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Modern Developments in
the Theory and Applications of Moving Frames

Peter J. Olver

Abstract

This article surveys recent advances in the equivariant approach to the method of moving
frames, concentrating on finite-dimensional Lie group actions. A sampling from the many current
applications — to geometry, invariant theory, and image processing — will be presented.

1. Introduction.

According to Akivis, [2], the method of repères mobiles, which was translated into English
as moving frames†, can be traced back to the moving trihedrons introduced by the Estonian
mathematician Martin Bartels (1769–1836), a teacher of both Gauß and Lobachevsky. The
apotheosis of the classical development can be found in the seminal advances of Élie Cartan,
[25, 26], who forged earlier contributions by Frenet, Serret, Darboux, Cotton, and others into a
powerful tool for analyzing the geometric properties of submanifolds and their invariants under
the action of transformation groups. An excellent English language treatment of the Cartan
approach can be found in the book by Guggenheimer, [49].

The 1970’s saw the first attempts, cf. [29, 45, 46, 64], to place Cartan’s constructions
on a firm theoretical foundation. However, the method remained constrained within classical
geometries and homogeneous spaces, e.g. Euclidean, equi-affine, or projective, [35]. In the
late 1990’s, I began to investigate how moving frames and all their remarkable consequences
might be adapted to more general, non-geometrically-based group actions that arise in a broad
range of applications. The crucial conceptual leap was to decouple the moving frame theory
from reliance on any form of frame bundle. Indeed, a careful reading of Cartan’s analysis
of moving frames for curves in the projective plane, [25], in which he calls a certain 3× 3
unimodular matrix the “repère mobile”, provided the crucial conceptual breakthrough, leading
to a general, and universally applicable, definition of a moving frame as an equivariant map
from the manifold back to the transformation group, thereby circumventing the complications
inherent in the frame bundle approach. Building on this basic idea, and armed with the powerful
tool of the variational bicomplex, [6, 151], Mark Fels and I, [36, 37], were able to formulate
a new, powerful, constructive equivariant moving frame theory that can be systematically
applied to general transformation groups. All classical moving frames can be reinterpreted in the
equivariant framework, but the latter approach immediately applies in far broader generality.
Indeed, in later work with Pohjanpelto, [122, 126, 127, 128], the equivariant approach were
successfully extended to the vastly more complicated arena of infinite-dimensional Lie pseudo-
groups, [79, 80, 143].
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Cartan’s normalization process underlying the construction of the moving frame relies on the
choice of a cross-section to the group orbits. This in turn induces a powerful invariantization
process that associates to each standard object (function, differential form, differential operator,
tensor, variational problem, conservation law, numerical algorithm, etc.) a canonical invariant
counterpart. Invariantization of the associated variational bicomplex, [37, 74], produces the
powerful recurrence relations, that enable one to determine the structure of the algebra of
differential invariants, as well as the invariant differential forms, invariant variational bicomplex,
etc., using only linear differential algebra, and, crucially, without having to know the explicit
formulas for either the invariants or the moving frame itself ! It is worth emphasizing that
all of the required constructions can be implemented systematically and algorithmically, and
thus readily programmed in symbolic computer packages such as Mathematica and Maple.
Mansfield’s recent text, [84], on what she calls the “symbolic invariant calculus”, provides
a basic introduction to the key ideas (albeit avoiding differential forms), and some of the
important applications.

In this survey, we will concentrate on prolonged group actions on jet bundles, leading
to differential invariants and differential invariant signatures. Applying the moving frame
algorithms to Cartesian product actions produces joint invariants and joint differential
invariants, along with their associated signatures, [37, 115, 13], establishing a geometric
counterpart of what Weyl, [162], in the algebraic framework, calls the First Main Theorem
for the transformation group. Subsequently, an amalgamation of jet and Cartesian product
actions, named multi-space, was proposed in [116] to serve as the basis for the geometric
analysis of numerical approximations, and, via the application of the moving frame method,
the systematic construction of symmetry-preserving numerical approximations and integration
algorithms, [12, 24, 23, 30, 69, 70, 71, 106, 134, 161].

With the basic moving frame machinery in hand, a plethora of new, unexpected, and
compelling applications soon began appearing. In [23, 12, 5, 7, 139], the characterization
of submanifolds via their differential invariant signatures was applied to the problem of
object recognition and symmetry detection in digital images. The general problem in the
calculus of variations of directly constructing the invariant Euler-Lagrange equations from
their invariant Lagrangian was solved in [74], and then applied, [118, 66, 8, 155], to the
analysis of the evolution of differential invariants under invariant submanifold flows, leading
to integrable soliton equations and the equations governing signature evolution. In [9, 72, 73,
113], the theory was applied to produce new algorithms for solving the basic symmetry and
equivalence problems of polynomials that form the foundation of classical invariant theory.
The all-important recurrence formulae provide a complete characterization of the differential
invariant algebra of group actions, and lead to new results on minimal generating invariants,
even in very classical geometries, [117, 56, 55, 119, 60].

Further significant applications include the computation of symmetry groups and classifica-
tion of partial differential equations, [83, 101]; geometry and dynamics of curves and surfaces in
homogeneous spaces, with applications to integrable systems, Poisson geometry, and evolution
of spinors, [86, 87, 88, 89, 91, 133]; construction of integral invariant signatures for object
recognition in 2D and 3D images, [38]; solving the object-image correspondence problem
for curves under projections, [21, 22, 75]; recovering structure of three-dimensional objects
from motion, [7]; classification of projective curves in visual recognition, [51]; recognition of
DNA supercoils, [138]; distinguishing malignant from benign breast cancer tumors, [48], as
well as melanomas from moles, [145]; determination of invariants and covariants of Killing
tensors and orthogonal webs, with applications to general relativity, separation of variables,
and Hamiltonian systems, [31, 33, 94, 95]; the Noether correspondence between symmetries
and invariant conservation laws, [42, 43]; symmetry reduction of dynamical systems, [59,
142]; symmetry and equivalence of polygons and point configurations, [14, 65]; computation
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of Casimir invariants of Lie algebras and the classification of subalgebras, with applications in
quantum mechanics, [15, 16]; and the cohomology of the variational bicomplex, [62, 63, 147].

Applications to Lie pseudo-groups, [122, 126, 127, 128], include infinite-dimensional
symmetry groups of partial differential equations and algorithms for directly determining their
structure, [27, 28, 102, 153]; climate and turbulence modeling, [10], leading to new symmetry-
preserving numerical schemes for systems of nonlinear partial differential equations possessing
infinite-dimensional symmetry groups, [135]; partial differential equations arising in control
theory, [154]; classification of Laplace invariants and factorization of linear partial differential
operators, [140, 141]; construction of coverings and Bäcklund transformations, [103]; and
the method of group foliation, [158, 130], for finding invariant, partially invariant, and non-
invariant explicit solutions to partial differential equations, [146, 148]. In [98, 154, 156] the
moving frame calculus is shown to provide a new and very promising alternative to the Cartan
method for solving general equivalence problems based on exterior differential systems, [41,
111]. Finally, recent development of a theory of discrete equivariant moving frames has been
applied to integrable differential-difference systems, [85]; invariant evolutions of projective
polygons, [92], that generalize the remarkable integrable pentagram maps, [67, 131]; as well
as extensions of the aforementioned group foliation method to construct explicit solutions to
symmetric finite difference equations, [149].

2. Equivalence and Signature.

A primary motivating application of moving frames is the equivalence and symmetry of
geometric objects. In general, two objects are said to be equivalent if one can map one to
the other by a suitable transformation. A symmetry of a geometric object is merely a self-
equivalence, that is a transformation that maps the object back to itself. Thus a solution to
the equivalence problem for objects includes a classification of their symmetries. The solution
to any equivalence problem can be viewed as a description of the associated moduli space
which, in this particular instance, represents the equivalence classes of objects (of a specified
type) under the allowed transformations. Of course, equivalences come in many guises —
topological, smooth, algebraic, etc. Our focus will be when the equivalence maps belong to
a prescribed transformation group and the objects under consideration are submanifolds of
the space upon which the group acts. For simplicity, we will restrict our attention here to
the smooth — meaning C∞ — category, and to finite-dimensional (local) Lie group actions,
although the methods extend, with additional work, to the actions of infinite-dimensional Lie
pseudo-groups.

In this context, Élie Cartan found a complete solution to the local submanifold equivalence
problem, which relies on the associated differential invariants. In general, a differential invariant
is a scalar-valued function that depends on the submanifold and its “derivatives”. If one
explicitly parametrizes the submanifold, then the differential invariant will be a combination of
the parametrizing functions and their derivatives up to some finite order which is unaffected by
the induced action of the transformation group and, moreover, is intrinsic, that is, independent
of the underlying parametrization. More rigorously, [111], a differential invariant is a scalar-
valued function defined on an open subset of the submanifold jet bundle that is invariant under
the prolonged transformation group action.

A familiar example from elementary differential geometry is the equivalence problem for
plane curves C ⊂ R2 under rigid motions, i.e., the action of the special Euclidean group SE(2) =
SO(2) nR2, the semi-direct product of the special orthogonal group of rotations and the two-
dimensional abelian group of translations. The basic differential invariant is the curvature κ.
However, κ is just the first of an infinite collection of independent differential invariants. Indeed,
differentiating any differential invariant of order n with respect to the Euclidean-invariant arc
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length element ds produces a differential invariant of order n+ 1. In this manner, we produce an
infinite collection of independent differential invariants, namely, κ, κs, κss, . . . . Moreover, it can
be shown that these form a complete system, in the sense that any other differential invariant
can (locally) be written as a function of a finite number of them: I = F (κ, κs, κss, . . . , κn−2)
whenever I is a differential invariant of order n.

Similarly, under the action of the equi-affine group SA(2) = SL(2) nR2, consisting of
unimodular linear transformations and translations, on plane curves, there is a well-known
equi-affine curvature invariant† κ, which is of order 4, and an equi-affine arc length element ds,
such that the complete system of differential invariants consists of κ, κs, κss, . . . . Under the
projective group PSL(3) acting by projective (linear fractional) transformations, the complete
system of differential invariants is provided by the seventh order projective curvature invariant
and its successive derivatives with respect to projective arc length element, [25, 72, 111].
Indeed, a completely analogous statement holds for almost all transitive planar Lie group
actions. Every ordinary‡ Lie group action on plane curves admits a unique, up to functions
thereof, differential invariant of lowest order, denoted by κ, identified as the group-invariant
curvature, and a unique, up to constant multiple, invariant§ one-form ω = ds, viewed as the
group-invariant arc length element. Moreover, a complete system of differential invariants
is provided by the curvature and its successive derivatives with respect to the arc length:
κ, κs, κss, . . . . See [111] for complete details, including the corresponding statements in the
intransitive and non-ordinary cases.

