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Research, Ancient and Modern

Chapter 1. On government research establishments

THE main justification for mathematical research, and |
think Professor Coulson* would have said the same, is
that it is one of the oldest and most splendid endeavours
of mankind. And that could well be the end of my talk.

But whether or not the government can afford to

support vast numbers of us on fat salaries, to do what
we enjoy, is another matter. The problem is as old as
history. Recall that apocryphal story about Euclid told
by Stobacus!:
“Someone who had begun to read geometry with Euclid,
when he had learnt the first theorem asked Euclid ‘But
what shall 1 get by learning these things?" Euclid
called his slave and said ‘Give him threepence, since he
must make gain out of what he learns’.”

Now you may laugh at Euclid's apparent gentle
sarcasm, but I am not so sure. Judging from the
humourlessness of Euclid’s mathematical style, and
remembering his position as a head of department of a
new government research establishment, and recalling
Professor Bondi’s words about his experiences in a
similar position, one could easily interpret Euclid's reply
at face value. Anyway why did he offer threepence, when
a penny would have made the point just as well? He
probably had a rescarch budget of £30, and being
commissioned to produce a mammoth standard reference
work on mathematics had, with an administrator’s
acumen, estimated it at about 1000 propositions, and was
merely making use, like Bondi, of masses of cheap
research student labour, as opposed to a few expensive
professors. And that, alas, was probably the beginning
of the bad effect of paying for, and promoting because of,
research.

You may ask why do I describe the famous Mouseion
at Alexandria as a government research establishment.
In fact it was probably the first,2 and it probably possessed
all the attributes of a research establishment, tenured
posts, excellent library and plenty of slave labour. One
can easily conjecture the kind of conversation that must
have once taken place.

One evening Alexander the Great as a youth comes
up to his tutor and says:

Alexander: I have a problem.”

Aristotle (who happened to be his tutor): *Yes?"
Alexander: “In my plan to conquer the world it is
obviously best to use a single well organised army. But
as I capture each country, and then move on to the next,
how do 1 keep control of the previous country?”
Aristotle (after a pause, with a far seeing glint in his eye):
“Aha! I think I have the solution. You want to found a
government research establishment. You could even
name it after yourself. Then the sociology department
(reference 2, p. 20) could manufacture suitable religions

» Professor Coulson would have been giving this talk, but for his
untimely death,

grafted on to the appropriate local beliefs that would
keep the natives happy."

“As a matter of fact,”” and at this juncture Aristotle's
tone of voice becomes noticeably casual, “as a matter of
fact 1 have a very good student* who could do the
architecture for you—he's eager to experiment with
white marble—and another senior studentt who would
make a splendid first director of the place.™

Aristotle's voice regains its normal timbre
“| suppose you'll have to have an arts man as first
librarian—and there is an elderly Homer scholar} who
would do—and he would have the advantage of being
near retiring age so that as soon as he'd done the chore of
setting up the catalogue system you could get rid of him
and replace him by a proper scientist.”

Aristotle’s voice goes casual again. *And as a matter
of fact 1 have just the man§ for the job, a student who is
a brilliant all-rounder, interested in astronomy, ReOZ-
raphy, literature, the lot, but he needs a few more years
of research before he takes on administrative chores. Oh
yes—and 1 have another young student || who's a bit of a
crank, but marvellous with his hands. His ambition is to
build a giant lighthouse, but he can't get any funds. But
in a government research establishment this would be
well worth the cost, just from the prestige point of view
alone, besides being actually quite a useful piece of
equipment.”

*1 suppose you'll have to have a philosophy depart-
ment, although to tell the truth the subject is a bit
played out after Plato and myself, and most of my
currentstudents are rather second rate (reference 2, p. 40).
On the other hand biology, psychology and medicine
are really up and coming new subjects, and 1 have a
splendid young man$§ who has done some fascinating
work on the psychology of sex and nervous breakdowns,
who would be ideal to head a research group.™

“And let me see—you'll need a mathematician of
course—and although 1 don’t have any suitable students
of my own available just at this moment, there is 2 young
man** in Plato’s academy. Not that he's very good at
research, in fact 1 doubt he'll ever make his PhD, but
he's quite a good scholar, and quite good at editing
things. And although he’s a bit humourless, he would
make an excellent administrator, and so 1'd recommend
hiring him to set up the mathematics department.”

“Oh—and another point—if 1 were you I would
choose somewhere on the mediterrancan coast, with a
nice climate and a sandy beach with good bathing
facilities, and not too far from the main shipping lanes.

* Dinocrates.

+ Demetrius Phalerus.
+ Zenodotus.

§ Eratosthenes.

! Sostratus.

© Erasistratus.

*¢ Euclid.
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As a matter of fact I had a vacation last year at just such
a place, a little island called Ras-¢l-Tin (reference2, p.7).
For that way you'll not only be able to attract some
decent academics on to the staff, but you'll also guarantee
a good flow of visitors each summer to keep the place
academically alive. In fact it might even last a few
centuries.”

And that's exactly what Alexander did, in every
detail, when he was 23.

Previous to Alexandria, there had only been private
academies, which lacked permanence because they
depended upon personalities, and tended to dissolve
when the latter moved or died. The most famous example
was Plato's Academy in Athens. Plato himself must have
been one of the best, and stupidest, research supervisors
in mathematics of all time. According to Tzetzes® he
even had a notice written up over the porch of his
academy: “Let no one unversed in geometry enter my
doors,” but when you come to see what he himself
thought geometry was, you find a rather pedantic
insistence upon ruler and compass constructions, which
was stupid. It is a regrettable tendency amongst some
mystics and philosophers to become so obsessed with
some small facet of mathematics or science that happens
to capture their imagination, that it biases their view of
the whole.

The trouble was that Plato had so strong a personality,
he almost managed to redirect the whole steam-roller of
Greek mathematics in the wrong direction (as Cauchy
later did succeed in doing, by discovering Cauchy’s
Theorem, and thereby redirecting the whole of nineteenth
century mathematics away from real analysis into the
jaws of complex analysis).

