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The idea of an engulfing theorem is to convert a homotopy state
ment into a geometrical statement. For example let Xx be a compact 
PL (piecewise linear) subspace of an unbounded PL manifold Mm. 
The first engulfing theorem [4], [5], [8], [9] connected the following 
two properties: 

(1) X is inessential in M (homotopy). 
(2) X is contained in a ball in M (geometry). 

The theorem said tha t the two properties were equivalent provided 
M is fe-connected and 

x :££ m — 3, 

2x g m + k - 2. 

Of course one way is trivial: if X is contained in a ball, then it is 
inessential in tha t ball. The other way is nontrivial, and was a key 
step in Stallings' proof of the Poincaré Conjecture [S], [8], and the 
proof of embedding theorems [3], [4]. 

When this result came to be generalised two different points of 
view emerged in response to different classes of problems. Stallings 
developed one point of view as a PL tool to solve topological prob
lems, for example, the uniqueness of PL-structure of En, n*z5 [6], 
the topological unknotting of spheres [7], and the approximation of 
homeomorphisms [ l ] . He envisaged the engulfing process as being 
like an amoeba U moving in the manifold so as to swallow up X. 
In particular if U is a small open cell this reduces to the first engulfing 
theorem above; more generally U can be an arbitrary open set pro
vided tha t the pair (Jkf, U) is sufficiently highly connected [ô]. 

Meanwhile Zeeman [9], [ i l ] developed the other point of view 
as a PL tool to be used within the PL category, in particular for em* 
bedding and isotopy theorems [3], [lO], [ l l ] . This approach en
visaged engulfing in terms of regular neighbourhoods : given PL sub-
spaces X, C we say tha t X can be engulf ed from CM X lies in a regular 
neighbourhood of C. In particular if C is a point this means X is con
tained in a ball, and so we recover the first engulfing theorem above; 
more generally C can be an arbitrary PL subspace, possibly noncom-
pact, satisfying a certain collapsibility condition (defined below), 
and provided (Af, C) is sufficiently highly connected. 
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Now a regular neighbourhood D of C is characterised by three 
properties: D is a manifold, a neighbourhood of C, and D \C (D 
collapses to C). I t transpires that only the third property matters 
from the point of view of engulfing, and more important than the 
first two properties is to make D — Col minimal dimension. In fact 
we have an equivalent definition: X can be engulfed from C if there 
exists a PL subspace D such tha t 

XCD\C, 

dim (D - C) g x + 1. 

Intuitively one thinks of D — C as a feeler pushed out from C so as 
to engulf X. The advantage of having the feeler of dimension only one 
more than tha t of X is apparent when engulfing singularities of maps 
is considered. For example, the feeler itself may introduce new 
singularities, bu t these will be of lower dimension than what we 
started with, and so amenable to attack by induction. The need 
for successive engulfings (by induction) raises problems in Stallings' 
approach, because his amoeba must move while it swallows; and 
there is a danger tha t during the second mouthful it may disgorge 
the first. 

On the other hand the feeler approach enables successive feelers 
to be added without disturbing what has already been engulfed. 

We state below an engulfing theorem that covers both approaches. 
We state it in feeler form because this allows us to cope with bound
ary problems, which require special treatment. Engulfing theorems 
which involve the boundary have proved useful for embedding [3] 
and compression [2] theorems. Irwin first proved a boundary en
gulfing theorem, and his result is a corollary of the theorem below. 

DEFINITIONS. Let M be a PL manifold with boundary dM. Let C 
be a closed subspace. We say C is q-collapsible in M if there is a PL 
subspace Q such tha t C \ Q, C~QQint M, and dim (QHint M) ^q. 
For example C is g-collapsible if dim CSq or CC.SM. Define X to 
be C-inessential if the inclusion map XQM is homotopic in M, keep
ing XC\C fixed, to a map X—»C. 

THEOREM. Let Mm be a PL-manifold, with or without boundary, com
pact or not. Let C be a q-collapsible closed PL subspace, q^m — 3, and 
such that Ti(M, C) = 0, i ^ k. Let Xx be a C-inessential compact PL sub-
space satisfying (1) or (2) : 

(1) dim(Xr\dM)<x, x?*m — 3 and m+k — 2^max{2x,q+x}. 
(2) XQdM and x^m—A, 2x^m+k--3, q+x^m+k — 2. 

Then we can engulf X from C\ that is to say there exists DC.M such that 
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X C D \ C, 

dim(D - Ç) g * + 1, 

DC\dM = ( X U C ) n a M . 

We recover the initial engulfing theorem by putting dM=0, 
C=point, g = 0 in case (1), and taking a regular neighbourhood of D, 
which gives a ball containing X. The connection with Stallings' theo
rem is given by the following lemma. 

LEMMA. Let Mm be a PL manifold without boundary, and X a com
pact subspace. Let C be a closed PL subspace, and U any open set con
taining C. If X can be engulfed from C (as in the thesis of the theorem) 
then there exists a PL homeomorphism h: M—^M, isotopic to the iden
tity keeping Cfixed, and having compact support, such that hlTZ)X. 

The detailed proofs of the Theorem and the Lemma can be found 
in [ l l , Chapter 7] together with examples to show that the dimen
sional hypotheses in the theorem are best possible. 
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