Turning to the equivalence of space curves C ⊂ R3 under the action of the Euclidean
group SE(3) = SO(3) nR3, there are two basic differential invariants: the curvature κ, which
is of second order, and its torsion τ , of third order. Moreover, they and their successive
derivatives with respect to arc length form a complete system of differential invariants:
κ, τ, κs, τs, κss, τss, . . . . Analogous results hold for space curves under any ordinary group action
on R3, [49, 111]. Further, the Euclidean action on two-dimensional surfaces S ⊂ R3 has two
familiar second order differential invariants: the Gauss curvature K and the mean curvature H.
Again, one can produce an infinite collection of higher order differential invariants by invariantly
differentiating the Gauss and mean curvature. Specifically, at a non-umbilic point, there exist
two (non-commuting) invariant differential operators D1,D2, that effectively differentiate in
the direction of the orthonormal Darboux frame; a complete system of differential invariants
consists of K,H,D1K,D2K,D1H,D2H,D2

1K,D1D2K,D2D1K,D2
2K,D2

1H, . . . , [49, 111, 119].
However, as we will prove below, for suitably generic surfaces, the mean curvature alone can
be employed to generate the entire algebra of differential invariants! Further results on the
differential invariants of surfaces in three-dimensional space under various geometrical group
actions can be found in Theorem 19 below.

All of the preceding examples can be viewed as particular cases of the Fundamental Basis
Theorem, which states that, for any Lie group action, the entire algebra of differential invariants
can be generated from a finite number of low order invariants by repeated invariant differentia-
tion. In differential invariant theory, this result assumes the role played by the algebraic Hilbert
Basis Theorem for polynomial ideals, [32]. Bear in mind that here we distinguish differential
invariants that are functionally independent, and not merely algebraically independent.

†We employ a common notation, keeping in mind that the curvature and arc length invariants will depend on
the underlying group action.
‡A Lie group is said to act ordinarily, [111], if it acts transitively on M , and the maximal dimension of the

orbits of its successive prolongations strictly increase until the action becomes locally free, as defined below; or,
in other words, its prolongations do not “pseudo-stabilize”, [112]. Almost all transitive Lie group actions are
ordinary.
§Or, to be completely correct, “contact-invariant”; see below for the explanation.
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Theorem 1. LetG be a finite-dimensional Lie group acting on p-dimensional submanifolds
S ⊂M . Then, locally, there exist a finite collection of generating differential invariants I =
{I1, . . . , I`}, along with exactly p invariant differential operators D1, . . . ,Dp, such that every
differential invariant can be expressed as a function of the generating invariants and their
invariant derivatives Iν,J = Dj1Dj2 · · · DjkI

ν .

The Basis Theorem was first formulated by Lie, [82, p. 760]. Modern proofs of Lie’s result
can be found in [111, 130], while a fully constructive moving frame-based proof appears in
[37]. Under certain technical hypotheses, the Basis Theorem also holds as stated for rather
general infinite-dimensional Lie pseudo-group actions; a version first appears in the work
of Tresse, [150]. A rigorous result, based on the machinery of Spencer cohomology, was
established by Kumpera, [79]. A global version for algebraic pseudo-group actions, including
an extension to actions on differential equations (subvarieties of jet space) can be found in [77],
while [105] introduces yet another approach, based on Weil algebras. The first constructive
proof of the pseudo-group Basis Theorem, based on the equivariant moving frame machinery,
appears in [128]. While many structural questions remain as yet incompletely answered,
the equivariant moving frame calculus provides a complete, systematic, algorithmic suite
of computational tools, eminently suited to implementation on standard computer algebra
packages, for analyzing the associated differential invariant algebra, its generators, relations
(syzygies), and so on.

Knowing the differential invariants, we return to the equivalence problem. Clearly, any two
equivalent submanifolds must have the same differential invariants at points corresponding
under the equivalence transformation. If a differential invariant is constant, then it must
necessarily assume the same constant value on any equivalent submanifold. For example, if
a plane curve has Euclidean curvature κ = 2, it must be a circular arc of radius 1

2 . Any
rigidly equivalent curve must also be a circular arc of the same radius, and hence have the
same curvature. On the other hand, if a differential invariant is not constant, then this, in
and of itself, does not provide much information, because its expression will depend upon
the parametrization of the underlying submanifold, and hence direct comparison of two non-
constant differential invariants may be problematic. Instead, Cartan tells us to look at the
functional inter-relationships among the differential invariants, which are intrinsic. These
functional relationships are also known as syzygies, again in analogy with the algebraic Hilbert
Syzygy Theorem, [32], although, as above, we do not restrict to polynomial relations but allow
arbitrary smooth functions. For example, if a plane curve satisfies the syzygy κs = eκ − 1
between its two lowest order differential invariants, then so must any equivalent curve.

Remark: There are two distinct kinds of syzygy. Universal syzygies are satisfied by all
submanifolds. A celebrated example is the Gauss-Codazzi relation among the differential
invariants of Euclidean surfaces S ⊂ R3, [49, 119]. The second kind are particular to the
individual submanifolds, and, as we will see, serve to prescribe their local equivalence and
symmetry properties.

Cartan’s solution to the equivalence problem states, roughly, that two suitably nondegenerate
submanifolds are locally equivalent† if and only if they have identical syzygies among all their
differential invariants. Cartan’s proof relies on his “Technique of the Graph”, in which the
graph Γg ⊂M ×M of the equivalence transformation g : M →M is realized as a suitable

†For example, any two circular arcs having the same radius are locally equivalent under the Euclidean group
irrespective of their overall length, which is a global property. Global equivalence issues are also very interesting,
and in need of significant further investigation. In this vein, see [125], which employs the language of groupoids,
[160], to better understand the inherent local versus global structure of symmetries and equivalences.
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solution (integral submanifold) of an overdetermined system of partial differential equations
on M ×M , the Cartesian product of the underlying manifold with itself. In the proof, the first
order of business is to establish involutivity of this overdetermined system, which then implies,
via Frobenius’ Theorem or, in the pseudo-group case, assuming analyticity, the Cartan–Kähler
Theorem, the existence of a suitable integral submanifold which represents the graph of the
desired equivalence map. See [111] for a detailed development and complete proofs.

Of course, as we have just seen, there are an infinite number of differential invariants, and
hence an infinite number of syzygies since, locally, on any p-dimensional submanifold there can
be at most p independent functions. However, one finds that, in general, one can generate all
the higher order syzygies from only a finite number of low order ones. To see why this might
be the case consider the case of a plane curve under a prescribed ordinary transformation
group, e.g., Euclidean, equi-affine, projective, etc. Temporarily leaving aside the case when the
curvature invariant κ is constant, there is, when restricted to the one-dimensional curve C, but
one functionally independent differential invariant, which we may as well take to be κ. At a
point where κs 6= 0, we can locally write any other differential invariant as a function of κ, and
hence the syzygies are all consequences of

κs = H1(κ), κss = H2(κ), κsss = H3(κ), . . . .

However, the first of these completely determines the rest. Indeed, by the chain rule,

κss =
dκs
ds

=
d

ds
H1(κ) = H ′1(κ)κs = H ′1(κ)H1(κ), hence H2(κ) = H ′1(κ)H1(κ). (2.1)

Iterating this computation enables one to explicitly determine all the higher order syzygy
functionsH2(κ), H3(κ), . . . , in terms ofH1(κ) and its derivatives. We conclude that, generically,
the local equivalence of plane curves under an ordinary transformation group is entirely
determined by the functional relationship among its two lowest order differential invariants:

κs = H1(κ). (2.2)

The syzygy (2.2) relies on the assumption that κs 6= 0. Moreover, the explicit determination
of the function H1(κ) may be problematic. As I observed in [111], both objections can be
overcome by instead regarding the differential invariants (κ, κs) as parametrizing a plane curve
Σ ⊂ R2, known as the differential invariant signature curve. In the special case when κ is
constant, and hence κs ≡ 0, the signature curve degenerates to a single point.

More generally, as a consequence of the Fundamental Basis Theorem, one can prove
that, when restricted to any suitable submanifold, there always exists a finite number of
low order differential invariants, say J1, . . . , Jk with the property that all the higher order
differential invariant syzygies can be generated from the syzygies among the Jα’s via invariant
differentiation. These typically include the generating differential invariants I1, . . . , I` as well
as a certain finite collection of their invariant derivatives Iν,J . These differential invariants serve

to define a signature map σ : S → Σ ⊂ RN whose image is a differential invariant signature
of the original submanifold S. Under certain regularity assumptions, the signature solves
the equivalence problem: two p-dimensional submanifolds are locally equivalent under the
transformation group if and only if they have identical signatures. The precise determination
of the differential invariants required to form a signature is facilitated through the use of the
moving frame calculus to be presented in the final section.

Remark: In my earlier work, [37, 111], the differential invariant signature was called the
classifying manifold. The more compelling term signature was adopted in light of significant
applications in image processing, [23, 53], and is now consistently used in the literature. In
[111], an alternative approach to the construction of the differential invariant signature is
founded on the Cartan calculus of exterior differential systems, [19, 41].
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Remark: The reader may be familiar with the classical result, [49], that a Euclidean curve
is uniquely determined up to rigid motion by its curvature function, expressed in terms of
arc length κ(s). This solution to the equivalence problem has several practical shortcomings
in comparison with the differential invariant signature. First, the arc length is ambiguously
defined, since it depends on the choice of an initial point on the curve. Hence, one must identify
two curvature functions that differ by a translation, κ(s+ c) ' κ(s). On the other hand, the
differential invariants parametrizing the signature curve are entirely local. This is important in
practical applications, particularly when occlusions are present, and so part of the image curve
is missing, [17, 18]. The effect on the signature curve is minimal, being only the omission of a
(hopefully) small part; on the other hand, it is not even possible to reconstruct the arc length
relating two disconnected pieces of an occluded contour. Finally, and most importantly of all,
there are, in general, no canonical invariant parameters that can assume the role of arc length
in the case of surfaces and higher dimensional submanifolds, whereas the differential invariant
signature method applies in complete generality.