Chapter 2. Rediscovering-Eudoxus of Cnidus

Luckily for the Greeks, Plato had at least one research
student who was his match, and who was, in my opinion,
the greatest of all the Greek mathematicians, Eudoxus.
He was born in Cnidus about 408 BC, and Plato was
about 20 years his senior (see reference 3 vol.l, pp. 320-
334). Eudoxus was 23 when he became Plato’s student,
and so Plato must have been in his early forties, approach-
ing the height of his powers. Meanwhile Cnidus was in
what is now mainland Turkey, and so | suppose you
could call Eudoxus something of a young Turk. One can
imagine the opening conversation:

“Well young man, | have here 4 problems which you
might like to try your hand at, left here by a fellow
called Zeno."

One only has to look at Plato’s Dialogues to know that
he always went straight to the heart of the matter
irrespective of whom he was talking to. And I believe
this is a great virtue in a research supervisor: myself |
much prefer Professor Atiyah's gold to Professor
Roger's tin, especially during the first year of research.

But imagine Plato’s astonishment when Eudoxus
returns shortly with a closely written sheal of papyrus
claiming to have solved the lot. Then Plato’s second
virtue as a research supervisor comes out: insistence on
clarity of communication.

“My dear young man,” he says handing it straight
back to the crestfallen Eudoxus, *you must explain the
solution to me in words of one syllable, just as I explained
the problem to you. We philosophers believe in the value
of debate.”

And as a matter of fact this used to be exactly Norman
Steenrod’s description of how to write a mathematical
paper: “imagine you are geing on a long walk with a
friend, and you are telling him about the theorem—
write the paper in that order.”

But to return to Eudoxus' predicament of having to do
mathematical research in an academy of philosophy. In
effect he had to reduce the proof to as short a time as
those argumentative philosophers would allow him to
hold the floor. And being the greatest of all the Greek
mathematicians, he meets this challenge. In effect he
reduces the proof to one line, Definition 5 in Euclid
Book V (see reference |, vol. 2, p. 114, 120-129).

The problem was to define ratio between incommen-
surable magnitudes, when there was no definition of real
numbers, nor any definition of how to add or multiply
irrationals. His solution was to define the correct equiva-
lence relation between pairs as follows. Let N denote the
positive integers.

Eudoxus’ Definition of Equivalence

(a, b) ~ (a’, b") if, for all m,n € N, ma = nb as ma’ Z nb’,
The equivalence class of the pair (a, b) is called the
ratio (Aoyos) and is denoted a:b. Thus

ab=a':b'.

Now the beauty of the definition is its generality, because
a, b, a', b’ can be any kind of magnitudes, space intervals,
time intervals, areas, volumes, musical notes, integers,
rationals, irrationals, etc.—in fact the elements of any
ordered set on which N operates. In the special case that
they are real numbers (which we know to exist by
Weierstrass and Dedekind, but which the Greeks did
not), we can divide, and so the condition reduces to
n a _n
Bim S Fime

Therefore a/b = a'[/b’ because they determine the same
Dedekind cut of the rationals. Hence we can identify
a:b =:a/b. But Eudoxus' definition is much more
general® than merely referring to the reals—it is the
beginning of abstract algebra, and | shall develop
arguments to suggest that he was by far the greatest
algebraist of the Greeks, as well as being by far their
greatest analyst, and in the very top rank both as geometer
and astronomer.

Observe, in passing, that one can trace a direct line
from Eudoxus to the discovery of the reals.

Eudoxus-Euclid-Bolzano-Weierstrass-Dedekind. The
key link in this case is Bolzanot. He in his auto-
biography® confesses that the one work that really
switched him on was the beauty of Euclid Book V. 1t was
Bolzano who first introduced the ¢, & technique, and
gave a rigorous definition of continuity. Bolzano never
uses infinitesimals, while Cauchy at the same time was
still using them freely. I think one can trace Bolzano’s
inspiration for this technique directly to Euclid Book V.

Now according to Proclus!3 Euclid Book Y summarised
Eudoxus' theory of proportion, which was traditionally
recognised by the Greeks as being the “'crown of Greek

b Accbrding to Proclus?: *Eudoxus . . . was the first to increase the
number of so called general theorems.™

t 1am indebted to David Fowler for not only introducing me to the
early nineteenth century, but also for a great deal of enjoyment of
mathematics.
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mathematics.”™® Personally, although 1 too admire the
beauty of the book, and its rigour, and recognise it as
the earliest surviving work on modern abstract algebra,
nevertheless I suspect that it is a travesty. I suspect that
Euclid ruined Eudoxus’ theory by first misunderstanding
it and then reporting only a fragment of it in the wrong
order, so that he may have successfully prevented it from
even being fully rediscovered. Because, alas, no actual
words of Eudoxus survive today—the originals were
probably burnt when the library at Alexandria was
destroyed by Theophilus in 391 AD (reference 2, p. 55).

But first let me explain how Euclid used the little bit
of Eudoxus that he did report. Before Eudoxus the
Greeks were unable to state rigorously any similarity
theorems. For example in Fig. | the equality a:b = a’:b’
can only be stated either if one has the real numbers and
a definition of division (neither of which the Greeks had)
or if one has Eudoxus’ definition of ratio. That is why
Euclid had to postpone all similarity theorems to Book
V1 after Book V.

Fig. 1

That is also why Professor Penrose, as a boy, was
astonished to discover the delightful similarity proof of
Pythagoras' theorem:

Fig. 2

For thanks to the dreadful influence of Euclid’s pedantry
upon schoolmasters for 2000 years this particular jewel
of a proof was officially suppressed, because, in the
interests of rigour®, it should properly be postponed
until after either the proof of the existence of the real
numbers, or Euclid Book V, neither of which is accessible
to school mathematics. As a result school children were
denied the benefit of intuition of the reals and forced to
swallow the 47 propositions of Euclid Book I, in order
1o reach Euclid's ingenious but lumpish proof, indepen-
dently of the reals. And of course what they gained on
the swings they lost on the roundabouts, because they
also had to swallow the rather shady axiom system of
Book 1.

