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UNKNOTTING 3-SPHERES IN SIX DIMENSIONS 

E. C. ZEEMAN 

Haefliger [2] has shown that a differentiable embedding of the 
3-sphere Ss in euclidean 6-dimensions Es can be differentiably 
knotted. On the other hand any piecewise linear embedding of Si 
in Ek is combinatorially unknotted if k>n+3 (see [5; 6; 7]). The 
case Ss in E6 appears to be the first occasion on which the differenti- 
able and combinatorial theories of isotopy differ. Therefore it seemed 
worthwhile to give separately the proof of the combinatorial unknot- 
ting in S3 in E6, because the argument in this case is considerably 
simpler than that in the general case [7]. The proof is similar to that 
of unknotting S2 in El (see [5]), although it does involve one new 
idea, that of "severing the connectivity of the near and far sets" 
(without which I had conjectured the opposite in Remark 2 of [5]). 

THEOREM. Given a piecewise linear embedding of a combinatorial 
3-sphere S is euclidean 6-dimensions E6, then it is unknotted, i.e. 
there is a piecewise linear homeomorphism of E6 onto itself, throwing S 
onto the boundary of a 4-simplex. 

PROOF. By [6, Theorem 1 ] it suffices to show that S is equivalent 
by cellular moves (we shall in fact use three moves) to the boundary 
of a 4-ball. The definition of a cellular move (introduced in [6, p. 351]) 
is as follows: If T is another 3-sphere in E6, we say that S is equivalent 
to T by a cellular move across the 4-ball Q, written S-T across Q, 
if the interior of Q does not meet S, T, and Q is the union of the two 
3-balls Cl(S-T), Cl(T-S ). 

First choose a vertex V in general position relative to S (see [6, 
p. 357]). If the cone VS is nonsingular we are finished, because it is a 
4-ball bounded by S. Otherwise there are singular points xES, such 
that the line Vx meets S again. But owing to the general position of 
V, there can be at most two singular points on any line through V 
(see [6, Lemma 4]); therefore if we have V away on one side, we can 
call the one nearest to V near-singular and the other far-singular. 
Let nS denote the set of near-singular points of S, and fS the set of 
far-singular points. These two sets depend upon the position of the 
vertex V, of course, which we have not included in the notation, but 
once V has been chosen we assume it to remain fixed throughout. 

For dimensional reasons the sets nS, fS are 1-dimensional, and 
radial projection from V establishes a homeomorphism between 
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754 E. C. ZEEMAN [October 

them. By construction nS, fS are disjoint, but their closures Cl(nS), 
Cl(fS) may intersect, in X say. If X is nonempty, it consists of a 
finite set of nonsingular vertices of S, and X=Cl(nS)CCl(fS) 
= Cl (nS) - nS = Cl (fS) -fS. Triangulate Cl(nS), Cl (fS) as isomor- 
phic 1-complexes, so that the isomorphism is given by projection 
from V. (They are not subcomplexes of S, but are piecewise linearly 
embedded in S.) 

Now we cannot proceed as in [5] and separate the sets nS, fS by 
a diameter of S, because being 1-dimensional they may link in S. 
Therefore the first job is to "sever the connectivity" of one of them. 
Let Y be the set of barycentres of the 1-simplexes of Cl(nS), which 
is a finite set of points. Let Z be a cone on Y in general position in S- 
that is to say Z meets Cl(nS) in Y, and does not meet Cl(fS). Let S, 
be a subdivision of S containing subcomplexes triangulating Cl(nS), 
Cl(fS), Z. Let A be the closed simplicial neighbourhood of Z in the 
second derived complex S1" of S1. Then A is a (combinatorial) 3-ball 
by Whitehead's regular neighbourhood theorem [4, Theorem 23, 
Corollary 1], because Z is collapsible. Let B - Cl(S" -A), which is 
also a 3-ball by [1, Theorem 14: 2]. Since Cl(fS) does not meet Z, 
neither does it meet A, and so it is contained in the interior of B. 

The cone VA is a 4-ball, whose interior does not meet S, because 
A contains only near- and non-singular points. The boundary 
(VA)- = VA +A = VlB +A. Therefore S= A +B is equivalent to the 
3-sphere VB+B by a cellular move across VA. 

The first stage of the proof is complete, because we have severed 
the connectivity of the singular sets in the following sense: Let nB, 
fB denote the near- and far-singular sets of the ball B, defined with 
respect to the fixed vertex V in the same way that nS, fS were de- 
fined for S. Since B CS, then nBCnSQB. Conversely, if xEnSCB, 
the corresponding far-singular point yefSCB, and so xenB and 
yCEfB. Hence nB=nSrTB, which is nS minus a small (second de- 
rived) neighbourhood of Y. Therefore Cl(nB)=nB+X consists of 
the disjoint union of a finite number of little stars of edges (one for 
each vertex of Cl(nS)), and Cl(fB) is isomorphic to Cl(nB) by pro- 
jection from V. 