In this manner, we have effectively reduced the equivalence problem of submanifolds under
a transformation group to the problem of recognizing when their signatures are identical. In
the restricted case when the submanifolds (signatures) are rationally parametrized, the latter
problem can be rigorously solved by Gröbner basis techniques, [20]. In practical applications,
one introduces a measure of closeness of the signatures, keeping in mind that noise and other
artifacts may prevent their being exactly the same. Quite a few measures have been proposed,
such as Hausdorff distance, [61], metrics based on Monge–Kantorovich optimal transport, [50,
159], and Gromov–Hausdorff and Gromov–Wasserstein metrics, [96, 97]. A comparison of the
advantages and disadvantages of several proposed shape metrics can be found in [11, 104]. In
the applications to jigsaw puzzle assembly, discussed below, our preferred measure of closeness
comes from viewing the two signature curves as wires that have opposite electrical charges, and
then computing their electrostatic attraction, cf. [39, 163], or, equivalently, their gravitational
attraction, suitably renormalized. Statistical techniques based on latent semantic analysis have
been successfully applied in [5, 139], while in [47, 48], the skewness measure of the cumulative
distance and polar/spherical angle magnitudes was employed.

Since symmetries are merely self-equivalences, the signature also determines the (local)
symmetries of the submanifold. In particular, the dimension of the signature equals the
codimension of the symmetry group. More specifically, if a suitably nondegenerate, connected,
p-dimensional submanifold S ⊂M has signature Σ of dimension 0 6 t 6 p, then the connected
component of its local symmetry group GS containing the identity is an (r − t)–dimensional
local Lie subgroup of G. In particular, the signature of connected submanifold degenerates to a
single point if and only if all its differential invariants are constant. Such maximally symmetric
submanifolds, [120], can, in fact, be characterized algebraically.

Theorem 2. A connected nondegenerate p-dimensional submanifold S has 0-dimensional
signature if and only if its local symmetry group is a p-dimensional subgroup H ⊂ G and hence
S is an open submanifold of an H–orbit: S ⊂ H · z0.

Remark: So-called totally singular submanifolds may admit even larger symmetry groups.
For example, in three-dimensional Euclidean geometry, the maximally symmetric curves are
arcs of circles, whose local symmetry group is contained in a one-parameter rotation subgroup,
and segments of circular helices, with a one-parameter local symmetry group of screw motions.
On the other hand, straight lines are totally singular curves, possessing a two-dimensional
symmetry group, consisting of translations in its direction and rotations around it. Similarly,
the maximally symmetric surfaces are open submanifolds of circular cylinders, whose local
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symmetry group consists of translations in the direction of the axis of the cylinder and rotations
around it. In contrast, both planes and spheres are totally umbilic, and hence totally singular,
each possessing a three-dimensional symmetry group. A complete Lie algebraic characterization
of totally singular submanifolds for general Lie group actions can be found in [114].

At the other extreme, if a nondegenerate p-dimensional submanifold has p-dimensional
signature, it only admits a discrete symmetry group. The number of local symmetries is
determined by its index, which is defined as the number of points in S map to a single generic
point of the signature:

indS = min
{

# σ−1{ζ}
∣∣ ζ ∈ Σ

}
. (2.3)

To illustrate, Figure 1 displays the Euclidean signatures of two images of a hardware nut,
computed using the invariant numerical approximations we developed in [24, 23]; the horizontal
axis in the signature graph is κ while the vertical axis is κs. The evident four-fold (approximate)
rotational symmetry is represented by the fact that the signature graph is approximately
retraced four times. (Folding the graph, by plotting |κs | instead of κs on the vertical axis,
would reveal the 8-fold reflection and rotation symmetry group.) The indicated measure of
closeness of the two signatures is based on their (pseudo-)electrostatic repulsion.
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Figure 1. Signatures of Two Images of a Nut

The following subsections contain brief descriptions of some novel applications of signature
curves.

An Initial Investigation into Medical Imaging:

The following is taken from [23] as a “proof-of-concept” illustration of the potential of
signature curve-based methods in practical image processing, concentrating on a particular
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medical image. In Figure 4 at the end of the paper, we display our starting point: a 70× 70,
8-bit gray-scale image of a cross section of a canine heart, obtained from an MRI scan.

The first step in geometric object recognition in digital images is to extract the boundary
of the object in question, an operation that is known as segmentation. A variety of techniques
have been developed to accomplish this, one of the most powerful being based on the method
of active contours, also known as snakes, which nowadays are included as a standard tool
in many basic image processing software packages. The aim is, starting with a more or less
arbitrary contour that encircles the object, to actively shrink the contour so that it converges
to the desired boundary. A variety of methods that realize this goal have been developed, many
based on nonlinear geometric partial differential equations, [68, 137, 165]. The one used here
starts with the celebrated Euclidean-invariant curve shortening flow that was studied by Gage,
Hamilton, and Grayson, [40, 44], as a precursor to the deep analysis of the Ricci flow on higher
dimensional manifolds that led to Perelman’s celebrated solution to the Poincaré conjecture,
[100]. Here, one evolves the curve by moving each point in its normal direction in proportion
to curvature; their theorem is that any smooth Jordan curve remains a simple closed curve
throughout the evolution, ultimately becoming asymptotically circular before shrinking down
to a point in finite time. Now, in order to capture the boundary of an object in a digital image
with the shrinking curve, one modifies the underlying Euclidean metric by a conformal factor
that highlights† object boundaries, e.g., points where the gradient of the gray-scale image is
large.

Next, to illustrate robustness of the signature curve under smoothing/denoising, the resulting
segmented ventricle boundary curve is then further smoothed by application of the unmodified
curve shortening flow. The corresponding Euclidean signatures are computed using the
invariant numerical approximations introduced in [23], and then smoothly spline-interpolated.
Observe that, as the evolving curves approach circularity, their signatures exhibit less variation
in curvature and appear to be winding more and more tightly around a point on the κ axis,
which eventually runs off to∞ as the asymptotic circle shrinks down to a single point. Despite
the rather extensive smoothing, except for an overall shrinkage as the contour approaches
circularity, the basic qualitative features of the different signature curves, and particularly
their winding behavior, appear to be remarkably robust. See [66] for a theoretical justification
of these observations, through use of the maximum principle for the induced parabolic flow of
the signature curve, which in turn is based on the moving frame-based analysis of the evolution
of differential invariants under invariant submanifold flows, [118].

Jigsaw Puzzle Assembly:

In [54], the Euclidean-invariant signature was applied to design a Matlab program that
automatically assembles apictorial jigsaw puzzles. The term “apictorial” means that the
algorithm uses only the shapes of the pieces and not any superimposed picture or design.
An example, the Baffler Nonagon, [164], appears in Figure 7; assembly takes under an hour
on a standard Macintosh laptop. It is important to point out that, unlike most automatic
puzzle-solvers in the literature, the algorithm is not restricted to puzzles with “traditionally
shaped” pieces situated on a rectangular grid, nor does it depend upon knowledge of the outer
boundary of the puzzle. Indeed, it tends to prefer the more exotically shaped pieces, and thus
assembles the puzzle from the inside out. The algorithm succeeds even when several pieces are
missing, as it is not affected by any holes that might show up in the final assembly.

In detail, the first step is to digitize the individual puzzle pieces, which are photographed at
random orientations, and then segment their boundaries, again using a standard active contour
package included within Matlab. The next step is to smooth the resulting curves. It was found

†Or, more accurately, is small near regions of interest, in this case potential boundaries of objects.
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that the preceding smoothing process based on the curve shortening flow was not suitable since
it tends to blur important features such as arcs of high curvature or corners. Instead, a näıve
smoothing technique based on iterated spline interpolation and respacing was employed.

Assembly of individual puzzle pieces requires only comparing certain a priori unknown parts
of their boundaries. The method, based on the extended signature introduced in [53] in response
to [107], is to split up the boundary curves into bivertex arcs, meaning sub-arcs on which κs 6= 0
except at the endpoints. The signatures of the individual bivertex arcs are compared, using the
electrostatic-based measure of closeness, in order to locate potential matches. Once a sufficient
number of bivertex arcs contained in the boundaries of two pieces are deemed to be equivalent
under the same Euclidean transformation, a second procedure, called piece locking and based
on minimizing idealized forces and torques between the edges, then refines the match. The
resulting algorithm is surprisingly effective, producing correct matches in such a fashion that
it is able to completely assemble several commercially available puzzles.

A subsequent project, the “Humpty Dumpty problem”, [47], looks at reassembly of three-
dimensional jigsaw puzzles obtained by decomposing a curved surface, e.g., a broken eggshell.
Here the boundaries of the pieces are space curves, whose Euclidean signatures are parametrized
by the curvature and torsion invariants κ, κs, τ . An argument similar to that in (2.1)
demonstrates that the syzygies among these three basic differential invariants determine all
the higher order ones, including τs. The resulting signature-based algorithm works quite well
on synthetically generated surface puzzles, even in the presence of noise, and already has had
some success in treating real-world data. It is worth pointing out that the algorithm works
only with the (digitized) pieces and does not require any a priori knowledge of the overall
shape of the assembled surface. Further potential applications, especially after combining our
approach with algorithms based on picture, design, or texture, include the assembly of broken
archaeological artifacts such as ceramics or pottery shards [136, 152].

The extension to broken three-dimensional solid objects, e.g., statues, bones, etc., requires
matching their bounding surfaces. While the theoretical underpinnings of the differential
invariant signature solution to the surface equivalence problem, based on the mean and Gauss
curvatures and their low order invariant derivatives, are known, [111, 119], a number of
practical issues remain to be resolved, including the identification of suitable “signature codons”
that will play the role of the bivertex arcs, as well as the construction of suitably robust invariant
numerical approximations to the required signature invariants.