Today we get exactly the same phenomenon, but
worse. Because, in the interest of rigour*, and thanks to
Euclid’s modern counterpart Bourbaki, poor young

* Rigor mortis.

.and so now let us turn to the more seri

French children have the axiom system for the reals
forced down their unwilling gullets.

Myself 1 prefer the beautiful Chinese proof of
Pythagoras' Theorem:

Fig. 3

For this has not only a pleasing symmetry, but the
superior advantage of being provable either way, either
with the reals, or by the chopping up methods of Euclid
Book I.

Another essential place where Euclid has to use
Eudoxus' definition of ratio is in Book XII. Here a:b is
the ratio of the volumes of two cones of the same height,
and a':b' is the ratio of the areas of their bases. This time
the proof a:b = a":b’ (again without the reals and hence
without integral calculus) is a real tour de force, also due
to Eudoxus, for which he invented the theory of ex-
haustion (assuming false, and proving a contradiction by
a finite inductive chopping up process). From this he
deduces:

volume of cone = } base x height.
There was no other rigorous proof of this simple fact
until Dedekind*® discovered the reals in 1854, thereby
endorsing the use of integral calculus. And eventually in
1900 Dehn's solution? of Hilbert's 3rd problem? showed
that, without the reals, this was the only way Eudoxus
could have done it. This is an example of Eudoxus the
analyst—not the only example because for instance he
also invented the hippopede todescribe planetary motion.?

But 1 am more interested in Eudoxus the algebraist,

ious crimes of
Euclid, the crimes of omission rather than commission.
Euclid is the classic example of the dangers of putting a
“good scholar” in charge of a university, or research
institute, or curriculum reform, as opposed to the
“researcher.” For good scholars tend to compartmentalise
knowledge, while researchers (ry 1o synthesise it. So
Euclid put pure mathematics in the mathematics depart-
ment, and applied mathematics in the applied depart-
ments, in the astronomy and geography departments at
Alexandria, insisting upon separation. And in Book V
he suppressed the marvellous stroke of genius of Eudoxus,
that his definition of equivalence also suffices to define
velocity.

One can even hear the humourless Euclid enunciating:
“Velocity is done by the astronomy department.”

Historically it is difficult to find any rigorous evidence
for or against the hypothesis that Eudoxus solved Zeno's
problems.® But if we look at the problem intrinsically
from the content of the mathematics itself as opposed to
extrinsically from thechance observations of a philosopher
like Proclus, writing seven centuries after the event, then
1 put it to you that the evidence becomes overwhelming.
For, at the time of Eudoxus, faced with Zeno's paradoxes,
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the problem of defining velocity to the satisfaction of the
philosophers must have been as formidable a task as the
understanding of limits, and remember that to satisfy the
philosophers was Eudoxus’ particular predicament,
because he was a research student in Plato’s academy.

“If you can't even show us how to divide incommen-
surables” the philosophers would pityingly smile “how
absurd to suggest that you can divide space by time.”

Without the real numbers, and knowing the Greek
repugnance for units—they would be most reluctant to
base so fundamental a definition as velocity upon the
arbitrariness of choice of unit—the problem must have
seemed insoluble.

Surely this must have been the main content of Zeno's
third paradox, The Arrow3.8:

A moving arrow at any instant is either at rest or not at
rest, that is, moving. If the instant is indivisible, the arrow
cannot move, for if it did the instant would immediately be
divided. But time is made up of instants. As the arrow
cannot move in any one instant, it cannot move in any
time. Hence it always remains at rest.

The first step in resolving the paradox is to present a
satisfactory rigorous definition of velocity, so that at any
rate we can replace the word “moving” at the end of the
first sentence by “it has a velocity.”” And Eudoxus can
easily provide the required definition of velocity by a
minor modification of his famous definition of equiva-
lence above. For take a, b to be lengths, and a’, b’ to be
time intervals, and define

(a, a') ~ (b, b") if the same condition holds.

Define the velocity of an arrow travelling length a in time
a' to be the equivalence class of (a, a’), which we again
denote a:a’. There is plenty of evidence that Eudoxus
was in the habit of switching terms like this, because in
the special case that all four magnitudes are of the same
type we find in Euclid Book V Proposition 16, the
Alternando,
a:a’ =bb' <ab=ab.
Again there is plenty of evidence that he was used to
situations in which two of the magnitudes were of one
kind, and the other two were of another kind—witness
the result from Book XII where a, b are volumes and
a', b’ areas. Indeed in the famous definition he explicitly
omits the word duoyevav (homogeneous), which is what
he would have used had they been all of the same kind.
1 have said that Eudoxus could easily have provided

the rigorous definition of velocity. Of course we can
never know since apparently no works of his survive. All
we have are the beautiful fragments in Euclid Books V,
X and XII. But I put it to you, given the environment,
given the problems of the time, given that famous
definition, and given how easily it solves both problems
of defining ratios of incommensurables and the definition
of velocity, and given that Eudoxus’ theory of proportion
was known as the crown of Greek mathematics, is it not
irresistible to conclude that he must have intended it to
do both? One can even conjecture the very words that
he would have used:
(3a) Adyos Ec:f't 8o peyeldv spoyevdv n xatd mplixdrnra

TOLX OY€ais,
(38) Tdyos éort Bvo peyeldv, mploror piv Tod pnxobs

Scurépov 8¢ 7Tob ypowov, 7 wxTX THMKéTTX

'n'mi Ux{ﬂ'l g.

The first occurs as Definition 3 of Euclid Book V (see
reference 1, vol.2, p. 116), and the second is my invention*
to match. My translations are

(3a) Ratio is an equivalence class, with respect to size, of
a pair of magnitudes of the same kind.

