at the singularity, where the stalk is isomorphic to Q. Hence the only
non-zero terms of E2 are:

E%° = R ) _
„ ) the Cech cohomology groups of X,

Due to the low dimensionality of X, the spectral ring converges E2 = E^
(but it does not collapse onto the axis q = 0). The exact sequence

relating EM to the singular cohomology group of X, is identical with the
exact sequence above.
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