Cancer Detection:

In a paper of Grim and Shakiban, [48], Euclidean signature curves are used to distinguish
benign from malignant breast tumors in two-dimensional X-ray photos. (An analogous analysis
of melanomas and moles can be found in [145].) The guiding principle is that the outline of
cancerous tumors will display a higher degree of geometric complexity, and this will be reflected
in the overall structure of their associated signature curve. One method of measuring curvature
complexity is through the range and frequency of points at which the signature curve crosses
the κ and κs axes. Indeed, it was found that malignant signature curves exhibit a wider
range and larger number of axis crossing points than benign contours. A second measurement
distinguishes local from global symmetry of the signatures. Here “symmetry” means a simple
bilateral reflectional symmetry of the signature curve across the two axes. “Global symmetry”
refers to the entire signature, while “local symmetry” refers to individual sub-arcs. Malignant
tumors tend to exhibit a higher degree of local symmetry due to increased spiculation of
their outline. On the other hand, the higher degree of global symmetry seen in benign tumor
signatures can be viewed as a manifestation of a higher degree of cellular functionality. The
above methods of signature comparisons were applied to a data base consisting of 150 breast
tumors, and the resulting classification into malignant and benign proved to be statistically
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significant. The proposed method thus has potential as a preliminary diagnostic tool enabling
one to sort through large numbers of such images.
Classical Invariant Theory:

In a more mathematical direction, we refer the reader to Example 9 below and also [9, 72,
73, 113] for the construction of other types of differential invariant signatures in the context
of the basic problems of classical invariant theory: the equivalence and symmetry properties of
binary and ternary forms.

3. Equivariant Moving Frames.

In this section, we develop the basics of the equivariant method of moving frames. To keep the
exposition as simple as possible, we only consider global finite-dimensional Lie group actions.
Extensions to local Lie group actions are reasonably straightforward, while infinite-dimensional
Lie pseudo-groups are more technically demanding, and, for the latter, we refer the interested
reader to the survey paper [122] for an introduction.

Example 3. Let us begin on familiar ground. Consider the usual action of the special
Euclidean group SE(3) = SO(3) nR3 on space curves C ⊂ R3. In this situation, as one learns in
any basic differential geometry course, [34, 49], the moving frame contains three distinguished
orthonormal vectors along the curve: its unit tangent t, unit normal n, and unit binormal b.
In coordinates, if one parametrizes the curve by arc length, z(s) ∈ R3, then

t = zs, n =
zss
‖ zss ‖

, b = t× n. (3.1)

The basic curvature κ and torsion τ differential invariants then arise through the classical
Frénet–Serret equations

dt

ds
= κn,

dn

ds
= −κ t + τ b,

db

ds
= − τ n. (3.2)

However, Cartan emphasizes that there is, in fact, one further constituent to the moving frame:
the point on the curve z = z(s), which he calls the “moving frame of order 0”, [25]. The moving
frame of order 1 includes the unit tangent t, while the entire moving frame, which consists of
the point on the curve z along with the orthonormal frame vectors t,n,b based there, is of
order 2 since it depends upon second order derivatives. The curvature and torsion invariants
have order 2 and 3, respectively.

Let us also look briefly at the equi-affine group SA(3) = SL(3) nR3, consisting of volume–
preserving affine transformations z 7→ Az + b, detA = 1, acting on space curves C ⊂ R3. The
moving frame, now of order 4, consists of a point on the curve, a tangent vector t, no longer
of unit length (indeed, there is no intrinsic notion of length in equi-affine geometry) along
with two vectors n,b transverse to the curve, with the property that the three vectors form
a unimodular frame: t · n× b = 1. Again, Cartan clearly states that the point on the curve z
at which the frame vectors are based is an essential component of the moving frame. The two
independent differential invariants resulting from the associated Frénet–Serret equations are
both of order 5, [49].

For the equivariant approach, the starting point is an arbitrary r-dimensional Lie group G
acting smoothly on an m-dimensional manifold M . The general definition of an equivariant
moving frame proposed in [37] is as follows:
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Definition 4. A moving frame is a smooth, G-equivariant map† ρ : M → G.

There are two principal types of equivariance:

ρ(g · z) =

{
g · ρ(z) : left moving frame,

ρ(z) · g−1 : right moving frame.
(3.3)

In classical geometries, as in [49], one can always reinterpret the frame-based moving frames as
left-equivariant maps. For example, in the standard Euclidean moving frame for a space curve,
if one views the orthonormal frame vectors (3.1) as the columns of an orthogonal matrix and
their base point on the curve z as a translation vector, this effectively defines a map from the
curve† to the Euclidean group E(3) = O(3) nR3, which is readily seen to be left-equivariant,
and hence satisfies the requirement of Definition 4. A similar interpretation holds for the equi-
affine moving frame described above — now the frame vectors form the columns of a unimodular
matrix, and the point on the curve continues to serve as a translation vector, thus defining a left-
equivariant map from the curve to the equi-affine group, that now depends upon fourth order
derivatives. On the other hand, right-equivariant moving frames are at times easier to compute,
and will be the primary focus here. Bear in mind that if ρ(z) is a right-equivariant moving
frame, then application of the inversion map on G produces a left-equivariant counterpart:
ρ̃(z) = ρ(z)−1.

With this definition in place, it is not difficult to establish the basic requirements for the
existence of an equivariant moving frame. To this end, recall that the group G is said to act
freely if the isotropy subgroup

Gz = { g ∈ G | g · z = z } (3.4)

of each point z ∈M is trivial: Gz = {e}. Slightly weaker is the notion of local freeness, which
requires that the isotropy subgroups Gz be discrete, or, equivalently, that the group orbits
all have the same dimension, r, as G itself. On the other hand, regularity requires that, in
addition, the orbits form a regular foliation, but this is a global condition that plays no role in
practical applications and hence can be safely ignored.

Theorem 5. A moving frame exists in a neighborhood of a point z ∈M if and only if G
acts freely and regularly near z.

The explicit construction of an equivariant moving frame map is based on Cartan’s
normalization procedure. This relies on the choice of a (local) cross-section to the group orbits,
meaning an (m− r)–dimensional submanifold K ⊂M that intersects each orbit at most once,
and transversally, meaning that the orbit and the cross-section have no non-zero tangent vectors
in common.

Theorem 6. Let G act freely and regularly on M , and let K ⊂M be a cross-section.
Given z ∈M , let g = ρ(z) be the unique group element that maps z to the cross-section:
g · z = ρ(z) · z = k ∈ K. Then ρ : M → G is a right moving frame.

†Throughout, functions, maps, etc., may only be defined on an open subset of their indicated source space, so
that dom ρ ⊆M .
†Or, more accurately, the second order jet of the curve, since the frame vectors depend upon second order

derivatives of the curve’s parametrization.
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g = ρ(z)

Figure 2. Moving Construction Based on Cross–Section

The normalization construction of the moving frame is illustrated in Figure 2. The curves
represent group orbits, with Oz denoting the orbit through the point z ∈M . The unique point
in the intersection, namely k = ρ(z) · z ∈ Oz ∩ K, can be viewed as the canonical form or
normal form of the point z, as prescribed by the cross-section K. In practice, cross-sections are
local, and the resulting moving frame defined on a certain open subset of the entire manifold.
Further, if the action is locally free, the resulting (local) moving frame will be locally equivariant
in the evident manner.

Introducing local coordinates z = (z1, . . . , zm) on M , the cross-section K will be defined by
r equations

W1(z) = c1, . . . Wr(z) = cr, (3.5)

where W1, . . . ,Wr are scalar-valued functions, while c1, . . . , cr are suitably chosen constants.
In the vast majority of applications, the Wν are merely a subset of the coordinate functions
z1, . . . , zm, in which case they are said to define a coordinate cross-section. (Indeed, Figure 2
is drawn as if K is a coordinate cross-section.) The associated right moving frame g = ρ(z) is
thus obtained by solving the normalization equations

W1(g · z) = c1, . . . Wr(g · z) = cr, (3.6)

for the group parameters g = (g1, . . . , gr) in terms of the coordinates z = (z1, . . . , zm).
Transversality of the cross-section combined with the Implicit Function Theorem ensures the
existence of a local solution g = ρ(z) to the normalization equations (3.6), whose equivariance is
assured by Theorem 6. In practical applications, the art of the method is to select a well-adapted
cross-section meaning, typically, one that simplifies the calculations as much as possible. More
prosaically, this usually means choosing a simple coordinate cross-section and setting as many
of the normalization constants cν = 0 as possible, keeping in mind the requirement that the
resulting equations define a valid cross-section. The method is self-correcting, in that an invalid
choice will lead to a system of equations that is not uniquely and smoothly soluble for the group
parameters.

With the equivariant moving frame in hand, the next step is to determine the invariants, that
is, (locally defined) functions I : M → R that are unchanged by the group action: I(g · z) = I(z)
for all z ∈ dom I and all g ∈ G such that g · z ∈ dom I. Equivalently, a function is invariant if
and only if it is constant on the orbits. Since any orbit that intersects the cross-section meets
it in a unique point, the value of an invariant on those orbits is uniquely determined by its
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value on the cross-section. This serves to define a process (depending upon the cross-section)
that converts functions to invariants.

Definition 7. The invariantization I = ι(F ) of a function F : M → R is the unique
invariant function that coincides with F on the cross-section: I | K = F | K.

In particular, if I is any invariant, then clearly ι(I) = I. Thus, invariantization can be viewed
as a projection from the space of functions to the space of invariants. Moreover, by construction,
invariantization preserves all algebraic operations on functions. Invariantization (and its many
consequences) constitutes a key advantage of the equivariant approach over classical frame-
based methods.

Computationally, a function F (z) is invariantized by first transforming it according to the
group action, producing F (g · z), and then replacing the group parameters by their moving
frame formulae g = ρ(z), so that

ι[F (z) ] = F (ρ(z) · z). (3.7)

Invariantization of the coordinate functions yields the fundamental invariants:

I1(z) = ι(z1), . . . Im(z) = ι(zm). (3.8)

With these in hand, the invariantization of a general function F (z) is simply obtained by
replacing each variable zj in its local coordinate expression by the corresponding fundamental
invariant Ij :

ι
[
F (z1, . . . , zm)

]
= F (I1(z), . . . , Im(z)). (3.9)

In particular, the functions defining the cross-section (3.5) have constant invariantization,
ι(Wν(z)) = cν , and are known as the phantom invariants. One can then select precisely m− r
functionally independent basic invariants from among the invariantized coordinate functions
(3.8), in accordance with Frobenius’ Theorem, [110]. For a coordinate cross-section given by
setting the first r, say, coordinates to constants: z1 = c1, . . . , zr = cr, then the remaining
m− r non-phantom fundamental invariants Ir+1(z) = ι(zr+1), . . . , Im(z) = ι(zm) are the
functionally independent basic invariants.