(3b) Velocity is an equivalence class, with respect to size,
of a pair of magnitudes, the first a length and the
second a time interval.

Let us briefly summarise the first 5 definitions of Euclid

Book V.

Definition 1: Multiple

Definition 2: Submultiple

Definition 3: Ratio

Definition 4: The Archimedean axiomt
Definition 5: The equivalence relation

Beautiful. Absolutely minimal. But of course I conjecture

that Eudoxus had (3a) and (38). And as Euclid was

copying out the list for his lectures on pure mathematics
his scholarly compartmentalist approach induced him
to snip out (38) and send it along with a memo to the
astronomy department. And of course the head of the
astronomy department, like any sensible busy experi-
mentalist of today, flicked it straight into the waste-
papyrus basket. And so it was dropped from the syllabus.

And then forgotten. And sometime later the original was

burnt. And so irretrievably lost. Or perhaps not quite?

Moral: Never entrust the safe-keeping of research to

government research establishments, but rather to many

individually opinionated academics, each of whom will
have his own particular prejudice of what is important.

Never trust mammoth coverages of all mathematics,

like Bourbaki, but carefully keep original papers,

especially the collected works of great mathematicians.
Returning to Euclid, we now see a familiar phenome-
non take place. Whenever you introduce a subtle new

concept in a lecture course (like equivalence class), and _

you only introduce one example, and that the most
obvious (like ratio), then your audience will understand
neither the subtlety of the new concept nor why you are
making such a fuss. And that is exactly what happened
to (3«). It has baffled all the translators of Euclid, from
Barrow to de Morgan, from Heiberg to Heath. In the
latest authoritative translation into English,! you will
find a baffled essay by Heath. And if you look at Heath's
translation of (3a) it is

(3a’) A ratio is a sort of relation in respect to size between
two magnitudes of the same kind.

He has interpreted it as the teacher's reassuring fatherly
pat to the S-year old learning fractions for the first time
“you see a fraction is a sort of relation between numerator
and denominator.” But nowhere else in the whole of
Euclid do you ever find a reassuring fatherly pat. In
fact I even suspect that he may have been neither a
father, nor a person, but a Bourbaki}. All the other
Greeks did at least have a birthplace, and began their
papers with an introduction, as we do today, but Euclid

* Thanks to assistance ftom Hugh Dickinson over the grammar.
+ Eudoxus is of course 100 years before Archimedes.

+ Bourbaki,!® on the other hand, if not exactly a father figure, does
at least adopt the rdle of traffic cop on dangerous bends, and does
at least provide an introduction. But Bourbaki clearly identifies
himself with Euclid by his choice of title, and he evidently finds
Euclid trés sympathiques because in the second sentence of that
Introduction to Bourbaki Book | Part |1 Chapter 1 we find “...
what constituted a proof for Euclid is still & proof for us..."”
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begins his: :

“Definition 1. A point..."

The difference between our two translations all hinges
upon the use of the phrase “mota oxfois.” Heath trans-
lates it as the warm fatherly pat “a sort of relation”
whereas I translate it as a cold definition *‘an equivalence
class.” To the modern mathematical ear, one translation
sounds vague and the other precise, but this is merely a
question of conventional jargon. If you ask 99 per cent.
of people—and I tried it out on my wife—they say both
phrases sound fairly vague. Similarly 99 per cent. of
ancient Greeks, and probably 100 per cent. of modern
Greek scholars, will say that mois. oxéois is vague. But
Eudoxus, and the algebra school of 370 BC, may have
chosen that particular phrase as their particular jargon
for equivalence class. Of course what needs to be done
is a careful study of Greek papers in abstract algebra of
that period, of which probably none survives. It may not
be any good examining contemporary papers in geometry,
because they may not have needed to use the jargon, nor
papers of 100 years later in applied mathematics, like
those of Archimedes. Nor will it be much use examining
the later algebra papers of the Alexandrian school,
because by that time Euclid will have fouled up the
whole thing as we now unfold.

The next step in our detective story concerns Zeno's
4th paradox,®8 the Stadium:

Fig. 4

Consider three rows of bodies, of which A is at rest
while the other two B, C are moving with equal velocities
in opposite directions. By the time they are all in the same
part of the course'B will have passed twice as many of the
bodies in C as in A. Therefore the time it takes to pass A
is rwice as long as the time it takes to pass C. But the time
which B and C take to reach the position of A is the same.
Therefore double the time is equal to half the time.

To sort this out, all Eudoxus would have needed was
the theorem

(a:a’) : (b:b") = (a:b) : (a’:b").
Then he would have completed the solution of all 4 of
Zeno's paradoxes, the first two by ratios and the second
two by velocity. But when we come to look for this
theorem in Euclid Book V we find to our surprise that it
is missing. We look a little closer and are shocked to
find that Euclid forgot 1o define the ratio of two ratios,
the kind of basic definition that anyone with an ounce of
sympathy for algebra would have felt obliged to mention.
Although it is needed for ratio of velocities, apparently
it happened not to be needed for the geometry*, all that
Euclid really cared about, and so perhaps that was why

* Mo Hirsch points out that it is needed for cross-ratios, which
perhaps explains why Euclid never achieved projective geometry.

he omitted it. Then a little closer, to discover with the
horror that he couldn't define the ratio of two ratios,
because he had so messed up the order of the propositions,
that he had made it impossible for himself. And at last we
discover the cause of the mess—none other than the
Euclidean algorithm, which properly lives in Book VII
Proposition 2, where it is used to find the greatest
common divisor of two integers. This little trick, that
was obviously Euclid’s only piece of resecarch as a
research student, he is eagerly awaiting to include in his
lectures at the earliest possible opportunity, and he
suddenly spots an opening to use a similar technique in
Book V Proposition 8. But this use of the additive
structure, and especially the use of subtraction, is un-
necessary at this stage, and far too early for the theory of
proportion. And putting it here wrecks the whole of
Eudoxus’ careful plan. Moreover it is clear that Euclid
does not fully understand the theory of proportion, be-
cause he is so nervous of it—otherwise why, when he gets
to his own familiar little back-garden in Book VII
amongst the integers, why does he dare not use it?—
and, instead, unnecessarily repeats a homely watered
down version of it, that is useless for anything else.