The second stage of the proof consists of constructing a 3-ball C in 
the interior of B, such that fB, nB lie in the interior, exterior of C, 
respectively. First choose a tree T, piecewise linearly embedded in 
the interior of B, that contains Cl(fB) and does not meet nB; to 
construct T, observe that Cl(fB)CCl(fS)Cthe interior of B, and 
so join up each of the components of Cl(fB) by arcs to a base point 
in the interior of B. Let B1 be a subdivision of B containing subcom- 
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plexes triangulating Cl(nB), Cl(fB), T, and let Co be the closed 
simplicial neighbourhood of T in the second derived complex BP of 
B1. Then Co is a 3-ball because T is collapsible. T is contained in the 
interior of Co, and CO is contained in the interior of B. Unfortunately 
Co is not the ball that we require because it meets nB (for it contains 
the closed star in B of each point xGXCCl(nB)). In order to obtain 
the 3-ball C with the desired properties, we have to snip off at each 

xEX the offending knob of Co which butts into nB, as follows: 

xK 

nB 0 

'*T 

Choose xEX, and let J==link(x, B"), which is a 2-sphere. Let 
J1= JnnB, which is a finite set of points, and let J2= JnCl(Co-xJ), 
which is a finite disjoint set of disks (being a second derived neigh- 
bourhood of the finite set of points JnCT). Let K be a disk in J, 
such that Ji, J2 lie in the interior, exterior of K, respectively. Then 
xK is a 3-ball contained in CO, whose boundary K+xk meets CO in 
the disk K. Therefore Cl(Co-xK) is a 3-ball, by [I, Corollary 14: Sb]. 
We have snipped off the knob of Co at x which butts into nB at x. 
At the same time, since fB does not meet xK, we have kept fB in 
the interior of Cl(Co -xK). Proceeding inductively for all the vertices 
of X, we are eventually left with a 3-ball C, not meeting nB, and 
whose interior contains fB. 

Since C C CO C interior of B, the closure of the complement Cl (B - C) 
is an annulus. In other words, if A is a 3-simplex and I the unit inter- 
val, then there is a piecewise linear homeomorphism from A XI onto 
Cl(B-C), by [3, Theorem 3]. Let a be a vertex of A, and F the op- 
posite face; let D, E be the 3-balls in Cl(B - C) that are the images 
under the homeomorphism of IF XI, aF XI, respectively. Then C+D 
is also a 3-ball, and B= C+D+E. 

The second stage of the proof is complete. We are now ready to 
complete the proof of the theorem by making two more cellular 
moves. The cones VD, VE are 4-balls, whose interiors do not meet 
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B, because D +E = Cl(B - C) consists only of near- or non-singular 
points of B. The cone VC is a 4-ball, because C consists only of far- 
or non-singular points of B. Therefore we have the cellular moves 

S VB + B, across VA, 

V(C + D)* + (C + D), across VE, 

VC + C, across VD, 

= (VC)*, the boundary of a 4-ball. 

Hence S is unknotted, and the theorem is proved. 

Isotopy. The result can be restated in terms of isotopy in various 
ways (depending on which definition of isotopy is chosen). We give 
one such statement as a Corollary; it can be deduced fairly easily 
from the equivalent definition of unknotting by simplicial moves 
(see [6, Theorem 1]), and the proof is given in [8]. 

Choose a fixed 4-simplex in E6, and let z denote its boundary. Let 
p(r) denote the rth barycentric derived complex of Z. We call a map 
z2--E6 linear on :(r) if it maps each simplex of X(r) linearly into E6. 
By an isotopy of 1, we mean a piecewise linear map F: I X2-*E6, such 
that for each t, 0 <_t 1, the map Ft: 2 --E6 given by Ft(x) = F(t, x) is 
an embedding. 

COROLLARY. Given a combinatorial 3-sphere S piecewise linearly 
embedded in E6, then there exists an integer r and an isotopy F: I XX 
--E6, such that Fo(2) = S, F1 is the identity, and Ft is linear on (r) 

for all t, 0<t<1. 
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FLORIDA STATE UNIVERSITY AND 
GONVILLE AND CAIUS COLLEGE, CAMBRIDGE 

A WEAK TYCHONOFF THEOREM AND THE 
AXIOM OF CHOICE 

L. E. WARD, JR.1 

1. A well-known result of Kelley [1] asserts that the Tychonoff 
theorem (the product of compact spaces is compact) implies the 
axiom of choice, establishing the equivalence of these propositions. 
In what follows we show that an apparently weaker form of the 
Tychonoff theorem also implies the axiom of choice. The proof is 
quite brief and direct. 

WEAK TYCHONOFF THEOREM. The product of a family of mutually 
homeomorphic compact spaces is compact. 

PROPOSITION. The weak Tychonoff theorem implies the axiom of 
choice. 

PROOF. Let Q, be a disjoint family of nonempty sets and let 2 be 
the union of the members of (t. If 2(t denotes the set of functions on 
(, into 1, we shall demonstrate the existence of an element of 2 
which is a choice function, i.e., a function which maps each A in (t 
into an element of itself. 

Topologize 2 by defining a subset U of 2 to be open if U is the 
empty set or if 2 - U is the union of finitely many members of (t. 
Since a, is a disjoint family this collection of open sets clearly satisfies 
the axioms for a topology, and it is easily seen to be a compact topol- 
ogy. By the weak Tychonoff theorem, 2a is also compact. 

For each A E c let FA denote the set of all fGV6 such that f(A) 
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