The fact that invariantization does not affect invariants implies the elegant and powerful
Replacement Rule, that enables one to immediately rewrite any invariant J(z1, . . . , zm) in
terms of the basic invariants:

J(z1, . . . , zm) = J(I1(z), . . . , Im(z)). (3.10)

In symbolic analysis, (3.10) is known as a rewrite rule, [57, 58], and underscores the power of
the moving frame approach over rival invariant-theoretic constructions, including Hilbert and
Gröbner bases, [32].

According to Theorem 5, for the constructions presented above to succeed, the key
requirement is that the group act freely or, at the very least, locally freely. Of course, most
interesting group actions are not free — indeed, typically, the dimension of G is strictly greater
than the dimension of M , as is always the case when M = G/H is a nontrivial homogeneous
space — and therefore do not per se admit moving frames in the sense of Definition 4. Thus, for
example, the dimension of the three-dimensional Euclidean group SE(3) is 6, which is greater
than the dimension of the space it acts upon, namely 3, and so the action cannot be free; indeed,
the isotropy group of a point z ∈ R3 consists of all rotations aroud that point Gz ' SO(3).

There are two classical methods that (usually) convert a non-free action into a free action.
The first is the Cartesian product action of G on several copies of M ; application of the moving
frame normalization construction and invariantization produces joint invariants, [115]. The
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second is to prolong the group action to jet space, which is the natural setting for the traditional
moving frame theory, and leads to differential invariants, [37]. Combining the two methods of
jet prolongation and Cartesian product results in joint differential invariants, [115], also known
in the computer vision literature as semi-differential invariants, [99, 157]. In applications of
symmetry methods in numerical analysis, one requires an amalgamation of all these actions
into a common framework, called multi-space, introduced in [116] — although the complete
construction is so far only known for curves. (However, a very recent preprint of Maŕı Beffa
and Mansfield, [90], makes an initial foray into the multivariate realm.) In this paper we will
deal only with on the jet space version of prolongation, and refer the interested reader to [124]
for a more complete overview.

4. Moving Frames on Jet Space and Differential Invariants.

Given an action of the Lie group G on the manifold M , our goal is to understand its induced
action on (embedded) submanifolds S ⊂M of a prescribed dimension 1 6 p < m = dimM . We
begin by prolonging the group action to the n-th order (extended) jet bundle Jn = Jn(M,p),
which is defined as the set of equivalence classes of p-dimensional submanifolds under the
equivalence relation of n-th order contact at a single point; see [108, 111] for details. Since
G maps submanifolds to submanifolds while preserving the contact equivalence relation, it
induces an action on the jet space Jn, known as its n-th order prolongation and denoted here
by z(n) 7−→ g · z(n) for g ∈ G and z(n) ∈ Jn. In local coordinates — see below for details — the
formulas for the prolonged group action are straightforwardly found by implicit differentiation,
the disadvantage being that the resulting expressions can rapidly become extremely unwieldy.

We assume, without significant loss of generality, that G acts effectively on open subsets of
M , meaning that the only group element that fixes every point in any given open U ⊂M is the
identity element:

⋂
z∈U Gz = {e}. This implies, [114], that the prolonged action is locally free

on a dense open subset Vn ⊂ Jn for n� 0 sufficiently large, whose points z(n) ∈ Vn are known
as regular jets. In all known examples that arise in applications, the prolonged action is, in
fact, free on such an open subset Ṽn ⊂ Jn for suitably large n. However, recently, Scot Adams,
[1], constructed rather intricate examples of smooth Lie group actions that do not become
eventually free on any open subset of the jet space. Indeed, Adams proves that if the group has
compact center, the prolonged actions always become eventually free on an open subset of jet
space, whereas any connected Lie group with non-compact center admits actions that do not
become eventually free. In practice, one is often content to work with locally free prolonged
actions, producing locally equivariant moving frames, keeping in mind that certain algebraic
ambiguities arising from the normalization construction, e.g., branches of square roots, must
be handled with some care.

A real-valued function on jet space, F : Jn → R is known as a differential function†. A
differential invariant is a differential function I : Jn → R that is an invariant for the prolonged
group transformations, so I(g · z(n)) = I(z(n)) for all z(n) ∈ Jn and all g ∈ G such that both z(n)

and g · z(n) lie in the domain of I. Clearly, any algebraic combination of differential invariants
is a differential invariant (on their common domain of definition) and thus we speak, somewhat
loosely, of the algebra of differential invariants associated with the action of the transformation
group on submanifolds of a specified dimension. Since differential invariants are often only

†As noted above, functions, maps, etc., may only be defined on an open subset of their indicated source space:
domF ⊂ Jn. Also, we identify F with its pull-backs, F ◦πk

n, under the standard jet projections πk
n : Jk → Jn

for any k > n. Similar remarks apply to differential forms on jet space.
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locally defined‡, to be fully rigorous, we should introduce the category of sheaves of differential
invariants, [78, 79]. However, since here we concentrate entirely on local results, this extra
level of abstraction is unnecessary, and so we will leave the sheaf-theoretic reformulation of the
theory as a translational exercise for the experts.

As before, the normalization construction based on a choice of local cross-section Kn ⊂ Vn ⊂
Jn to the prolonged group orbits can be used to produce an n-th order equivariant moving
frame ρ : Jn → G in a neighborhood of any regular jet. The cross-section Kn is prescribed
by setting a collection of r = dimG independent n-th order differential functions to suitably
chosen constants

W1(z(n)) = c1, . . . Wr(z
(n)) = cr. (4.1)

The associated right moving frame g = ρ(z(n)) is then obtained by solving the corresponding
normalization equations

W1(g · z(n)) = c1, . . . Wr(g · z(n)) = cr, (4.2)

for the group parameters g = (g1, . . . , gr) in terms of the jet coordinates z(n). Once the
moving frame is established, the induced invariantization process will map general differential
functions F (z(k)), of any order k, to differential invariants I = ι(F ), which are obtained by
first transforming them by the prolonged group action and then substituting the moving frame
formulas for the group parameters:

I(z(l)) = ι
[
F (z(k))

]
= F (ρ(z(n)) · z(k)), l = max{k, n}. (4.3)

Invariantization preserves differential invariants, ι(I) = I, and hence defines a canonical
projection (depending on the moving frame) from the algebra of differential functions to the
algebra of differential invariants that preserves all algebraic operations.

Remark: Although essential for theoretical progress, one practical disadvantage of the
normalization procedure described above is that it requires one to first prolong the group action
to a sufficiently high order in order that it become free. The intervening formulae, obtained
by implicit differentiation, may become unwieldy, making the symbolic implementation of the
algorithm on a computer impractical due to excessive expression swell. To circumvent this
difficulty, a recursive version of the moving frame construction, that successively normalizes
the group parameters at each jet space order before prolonging the resulting reduced action
to the next higher order can be found in [123]. See also [129] for a recent extension of the
recursive algorithm to Lie pseudo-group actions.

For calculations, we introduce local coordinates z = (x, u) = (x1, . . . , xp, u1, . . . , uq) on M ,
considering the first p components x = (x1, . . . , xp) as independent variables, and the latter q =
m− p components u = (u1, . . . , uq) as dependent variables. Submanifolds that are transverse
to the vertical fibers {x = constant} can thus be locally identified as the graphs of functions
u = f(x). This splitting into independent and dependent variables induces corresponding local
coordinates z(n) = (x, u(n)) = ( . . . xi . . . uαJ . . . ) on Jn, whose components uαJ , with 1 6 α 6
q, and J = (j1, . . . , jk), with 1 6 jν 6 p, a symmetric multi-index of order 0 6 k = #J 6 n,
represent the partial derivatives, ∂kuα/∂xj1 · · · ∂xjk , of the dependent variables with respect
to the independent variables, cf. [110, 111]. Equivalently, we can identify the jet (x, u(n)) with
the n-th order Taylor polynomial of the function at the point x — or, when n =∞, its Taylor
series.

‡On the other hand, in practical examples, differential invariants turn out to be algebraic functions defined
on Zariski open subsets of jet space, and so reformulating the theory in a more algebro-geometric framework
would be a worthwhile endeavor; see, for instance, [58, 78].
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The fundamental differential invariants are obtained by invariantization of the individual jet
coordinate functions, in accordance with (4.3):

Hi = ι(xi), IαJ = ι(uαJ ), α = 1, . . . , q, #J > 0. (4.4)

We abbreviate those obtained from all the jet coordinates of order 6 k by (H, I(k)) = ι(x, u(k)).
Keep in mind that the invariant IαJ has order 6 max{#J, n}, where n is the order of the moving
frame, while Hi has order 6 n. The fundamental differential invariants (4.4) are of two types.
The r = dimG combinations defining the cross-section (4.1) will be constant, and are known as
the phantom differential invariants. (In particular, if G acts transitively on M and the moving
frame is of minimal order, as in [117], then all the Hi and Iα are constant.) For k > n, the
remaining basic differential invariants provide a complete system of functionally independent
differential invariants of order 6 k.

According to (3.9), the invariantization of a differential function F (x, u(k)) can be imme-
diately found by replacing each jet coordinate by the corresponding fundamental differential
invariant (4.4):

ι
[
F (x, u(k))

]
= F (H, I(k)). (4.5)

In particular, the Replacement Rule (3.10) allows one to immediately rewrite any differential
invariant J(x, u(k)) in terms the basic differential invariants:

J(x, u(k)) = J(H, I(k)), (4.6)

which thereby trivially establishes their completeness.
The specification of independent and dependent variables on M further splits the differential

one-forms on the infinite order† jet bundle J∞ into horizontal one-forms, spanned by
dx1, . . . , dxp, and contact one-forms, spanned by the basic contact one-forms

θαJ = duαJ −
p∑
i=1

uαJ,i dx
i, α = 1, . . . , q, 0 6 #J. (4.7)

In general, a differential one-form θ on Jn is called a contact form if and only if it is annihilated
by all jets, so θ | jnS = 0 for all p-dimensional submanifolds S ⊂M . Every contact one-form
is a linear combination of the basic contact one-forms (4.7). This splitting induces a bigrading
of the space of differential forms on J∞ where the differential decomposes into horizontal
and vertical components: d = dH + dV , with dH increasing the horizontal degree and dV the
vertical (contact) degree. Clearly, closure, d ◦d = 0, implies that dH ◦ dH = 0 = dV ◦ dV , while
dH ◦ dV = − dV ◦ dH . The resulting structure is known as the variational bicomplex, and lies at
the heart of the geometric/topological approach to differential equations, variational problems,
symmetries and conservation laws, characteristic classes, etc., bringing powerful cohomological
tools such as spectral sequences, [93], to bear on analytical and geometrical problems. A
complete development plus a broad range of applications can be found in [6, 151].