The only way to disentangle Euclid's mess is to rewrite
Book V in modern category theory.’! And then the
exquisite delicacy of Eudoxus' famous definition really
becomes apparent for the first time.

In effect Euclid uses Eudoxus’ definition as a functor

S
N
from the category & of sets of magnitudes to the category
€ of sets of ratios. An object A%/ is an ordered set with
additive structure. An object Ce¥ is an ordered set with
unit, inverses and Q-action, where Q denotes the positive
rationals. And of course there is no feedback functor
%-+sZ, so Euclid could not define ratios of ratios. -

However now look again at Eudoxus' definition: it is
really a functor defined on a much more delicate category
4, where an object BeZ is just an ordered set with N-
action. And this category sits neatly in between .o/ and ¢
with forgetful functors @, ¢ feeding into it from either
side. Therefore Euclid's functor can be factored, f = g¢,
where g denotes the more delicate Eudoxus functor.
Therefore we have the diagram

Now there is a feedback gy enabling us to define ratios of
ratios as desired.

I am not claiming that Eudoxus invented category
theory, but I am convinced that he was aware of the
essential mathematical content of the above diagram,
otherwise why would he have chosen exactly so delicate
a weapon?

If Euclid had had the same feeling for algebra that he
had for geometry, then he would have given the additive
structure in Book V the same royal treatment that he
gave to the parallel postulate in Book I. He would have
written the first half of Book Y in the category 4,
and the second half in the category «7. He would have
postponed the crucial Proposition 8:

20. Research Ancient and Modern
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a<b=ac<by,

upon which so many of the key results at the end of the
Book depend, until the second half, because it belongs
in the category &, and is actually false in the category &.
By proving it too early, in his eagerness to use his
algorithm techniques, Euclid is forced to introduce the
additive structure, and particularly subtraction, too
carly, and therefore, in effect, to trample the delicate
category # out of existence.

Back to Eudoxus: of course once he had ratios of
ratios he would easily have been able to reiterate the
process and finish up with a most interesting algebraic
object, an ordered Archimedean group, that was com-
mutative, but not necessarily associative. The multipli-
cation is defined by

ab = (a:1):(1:b).

If 1 have persuaded you that Eudoxus knew how to take
ratios of ratios, then it follows inexorably that he must
have possessed a form of group theory. But not the same
as ours, because ours is multiplicative, whereas his
was dividative®, and they are subtly different.!t For
example for us associativity is natural and commutativity
exceptional, whereas with him it is the other way round.
For him commutativity follows from

(1:5):(a:1) = (1:a):(b:1)

whereas there is no natural expression of associativity in
terms of division. Of course it never occurs 0 modern
group theorists to study non-associative groups, nor to
look at group theory from the dividative point of view,
but this is only because they absorbed multiplication and
inverses with their mothers’ milk, and look upon division
as a secondary operation.

*But multiplication is more natural™ they will insist,
“because it represents composition of maps.”™ However
that is only a pure mathematician’s point of view. Look-
ing at nature, the applied mathematician is always com-
paring lengths, temperatures, musical notes, etc., and so,
as Eudoxus would have said, perhaps ratios are more
natural than products. There is a moral here, due to
René Thom: just as a baby babbles in the phonemes of
all the languages of the world, but after listening to its
mother’s replies, soon learns to babble in only the pho-
nemes of her language, so we mathematicians, babbling
in all the phonemes of mathematics should perhaps cock
an ear now and then towards mother nature. More of
this in Chapter 4 below.

The lost category of Eudoxus, 2, contains several

interesting objects, which he may or may not have known
about, such as space-time and the tangent-bundle of the
reals.1t If we apply this functor, g, to either of these, we
obtain another interesting object, a non-associative
extension, G, of the multiplicative group of positive
reals, R.. One can construct G from R+ by adding on
either side of each rational, r,a predecessor r— and a
successor 4. It is as if Eudoxus is saying reassuringly to
Pythagoras and Zeno: “Don't worry, Achilles can safely
approach either side of 2 rational tortoise, but at the same
time you were quite right in feeling that irrationals were
less approachable.”
* My research supervisor, Shaun Wylie (who is both mathematician
and classical scholar) says “dividative™ ought to be “divisive,” but
somehow [ feel this conjures up the wrong overtones. Anyway he
also says that bicycles ought to be called dicycles.

Conjecture: G is the unique maximal group in g&.

The smallest non-associative group in € is of order 3,
and is the quintessence of dividative group theory, in the
same way that the smallest mon-abelian group of order
6 is the quintessence of multiplicative group theory, and
I am tempted to name this little group the eudoxan, E.
The cudoxan appears as the group of ratios of any or-
dered set of more than one element, on which N acts
trivially. Consequently E has a natural notation and
multiplication table:

< = >
< <I=TE)
= '« | = i
o ;':'[Tf'gi

There is also an additive form {—, 0, + } of the eudoxan.
because it appears as the fibre over Q of the orientation-
bundle plus zero-section of the tangent bundle of any
ordered set containing Q. The exponential map induces
an isomorphism:

exp .
{_r0| +}_'-* {{n = >}'

One can argue that in the additive eudoxan fwo minuses
make a plus, because the minus can be interpreted as the
reversal of orientation of the underlying set. On the other
hand one can argue that in the multiplicative eudoxan
two minuses make a minus, from the multiplication table.
If Eudoxus ever got an inkling of that, | can imagine him
delightedly putting it as a paradox to all his colleagues.
especially to tease the philosophers, because there is
plenty of evidence that paradoxes were fashionable in
those days. But alas, they probably couldn’t under-
stand, and so the only legacy that he was able to donate
to his successors may have been a thorough nervousness
about the minus sign, and an instinct never to touch it
with a barge pole unless it was absolutely necessary.
Perhaps that is why the Greeks were so chary of using the
minus sign. All except Euclid, that is, who triumphantly
needed it for his algorithm, and proceeded to trample with
it all over Eudoxus' delicate and beautiful theory of
proportion. 1 hope that Euclid is turning in his grave
(or their graves).