The invariantization process induced by a moving frame can also be applied to differential
forms on jet space. Thus, given a differential form ω on Jk, its invariantization ι(ω) is the
unique invariant differential form that agrees with ω when pulled back to the cross-section.
As with differential functions, the invariantized form is found by first transforming (pulling
back) the form by the prolonged group action, and then replacing the group parameters by
their moving frame formulae. An invariantized contact form remains a contact form, while an
invariantized horizontal form is, in general, a combination of horizontal and contact forms. The
complete collection of invariantized differential forms serves to define the invariant variational
bicomplex, studied in detail in [74, 147].

†The splitting only works at infinite order, [6, 111].
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For the purposes of analyzing the differential invariants, we can ignore the contact forms.
(They do, however, play an important role in other applications, including invariant variational
problems, [74], submanifold flows, [118], and cohomology classes, [62, 63, 147].) We let πH
denote the projection that maps a one-form onto its horizontal component. The horizontal
components of the invariantized basis horizontal one-forms

ωi = πH($i), where $i = ι(dxi), i = 1, . . . , p, (4.8)

form, in the language of [111], a contact-invariant coframe, meaning that each ωi is invariant
modulo contact forms under the prolonged group action. The corresponding dual invariant
differential operators D1, . . . ,Dp are defined by

p∑
i=1

(DiF ) dxi = dHF =

p∑
i=1

(DiF )ωi, (4.9)

for any differential function F , where

Di =
∂

∂xi
+

q∑
α=1

∑
J

uαJ,i
∂

∂uαJ
, i = 1, . . . , p, (4.10)

are the usual total derivative operators, [110, 111], and the initial equality in (4.9) follows
directly from the definition of dH . In practice, the invariant differential operator Di can
be obtained by substituting the moving frame formulas for the group parameters into
the corresponding implicit differentiation operators used to produce the prolonged group
actions. As usual, the invariant differential operators map differential invariants to differential
invariants, and hence can be iteratively applied to generate the higher order differential
invariants.

Example 8. The paradigmatic example is the action of the special Euclidean group SE(2),
consisting of orientation-preserving rigid motions — translations and rotations — on plane
curves C ⊂M = R2. The group transformation g = (ϕ, a, b) ∈ SE(2) = SO(2) nR2 maps the
point z = (x, u) to the point w = (y, v) = g · z, given by

y = x cosϕ− u sinϕ+ a, v = x sinϕ+ u cosϕ+ b. (4.11)

If the curve C is given as the graph of a function u = f(x), the equations (4.11) for the

transformed curve C̃ = g · C implicitly define the graph of a function v = h(y), at least away
from points with vertical tangents. The derivatives of v with respect to y are then obtained by
successively applying the implicit differentiation operator

Dy =
1

cosϕ− ux sinϕ
Dx, (4.12)

producing

vy = Dyv =
sinϕ+ ux cosϕ

cosϕ− ux sinϕ
, vyy = D2

yv =
uxx

(cosϕ− ux sinϕ)3
,

vyyy = D3
yv =

(cosϕ − ux sinϕ )uxxx + 3u2xx sinϕ

(cosϕ− ux sinϕ)5
, . . . ,

(4.13)

which serve to define the successive prolonged actions of SE(2). The only group elements that
fix a given first order jet (x, u, ux) are the identity, ϕ = a = b = 0, and rotation by 180◦, with
ϕ = π, a = b = 0. (This reflects the fact that a 180◦ around a point on a curve preserves its
tangent line.) We conclude that the prolonged action is locally free on the entire first order jet
space, and so V1 = J1.
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The classical Euclidean moving frame is based on the cross-section

K1 = {x = u = ux = 0}. (4.14)

The corresponding normalization equations (4.2) are

y = v = vy = 0 (4.15)

as prescribed by (4.11), (4.13). Solving the normalization equations for the group parameters
produces the right moving frame

ϕ = − tan−1 ux , a = − x+ uux√
1 + u2x

, b =
xux − u√

1 + u2x
, (4.16)

which defines a locally right-equivariant map from J1 to SE(2), the ambiguity in the inverse
tangent indicative of the above-mentioned local freeness of the prolonged action. The classical
left-equivariant Frenet frame, [49], is obtained by inverting the Euclidean group element (4.16),
with resulting group parameters

ϕ̃ = tan−1 ux , ã = x, b̃ = u. (4.17)

Observe that the translation component ( ã, b̃) = (x, u) = z can be identified with the point on
the curve (Cartan’s moving frame of order 0), while the columns of the corresponding rotation
matrix

R =

(
cos ϕ̃ − sin ϕ̃

sin ϕ̃ cos ϕ̃

)
=

1√
1 + u2x

(
1 −ux
ux 1

)
=
(
t, n

)
are precisely the orthonormal frame vectors t,n based at z ∈ C, thereby identifying the left
moving frame (4.17) with the classical construction, [49].

Invariantization of the jet coordinate functions is accomplished by substituting the mov-
ing frame formulae (4.16) into the prolonged group transformations (4.13), producing the
fundamental differential invariants:

H = ι(x) = 0, I0 = ι(u) = 0, I1 = ι(ux) = 0,

I2 = ι(uxx) =
uxx

(1 + u2x)3/2
, I3 = ι(uxxx) =

(1 + u2x)uxxx − 3uxu
2
xx

(1 + u2x)3
,

(4.18)

and so on. The first three, corresponding to the functions defining the cross-section (4.14), are
the phantom invariants. The lowest order basic differential invariant is the Euclidean curvature:
I2 = κ. The higher order differential invariants I3, I4, . . . will be identified below.

Similarly, to invariantize the horizontal form dx, we first apply a Euclidean transformation:

dy = cosϕdx− sinϕdu = (cosϕ− ux sinϕ) dx− (sinϕ) θ, (4.19)

where θ = du− ux dx is the order zero basic contact form. Note that its horizontal component

dHy = πH(dy) = (cosϕ− ux sinϕ) dx = (Dxy) dx

serves to define the dual implicit differentiation operator Dy given in (4.12), since

dHF = (DyF ) dHy = (DxF ) dx

for any differential function F . Substituting the moving frame formulae (4.16) into (4.19)
produces the invariant one-form

$ = ι(dx) =
√

1 + u2x dx+
ux√

1 + u2x
θ. (4.20)

Its horizontal component

ω = πH($) =
√

1 + u2x dx = ds (4.21)
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is the usual Euclidean arc length element, and is itself contact-invariant. The dual invariant
differential operator, cf. (4.9), is the arc length derivative

D =
1√

1 + u2x
Dx = Ds, (4.22)

which can also be directly obtained by substituting the moving frame formulae (4.16) into the
implicit differentiation operator (4.12). As we will see, the higher order differential invariants
can all be found by successively differentiating the basic curvature invariant with respect to
arc length.

Example 9. Let us next consider a non-geometrically-based, but very classical example.
Let n > 2 be an integer. In classical invariant theory, the planar actions

y =
αx+ β

γ x+ δ
, v = (γ x+ δ)−nu, (4.23)

of the general linear group G = GL(2) govern the equivalence and symmetry properties of
binary forms, meaning polynomial functions u = q(x) of degree 6 n under the action of the
projective group, [9, 52, 109, 113], although the results below apply equally well to the
equivalence of general smooth functions. The graph of u = q(x) is viewed as a plane curve, and
the equivariant moving frame method is applied to determine the differential invariants and
associated differential invariant signature.

Since

dy = dHy =
∆

σ2
dx, where σ = γ x+ δ, ∆ = αδ − β γ,

the prolonged action, relating the derivatives of a binary form or function and its transformed
counterpart, is computed by successively applying the dual implicit differentiation operator

Dy =
σ2

∆
Dx (4.24)

to v, producing

vy =
σux − nγu

∆σn−1
, vyy =

σ2uxx − 2(n− 1)γ σux + n(n− 1)γ2u

∆2σn−2
,

vyyy =
σ3uxxx − 3(n− 2)γ σ2uxx + 3(n− 1)(n− 2)γ2σux − n(n− 1)(n− 2)γ3u

∆3σn−3
,

(4.25)

and so on. It is not hard to show† that the prolonged action is locally free on the regular
subdomain

V2 = {uH 6= 0} ⊂ J2, where H = uuxx −
n− 1

n
u2x

is the classical Hessian covariant of u, cf. [52, 113]. Let us choose the cross-section defined by
the normalizations

y = 0, v = 1, vy = 0, vyy = 1.

Substituting (4.23), (4.25), and then solving the resulting algebraic equations for the group
parameters produces

α = u(1−n)/n
√
H, β = −xu(1−n)/n

√
H,

γ =
1

n
u(1−n)/nux, δ = u1/n − 1

n
xu(1−n)/nux,

(4.26)

†The simplest way to accomplish this is to show that the prolonged infinitesimal generators are linearly
independent at each point of V2; see below for details.
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which serve to define a locally‡ right-equivariant moving frame map ρ : V2 → GL(2). Substi-
tuting the moving frame formulae (4.26) into the higher order transformation rules yields the
desired differential invariants, the first two of which are

vyyy 7−→ J =
T

H3/2
, vyyyy 7−→ K =

V

H2
, (4.27)

where the differential polynomials

T = u2uxxx − 3
n− 2

n
uuxuxx + 2

(n− 1)(n− 2)

n2
u3x,

V = u3uxxxx − 4
n− 3

n
u2uxuxxx + 6

(n− 2)(n− 3)

n2
uu2xuxx − 3

(n− 1)(n− 2)(n− 3)

n3
u4x,

can be identified with classical covariants of the binary form u = q(x) obtained through the
transvection process, cf. [52, 113]. Using J2 = T 2/H3 as the fundamental differential invariant
of lowest order will remove the ambiguity caused by the square root. As in the Euclidean case,
the higher order differential invariants can be written in terms of the basic “curvature invariant”
J and its successive invariant derivatives with respect to the invariant differential operator

D = uH−1/2Dx, (4.28)

which is itself obtained by substituting the moving frame formulae (4.26) into the implicit
differentiation operator (4.24).