1 hope you will forgive my rather longwinded story of
Eudoxus, which 1 have told for several reasons. Firstly, as
you will have guessed 1 am a Eudoxus fan and hopeful
that | might persuade one or two of you, if you have not
already tried it, to blow the dust off your copies of Euclid,
and follow Bolzano into the beauties of Book V. Secondly
I wanted to bring to life my opening remark about mathe-
matics being one of the oldest endeavours of man, and
one through which our colleagues of yesterday can still
speak to us with the freshness of today. Greek mathema-
tics can still stimulate current research problems.

Thirdly [ wanted to make a point about grand treatises
like Euclid and Bourbaki, or centralised curriculum
reforms. They are splendid in some places, but cannot
help being biased in others. Euclid was splendid on
geometry, but poor in algebra and applied mathematics.
Bourbaki is splendid in algebra and analysis, but poor
in geometrical thinking and applied mathematics.
For example Dr. Howlett would have been as astonished
by the position of Cauchy’s Theorem in Bourbaki, as
was Professor Penrose by that of Pythagoras’ Theorem
in Euclid. These treatises are trying to impose an artificial
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unity from without, that is liable to stifle growth,
whereas allowing free expression to the opinions of many
individual mathematicians enables the subject to evolve
its own unity from within. More of this in Chapter 4.
Meanwhile these grand treatises can cause mathematical
Joss, not only as we have seen in classical times, but even
today. For compare the cautionary tales set out in Table I.

Table I
Theyear The mind The Greek The modern
0 The c.540 BC Newton and Leibniz

discoverer Pythagoras discovers discover calculus. and
that 4 2 is irrational. in 1686 Newton

publishes his

*Principia.”*

In 1734 Bishop

Berkeley publishes

“The Analyst.”™

80 The c.460. Zeno poses
iconoclast his Paradoxes.™*®

160 The ¢.380. Eudoxus Weierstrass ¢. 1850
resolver  creates the theory of and Dedekind on
proportion. Movember 24th, 1854,
create the real
numbers.!
240 The ¢.300. Euclid writes  In 1939 Bourbaki

expositor  his Elements.! begins publishing his
* Eléments.” "

By 2020 the bias
towards algebra will
have caused the other

half to be lost.

320 The By 220 the bias
loser towards geometry
has caused half the
theory to be lost.

*How can we lose mathematics today,” you may ask,
and 1 will tell you. By the year 2010 the exponential
communication explosion will probably have pushed
most books off the library shelves on to tape. Soon after
that, or maybe earlier, computer control will be intro-
duced increasingly into libraries, with the automatic WC-
instruction, which says: if a tape is neither consulted, nor
cited, for 10 consecutive years, then Wipe Clean. So by
2020, sure enough, much of our mathematics will be
wiped clean. And then, for the next 2000 years. our
children at school will have their horizons bounded by
*Bourbaki Book I, just as for the last 2000 our forefathers
had theirs bounded by Euclid Book 1.

Chapter 3. Teaching and research today

Turning to the present day, | should like, if I may,
to put forward some tentative personal opinions. People
often speak of the conflict between teaching and research,
but | find the reverse. Of course there is the natural con-
flict with the myriad other interesting things to do in life.
because the day only has 24 hours. But apart from that
[ find much of my teaching stimulates research, and
much of my research is oriented towards teaching. For
example my interest in the Greeks arose a couple of years
ago. because | have to give an annual presidential address
to the Polygons, our local sixth-formers association, and
in order to keep the interest of the stafl | search around
for a new topic each year. On balance | agree with uGcC
policy to pay only for teaching: lecturers should be paid
to lecture to the students, readers to read to them, and
professors to profess to them. How well we can do this
depends largely upon the staff/student ratio, and ultimately
upon the richness of the country. Some universities in
poor countries have to cope with ratios of 1:100 or more,
but, aswell as teaching, the staff there still seem to manage

* “Théorie des ensembles.” "

to do a little research in the crevices of time, in the early
mornings, or late at night, or on Sundays, because they
deeply enjoy research—and that. is the secret. We will
always do research because we love it, and we will
always promote people for it because they win our ad-
miration.

I find myself very much in two minds about research
institutes: it is clear that the 1AS at Princeton has bene-
fited US mathematics enormously, but then the US is a
rich country. In a relatively poor country like India it
could be argued that the Tata Institute may have done
as much harm as good, by taking many of the best
mathematicians out of the universities and largely away
from teaching. Of course government research establish-
ments are a different matter, and it is clear that govern-
ments should support the development of socially
useful projects like controlled fusion. Butas | have tried to
explain with my story of Eudoxus it would be a funda-
mental mistake to try and separate teaching from re-
search, assigning teaching to the universities and
research to research institutes and research establish-
ments, as some advisers would seem to have us do in
the future.

Another of my hobby-horses is the advantage of
ignorance, in that it encourages creativity, both in the
young and the old. May I tell a story of my first few
diffident steps as a young research supervisor? | dutifully
started running a seminar for my students on manifolds
in about 1958, and Professor Penrose started coming
along. | explained the embedding M" C R2n -1 by general
position, and then conjectured that M” C R" because
we couldn’t find any counterexamples. In my ignorance
[ did not know that Whitney!¥ had proved it 14 years
previously, and that it was a well known result. The nor-
mal well educated thing would have been to equip my
students with the techniques of Whitney's proof. Instead
we all had a go at proving it ourselves. Roger Penrose
said:

“Well if it only crosses itself in isolated double-points,
why couldn’t we eliminate each one, by putting a loop
going off on one sheet and coming back on the other, and
then putting a cone on the loop, which wouldn’t meet
M again if n > 2, and then we could slip the double-
point off the top of the cone.™

And | replied: "But if the loop was sort of knotted
up with M, then M would get entangled with the knot as
we slipped it off." And there we stuck until one day |
mentioned it to Henry Whitehead over a beer. He said
“That's OK by regular neighbourhoods—there’s an old
1939 paper of mine that nobody ever read because* of the
war.” And so Penrose and | had the honour of being
joint authors of Whitehead's last paper.'® For the result
of those two brief conversations was a proof, different
from Whitney's, that gave, instead of one result, a whole
cascade of results that reopened a chapter of geometric
topology.