We can now produce a signature-based solution to the equivalence and symmetry problems
for binary forms. The signature curve Σ = Σq of a polynomial u = q(x) — or, indeed, of any
smooth function — is parametrized by the covariants J2 and K, given in (4.27). In this manner,
we have established a strikingly simple solution to the equivalence problem for complex-valued
binary forms that, surprisingly, does not appear in any of the classical literature on the subject.
Extensions of this result to real forms can be found in [109, 113].

Theorem 10. Two nondegenerate complex-valued binary forms q(x) and q̃(x) are
equivalent if and only if their signature curves are identical: Σq = Σq̃.

Thus, the equivalence and symmetry properties of binary forms are entirely encoded by the
functional relation between two particular absolute rational covariants, namely, J2 and K.
Moreover, any equivalence map x̃ = ψ(x) must satisfy the pair of rational equations

J(x)2 = J̃( x̃)2, K(x) = K̃( x̃). (4.29)

Indeed, the theory guarantees that any solution to this system is necessarily a linear fractional
transformation! Specializing to the case when q̃ = q, the symmetries of a nonsingular binary
form can be explicitly determined by solving the rational equations (4.29) with J̃ = J and
K̃ = K. See [9] for a Maple package, based on this method, that automatically computes
discrete symmetries of univariate polynomials.

As a consequence of Theorem 2 and (2.3), we are led to a complete characterization of the
symmetry groups of binary forms. (The totally singular case (a) is established by a separate
calculation.)

‡See [9] for a detailed discussion of how to systematically resolve the square root ambiguities caused by local
freeness.
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Theorem 11. The symmetry group of a binary form q(x) 6≡ 0 of degree n is:
a) A two-parameter group if and only if it Hessian H ≡ 0 if and only if q(x) is equivalent to

a constant.
b) A one-parameter group if and only if H 6≡ 0 and T 2 is a constant multiple of H3 if and only

if q(x) is complex-equivalent to a monomial xk, with k 6= 0, n. In this case the signature
Σq is just a single point, and the graph of q coincides with the orbit of the connected
component of its one-parameter symmetry subgroup of GL(2).

c) A finite group in all other cases. The cardinality of the group equals the index of the
signature curve Σq.

In her thesis, Kogan, [72], extends these results to forms in several variables. In particular,
the resulting signature for ternary forms, including elliptic curves, leads to a practical algorithm
for computing their discrete symmetries, [73].

5. Recurrence and the Algebra of Differential Invariants.

While the invariantization process respects all algebraic operations on functions and
differential forms, it does not commute with differentiation. A recurrence relation expresses
a differentiated invariant in terms of the basic differential invariants — or, more generally, a
differentiated invariant differential form in terms of the normalized invariant differential forms.
The recurrence relations are the master key that unlocks the entire structure of the algebra
of differential invariants, including the specification of generators, the classification of syzygies
and, as a result, the general specification of differential invariant signatures. Remarkably, the
recurrence relations can be explicitly determined even in the absence of explicit formulas for the
differential invariants, or the invariant differential operators, or even the moving frame itself!
The only necessities are the well-known and relatively simple formulas for the infinitesimal
generators of the group action and their jet space prolongations, combined with the choice of
cross-section normalizations.

A basis for the infinitesimal generators of our effectively acting r-dimensional transformation
group G is provided by linearly independent vector fields on M taking the local coordinate
form

vσ =

p∑
i=1

ξiσ(x, u)
∂

∂xi
+

q∑
α=1

ϕασ(x, u)
∂

∂uα
, σ = 1, . . . , r, (5.1)

which we identify with a basis of its Lie algebra g. Their associated flows exp(tvσ) form one-
parameter subgroups that serve to generate the action of the (connected component containing
the identity of) the transformation group. The corresponding prolonged infinitesimal generator

prvσ =

p∑
i=1

ξiσ(x, u)
∂

∂xi
+

q∑
α=1

∑
k=#J>0

ϕαJ,σ(x, u(k))
∂

∂uαJ
, σ = 1, . . . , r, (5.2)

generates the prolongation of the associated one-parameter subgroup acting on jet bundles.
The higher order coefficients

ϕαJ,σ = prvσ(uαJ ), #J > 1,

are calculated using the prolongation formula, [110], first written in the following explicit,
non-recursive form in [108]:

ϕαJ,σ = DJ

(
ϕασ −

p∑
i=1

ξiσ u
α
i

)
+

p∑
i=1

ξiσu
α
J,i. (5.3)
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Here DJ = Dj1
· · · Djk

are iterated total derivative operators, cf. (4.10), and uαi = Diu
α

represents ∂uα/∂xi.
Given an equivariant moving frame on jet space, the universal recurrence relation for

differentiated invariants can now be stated. As in (4.9), Di = ι(Di) will denote the associated
invariant differential operators.

Theorem 12. Let F (x, u(k)) be a differential function and ι(F ) its moving frame invar-
iantization. Then

Di
[
ι(F )

]
= ι
[
Di(F )

]
+

r∑
σ=1

Rσi ι
[

prvσ(F )
]
, (5.4)

where Rσi , i = 1, . . . , p, σ = 1, . . . , r, are called the Maurer–Cartan differential invariants.

The Maurer–Cartan differential invariants Rσi can, in fact, be characterized as the coefficients
of the horizontal components of the pull-backs of the Maurer–Cartan forms on G via the moving
frame map ρ : Jn → G, [37]. But in practical calculations, one, in fact, does not need to know
where the Maurer–Cartan invariants come from, or even what a Maurer–Cartan form is, since
the Rσi can be directly determined from the recurrence relations for the phantom differential
invariants, as prescribed by the cross-section (4.1). Namely, since ι(Wν) = cν is constant, for
each 1 6 i 6 p, the phantom recurrence relations

0 = ι
[
Di(Wν)

]
+

r∑
σ=1

Rσi ι
[

prvσ(Wν)
]
, ν = 1, . . . , r, (5.5)

form a system of r linear equations that, as a consequence of the transversality of the cross-
section, can be uniquely solved for the r Maurer–Cartan invariants R1

i , . . . , R
r
i . Substituting the

resulting expressions back into the remaining non-phantom recurrence formulae (5.4) produces
the complete system of differential identities satisfied by the basic differential invariants, which
in turn fully characterizes the structure of the differential invariant algebra, [37, 117, 128].

Example 13. Using (5.2), (5.3), the prolonged infinitesimal generators of the planar
Euclidean group action on curve jets, as described in Example 8, are

prv1 = ∂x, prv2 = ∂u,

prv3 = −u ∂x + x ∂u + (1 + u2x) ∂ux
+ 3uxuxx ∂uxx

+ (4uxuxxx + 3u2xx) ∂uxxx
+ · · · ,

where v1,v2 generate translations, while v3 generates rotations. According to (5.4), the
invariant arc length derivative D = ι(Dx) of any differential invariant I = ι(F ) obtained by
invariantizing a differential function F is specified by the recurrence relation

DI = D ι(F ) = ι(DxF ) +R1 ι
(
prv1(F )

)
+R2 ι

(
prv2(F )

)
+R3 ι

(
prv3(F )

)
, (5.6)

where R1, R2, R3 are the three Maurer–Cartan invariants. To determine their formulas, we
write out (5.6) for the three phantom invariants which come from the cross-section variables
x, u, ux, cf. (4.14):

0 = D ι(x) = ι(1) +R1 ι(prv1(x)) +R2 ι(prv2(x)) +R3 ι(prv3(x)) = 1 +R1,

0 = D ι(u) = ι(ux) +R1 ι(prv1(u)) +R2 ι(prv2(u)) +R3 ι(prv3(u)) = R2,

0 = D ι(ux) = ι(uxx) +R1 ι(prv1(ux)) +R2 ι(prv2(ux)) +R3 ι(prv3(ux)) = κ+R3.

Solving the resulting linear system of equations yields

R1 = −1, R2 = 0, R3 = −κ = −I2. (5.7)
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Thus, the general recurrence relation (5.6) becomes

D ι(F ) = ι(DxF )− ι
(
prv1(F )

)
− κ ι

(
prv3(F )

)
. (5.8)

In particular, the first few — obtained by successively setting F = uxx, uxxx, uxxxx, uxxxxx
in (5.8), and letting Ik = ι(uk) denote the normalized differential invariants corresponding to
uk = Dk

xu — are

κ = I2,
κs = DI2 = I3,

κss = DI3 = I4 − 3I32 ,

DI4 = I5 − 10I22I3,

DI5 = I6 − 15I22 I4 − 10I2 I
2
3 .

(5.9)

These can be iteratively solved to produce the explicit formulae

κ = I2, I2 = κ,

κs = I3, I3 = κs,

κss = I4 − 3I32 , I4 = κss + 3κ3,

κsss = I5 − 19I22 I3, I5 = κsss + 19κ2κs,

κssss = I6 − 34I22 I4 − 48I2 I
2
3 + 57I52 , I6 = κssss + 34κ2κss + 48κκ2s + 45κ5,

(5.10)

and so on, relating the normalized and differentiated curvature invariants. The skeptical reader
is invited to verify these identities by substituting the explicit formulae that were computed in
Example 8.

The invariant differential operators D1, . . . ,Dp given in (4.9) map differential invariants to
differential invariants. Keep in mind that they do not necessarily commute, and so the order
of differentiation is important. On the other hand, each commutator can be re-expressed as a
linear combination

[Dj ,Dk ] = Dj Dk −Dk Dj =

p∑
i=1

Y ijkDi, (5.11)

where the coefficients

Y ijk = −Y ikj =

r∑
σ=1

p∑
j=1

Rσk ι(Djξ
i
σ)−Rσj ι(Dkξ

i
σ) (5.12)

are known as the commutator invariants, whose explicit formulae are a consequence of the
recurrence relations adapted to differential forms; see [37] for a derivation of formula (5.12).

Furthermore, the differentiated invariants DJIν are not necessarily functionally independent,
but may be subject to certain functional relations or differential syzygies of the form

H( . . . DJIν . . . ) ≡ 0. (5.13)

The Syzygy Theorem, first stated (not quite correctly) in [37] for finite-dimensional actions, and
then rigorously formulated and proved in [128], states that there are, in essence, a finite number
of generating differential syzygies along with those induced by the commutator equations (5.11).
Again, this result can be viewed as the differential invariant algebra counterpart of the Hilbert
Syzygy Theorem for polynomial ideals, [32].