Another point I would like to make is that even ad-
ministration can sometimes help research, not only the
research of those administered to, but also that of the
administrator himself—although it probably requires
pretty strong self-discipline to survive as a researcher
for more than 5 years of heavy duty administration. |
remember when the Warwick Research Centre was being

* Actually nobody read it because it is practically unreadable.}?

20. Research Ancient and Modern 611




312  20. Research Ancient and Modern

set up, its Advisory Board thought that in addition to
running symposia® in the subjects of Warwick expertise,
it ought also to run one now and then in fields that were
booming internationally, but by accident happened to be
underrepresented in this country. Examples of such sym-
posia were 1966/7 Harmonic analysis, 1968/9 Qualitative
theory of differential equations, 1971/2 Algebraic geo-
metry. For the hope was that we might thereby stimulate
a4 few British mathematicians to enter those fields. And
what with the administrative business of finding out what
those fields actually were, and whom we ought to invite, ]
found myself hoist by my own petard. [ became a
victim of my own administrative policy.

Chapter 4. Qualitative developments in science

1 was particularly intrigued by the meaning of the
word “qualitative.” One might define a qualitative
property to be a diffeomorphism invariant, as opposed to
a quantitative property which is an affine invariant. In a
science in which different experimenters may use non-
linearly related scales to measure the same data, only
qualitative conclusions can be deduced from the result-
ing experimental graphs. Thus the laws of those sciences
must be expressed in qualitative language. This is par-
ticularly true of the social sciences.

Now, although diffeomorphism invariants include
topological invariants, many of which have been known
for a long time, such as Betti numbers and homology
groups, very few have in fact proved useful in describing
experimental graphs. The qualitative language available
for describing graphs has been of such poverty, until
-recently, that its existence was barely recognised. It was
limited to a few words such as “increasing”™ or “single-
valued,” and as a result two things occurred. Firstly any
qualitative mathematical statement about a graph could
be translated so easily into everyday language, that it was
not recognised as being mathematical by scientists.
Secondly such statements were so obvicus that they were
too simple to be classed as laws, and were accused of
being both trivially true, and trivially false. Let me give
an example:

Hypothesis I. )

Mathematical enjoyment is an increasing function of
creativity.

Or, beuer still, the translation into English: **the more
creative the more enjoyable.”” Most people would admit
that this is trivially true, but sometimes it can become
trivially false, if one happens to be enjoying reading
somebody else’s work, for instance, rather than busy
creating one’s own.

The trouble is that the mind hops on to the statement
too quickly and hops off again to consider all the ex-
ceptions. If, on the other hand, the statement has the
power to arrest the mind for a while, and to synthesise a
variety of phenomena, one is more ready to accept the
statement as a first approximation to the truth, and even
perhaps to call it a law. One is more ready to forgive the
law for not being quite true in all circumstances, and
rather than admit that those circumstances actually
disprove the law, one is inclined to take the more lenient
view that perhaps the law needs modifying occasionally.
This is certainly the case with the great laws of physics
such as Newton's Law of gravity or Boyle's Law for

* Symposia are named after Plato’s original idea of the Symposium,
which was great conversation over drinks.

gases, both of which are false. Nevertheless we are still
quite happy to call them laws, and to have them existing
alongside modifications such as relativity and Van der
Waals' equation. | suspect that philosophers are inclined
to be a little too overimpressed by the so called laws of
physics, and that social scientists a little too overawed,
and I would hope that the latter should begin to ap-
proach the whole matter of laws in a more adventurous
spirit. If 1 may be forgiven, may | quote from a recent
paper with Carlos Isnard!?:

“A scientific law is an intellectual resting point. It is
a landing, that needs must be approached by a stair-
case, upon which the mind can pause, before climbing
further to seek modifications.”

Of course there may be more than one staircase rising
from that landing. And so a science begins to grow and
fork like the trunk and branches of a tree, with the forks
representing the laws of that science, synthesising the ideas
below them. Each science is like a grove of trees, and
the most delicate features of that grove will be the blos-
soms and leaves, opening fresh each spring, and giving
it its shape as seen from a distance. The blossoms repre-
sent the conversations between the scientists involved,
and the leaves their experiments and research papers.
The blossoms allow for cross-fertilisation, and the leaves
provide the wherewithal to help new twigs to swell into
new strong branches. And each autumn the leaves fall,
providing humus to feed and strengthen the main trunks.
Some trees may rot and fall, but the grove is refreshed and
sustained by the appearance of new saplings, just as a
science is refreshed and sustained by the appearance of
new paradigms.'® This view of science frees us from
vain attempts to impose artificial unity from without,
and allows us to admit to an open ended concept of
unity evolving from within.

“It's all very well waxing lyrical™ the social scientist
will reply “but the poverty of the qualitative language
offered to us by the mathematicians makes it very difficult
to get any kind of tree off the ground, let alone a grove.™
But that is just where the social scientists might be wrong,
because there is a new fertiliser on the market, called
catastrophe theory,17:19 ideally suited for stimulating the
growth of new paradigms.

Catastrophe theory substantially enriches the language
of diffeomorphism-invariants with words that are more
subtle, neither trivial, nor so easily translatable into
non-mathematical language. And they have impressive
power of synthesis. In fact if [ had to select one extra
tool out of the whole of mathematics to add to the
Hammersley tool-kit, I would choose the cusp catas-
trophe, pictured in Fig. 5. The cusp catastrophe describes
the canonical way that two control factors can interfere
with -one another when influencing the same behaviour
mode.

Chapter 5. Why mathematics is sometimes exciting and
sometimes dreary

To conclude the paper let me suggest one application
of the cusp catastrophe that synthesises much of the
intuition about the teaching of research students described
by previous speakers. This example is an extension of
Hypothesis | above, but instead of being trivial it
fulfills the requirement of giving the mind pause. It is a
light hearted example, with no claim to be a law, and
mathematically it is not as serious as the social science
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models in reference 17, because there is no dynamic
maximising the probability, nor suggested design of
experiment®. Therefore the surface pictured above re-
presents only the most probable behaviour rather than
the actual behaviour. The purpose of the example is to
summarise, to give insight, and hopefully to contain a
few germs of truth.

Hypothesis 2.

Creativity (mastering of simplicity) is a normal factor, and
technical skill (mastering of complexity) is a splitting
factor, influencing mathematical enjoyment.

The definition of normal and splitting factors are given
in reference 17, but for our purposes it is sufficient to
say that the hypothesis means that the graph of enjoy-
ment, as a function of creativity and technique, looks
like Fig. 5. In particular in elementary mathematics,
where little technique is needed, Hypothesis | becomes
a special case of Hypothesis 2, and so the latter is a
generalisation of the former. Meanwhile the acquisition
of technique has a splitting effect, causing the function
to become double-valued, and the graph to become
double-sheeted into exciting and dreary mathematics. The
middle shaded piece of the graph represents least probable
situations, and so is irrelevant—we only use the upper and
lower sheets.

We now view teaching techniques at various levels
by the paths shown in the control space Fig. 6. In each
case the resulting enjoyment of the students can be traced
by lifting the path to the surface in Fig. 5. For example the
path (4) is shown lifted, with a “good™ calastrophc
occurring above the point 4..

erestivity

technical 3kill

Fig. 6. Control space

* Leo Rogers points out that Kurt Lewin's® work may provide

experimental support.

(a) School children learning tables*

Path (1) represents the old-fashioned drilling technique,
which became very dreary. Path (2) represents the oppo-
site approach of allowing children only to play, which
was quite enjoyable, but did not give much skill. Path
(3) represents the better modern approach, which allows
children first to discover multiplication for themselves,
by playing with stones in egg containers for instance, and
then encouraging them to fill excitedly exercise books,
mastering the technique. At least in early primary
education (and before the prison doors of Bourbaki’s set
theory have had time to clang shut in secondary educa-
tion) we seem at least to be returning a little towards the
spirit of the pre-Euclidean Greeks, who believed that
education should be enjoyable. For instance Plato writing
in the Laws,3 says:

“First there should be calculations specially dev:sed
as suitable for boys, which they should learn with
amusement and pleasure, for example, distributions of
apples or garlands where the same number is divided
among more or fewer boys, . ..

The three basic ingredients of school mathematics
should be geometric intuition, physical intuition, and a
sense of fun. Then the fourth ingredient, a sense of
rigour, will grow of its own accord.

(b) Undergraduate lecture courses

Path (1) represents a bad lecturer giving bad material,
which the students find first dull and then dreary. Path
(3) represents a good lecturer giving good material, which
the students find first interesting and then exciting.
Path (4) represents a bad lecturer with good material—
the sort of lecturer who spends most of the course setting

. up the machinery without giving any motivation, and then
_ brings it all together to prove the major theorems in the

last few lectures. The good students suddenly see the light
at point 43 and jump catastrophically from the lower sheet
to the upper sheet, from the dreariness of the machinery,
41, to the excitement of the theorem, 4;. But, alas, the
bottom half of the class, who generally fall behind to-
wards the end of a lecture course, get stuck at the dreary
point 4;, and never see the light.

Finally path (5) represents the good lecturer giving
bad material. The students enjoy the lectures at the time,
51, but when they come to revise it, at 5, they suddenly
realise the material is pretty dull, and jump catastrophi-
cally from the upper sheet to the lower sheet. finishing
somewhat disillusioned at 53.

(c) Research students and research supervisors

Path (1) represents a poor student with a poor supervisor,
writing a dreary thesis. Path (3) represents a good student
with a good supervisor writing an exciting thesis.
Path (4) represents a good student with a poor supervisor,
who writei a dull thesis at 4;, made of tin, but once he
gets free of his supervisor, at 4z, suddenly blossoms into
doing exciting research at 43. Path (5) represents a poor
student with a good supervisor, who imparts a spurious
creativity to the student during his PhD years, causing
him to write an interesting thesis at 5y, made of gold, but
once he gets free of his supervisor, at 5z, he collapses into

writing dull papers using the same old techniques.

(d) Mathematicians in a rut
A mathematician may have bravely started on path (3),

* | am indebted to Ruth Rees for this example.
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and written several good papers, but the path may
then bend round into (5) as he reaches the limit of his
creativity in that ficld, or gets bored with the subject, or
gets imprisoned in the very techniques that he himself
has created. Once he appreciates that he has suffered the
bad catastrophe at 5z, and is now in a rut at 53, there is
only one thing to do: change fields. This is what Professor
Bondi was recommending even as early as immediately
after the PhD. Since our mathematician has no technique
in the new field, he jumps straight back to the beginning
of. we hope, path (3). It is very important that he soon
tries his hand at a little creativity in the new field, in order
to round the right hand side of the cusp, before learning
all the new techniques. Otherwise those techniques will
prove not interesting, but increasingly dreary as he
follows path (4). perhaps to get stuck at 4;. The more
technical skill he acquires in the new field, the further
away recedes the point 42, because the cusp is ever
widening, and so the more creative he is required to
become befare he can ever have a chance of doing any-
thing exciting. This was the serious intent behind my
apparently flippant remark above, in favour of ignorance,
and why | told the story of Whitehead's last paper.
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