Let us end with a synopsis of some recent results on generating sets I = {I1, . . . , I l}
of differential invariants, satisfying the conditions of the Basis Theorem 1. The first is an
immediate consequence of the recurrence formulae (5.4) and the induced construction of the
Maurer–Cartan invariants.
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Theorem 14. If the moving frame has order n, then the set of fundamental differential
invariants

I(n+1) = {Hi, I
α
J | i = 1, . . . , p, α = 1, . . . , q, #J 6 n+ 1 }

of order 6 n+ 1 forms a generating set.

Of course, one can immediately omit any constant phantom differential invariants from this
collection. Even so, the resulting set of generating invariants is typically far from minimal.

Another interesting consequence of the recurrence formulae, first noticed by Hubert, [55], is
that the Maurer–Cartan invariants

R = {Rσi | i = 1, . . . , p, σ = 1, . . . , r }

also form a, again typically non-minimal, generating set when the action is transitive on M .
More generally:

Theorem 15. The differential invariants I(0) ∪R form a generating set.

Let us now discuss the problem of finding a minimal generating set of differential invariants.
The case of curves, p = 1, has been well understood for some time. For an ordinary Lie group
action on curves in a m-dimensional manifold, there are precisely m− 1 generating differential
invariants, [111, 45], and this is a minimal system, meaning that none of them can be expressed
as a combination of the invariant arc length derivatives of the others. Moreover, there are no
syzygies among their invariant derivatives. (The relatively rare non-ordinary actions are not
significantly more complicated and are also well understood.) Thus, for space curves C ⊂
R3, there are two generating invariants, which are typically identified as the group-invariant
curvature and torsion.

On the other hand, when dealing with submanifolds of dimension p > 2, i.e., functions of more
than one variable, there are, as yet, no general results on the minimal number of generating
differential invariants. Indeed, even in well-studied examples, the conventional wisdom on
minimal generating sets is often mistaken.

Example 16. Consider the action of the Euclidean group E(3) = O(3) nR3 on surfaces
S ⊂ R3. In local coordinates, we can identify (transverse) surfaces with graphs of functions
u = f(x, y). The corresponding local coordinates on the surface jet bundle Jn = Jn(R3, 2)
are x, y, u, ux, uy, uxx, uxy, uyy, . . . , and, in general, ujk = Dj

xD
k
yu for j + k 6 n. The classical

moving frame construction, [49], relies on the coordinate cross-section

K2 = {x = y = u = ux = uy = uxy = 0, uxx 6= uyy }. (5.14)

The resulting left moving frame consists of the point on the curve defining the translation
component a = z ∈ R3, while the columns of the rotation matrix R = [ t1, t2,n ] ∈ O(3) consist
of the orthonormal tangent vectors t1, t2 forming the diagonalizing Darboux frame, along with
the unit normal n.

The fundamental differential invariants are denoted as Ijk = ι(ujk). In particular,

κ1 = I20 = ι(uxx), κ2 = I02 = ι(uyy),

are the principal curvatures; the moving frame is valid provided κ1 6= κ2, meaning that we are
at a non-umbilic point. Indeed, the prolonged Euclidean action is locally free on the regular
subset V2 ⊂ J2 consisting of second order jets of surfaces at non-umbilic points. The mean and
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Gaussian curvature invariants

H = 1
2 (κ1 + κ2), K = κ1κ2,

are often used as convenient alternatives, since they eliminate some (but not all, owing to
the local freeness of the second order prolonged action) of the residual discrete ambiguities
in the locally equivariant moving frame. Higher order differential invariants are obtained by
differentiation with respect to the dual Darboux coframe ω1 = πH ι(dx), ω2 = πH ι(dy). We
let D1 = ι(Dx), D2 = ι(Dy), denote the dual invariant differential operators, which are in the
directions of the Darboux frame vectors. These are not the same as the operators of covariant
differentiation, but are closely related, [49, 111]; indeed, the latter do not map differential
invariants to differential invariants.

To characterize the full differential invariant algebra, we derive the recurrence relations. A
basis for the infinitesimal generators for the action on R3 is provided by the six vector fields

v1 = − y ∂x + x ∂y, v2 = −u ∂x + x ∂u, v3 = −u ∂y + y ∂u,

w1 = ∂x, w2 = ∂y, w3 = ∂u,
(5.15)

the first three generating the rotations and the second three the translations. The recurrence
formulae (5.4) of order > 1 have the explicit form

D1Ijk = Ij+1,k +

3∑
σ=1

ϕjkσ (0, 0, I(j+k))Rσ1 , D2Ijk = Ij,k+1 +

3∑
σ=1

ϕjkσ (0, 0, I(j+k))Rσ2 , (5.16)

provided j + k > 1. Here Rσ1 , R
σ
2 are the Maurer–Cartan invariants associated with the

rotational group generator vσ, while

ϕjkσ (0, 0, I(j+k)) = ι
[
ϕjkσ (x, y, u(j+k))

]
= ι
[

prvσ(ujk)
]

are its invariantized prolongation coefficients, as given by the standard formula (5.3). (The
translational generators and associated Maurer–Cartan invariants only appear in the order 0
recurrence formulae, and so, for our purposes, can be ignored.) In particular, the phantom
recurrence formulae of order > 0 are

0 = D1I10 = I20 +R2
1, 0 = D2I10 = R2

2,

0 = D1I01 = R3
1, 0 = D2I01 = I02 +R3

2,

0 = D1I11 = I21 + (I20 − I02)R1
1, 0 = D2I11 = I12 + (I20 − I02)R1

2.

(5.17)

Solving these produces the Maurer–Cartan invariants:

R1
1 = Y2, R2

1 = −κ1, R3
1 = 0, R1

2 = −Y1, R2
2 = 0, R3

2 = −κ2, (5.18)

where

Y1 =
I12

I20 − I02
=
D1κ2
κ1 − κ2

, Y2 =
I21

I02 − I20
=
D2κ1
κ2 − κ1

, (5.19)

the latter expressions following from the third order recurrence formulae, obtained by
substituting (5.18) into (5.16):

I30 = D1I20 = D1κ1, I21 = D2I20 = D2κ1,

I12 = D1I02 = D1κ2, I03 = D2I02 = D2κ2.
(5.20)

The general commutator formula (5.12) implies that the Maurer–Cartan invariants (5.19) are
also the commutator invariants:[

D1,D2

]
= D1D2 −D2D1 = Y2D1 − Y1D2. (5.21)

Further, equating the two fourth order recurrence relations for I22 = ι(uxxyy), namely,

D2I21 +
I30I12 − 2I212
κ1 − κ2

+ κ1κ
2
2 = I22 = D1I12 −

I21I03 − 2I221
κ1 − κ2

+ κ21κ2,
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leads us to the celebrated Codazzi syzygy

D2
2κ1 −D2

1κ2 +
D1κ1D1κ2 +D2κ1D2κ2 − 2(D1κ2)2 − 2(D2κ1)2

κ1 − κ2
− κ1κ2(κ1 − κ2) = 0.

(5.22)
Using (5.19), we can, in fact, rewrite the Codazzi syzygy in the more succinct form

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2. (5.23)

As noted in [49], the right hand side of (5.23) depends only on the first fundamental form of
the surface. Thus, the Codazzi syzygy (5.23) immediately implies Gauss’ Theorema Egregium,
that the Gauss curvature is an intrinsic, isometric invariant. Another direct consequence of
(5.23) is the celebrated Gauss–Bonnet Theorem; see [74] for details.

Since we are dealing with a second order moving frame, Theorem 14 implies that the
differential invariant algebra for Euclidean surfaces is generated by the basic differential
invariants of order 6 3. However, (5.20) express the third order invariants as invariant
derivatives of the principal curvatures κ1, κ2, and hence they, or, equivalently, the Gauss and
mean curvatures H,K, form a generating system of differential invariants. This is well known,
[111]. However, surprisingly, [119, 125], neither is a minimal generating set! To investigate,
we begin by distinguishing a special class of surfaces.

Definition 17. A surface S ⊂ R3 is mean curvature degenerate if, for any non-umbilic
point z0 ∈ S, there exist scalar functions f1(t), f2(t), such that

D1H = f1(H), D2H = f2(H), (5.24)

at all points z ∈ S in a suitable neighborhood of z0.

Clearly any constant mean curvature surface is mean curvature degenerate, with f1(t) ≡
f2(t) ≡ 0. Surfaces with non-constant mean curvature that admit a one-parameter group
of Euclidean symmetries, i.e., non-cylindrical or non-spherical surfaces of rotation, non-
planar surfaces of translation, or helicoidal surfaces, obtained by, respectively, rotating,
translating, or screwing a plane curve, are also mean curvature degenerate since, by the
signature characterization of symmetry groups, [37], they have exactly one non-constant
functionally independent differential invariant, namely the mean curvature H and hence any
other differential invariant, including the invariant derivatives of H — as well as the Gauss
curvature K — must be functionally dependent upon H. There also exist surfaces without
continuous symmetries that are, nevertheless, mean curvature degenerate since it is entirely
possible that (5.24) holds, but the Gauss curvature remains functionally independent of H.
However, I do not know a nice geometric characterization of such surfaces, which are well
deserving of further investigation.

Theorem 18. If a surface is mean curvature nondegenerate then its algebra of Euclidean
differential invariants is generated entirely by the mean curvature and its successive invariant
derivatives.

Proof : In view of the Codazzi formula (5.23), it suffices to write the commutator invariants
Y1, Y2 in terms of the mean curvature. To this end, we note that the commutator identity (5.21)
can be applied to any differential invariant. In particular,

D1D2H −D2D1H = Y2D1H − Y1D2H, (5.25)
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and, furthermore,

D1D2DjH −D2D1DjH = Y2D1DjH − Y1D2DjH, j = 1, 2. (5.26)

Provided at least one of the nondegeneracy conditions

(D1H) (D2DjH) 6= (D2H) (D1DjH), for j = 1 or 2, (5.27)

holds, we can solve (5.25)–(5.26) to write the commutator invariants Y1, Y2 as explicit rational
functions of invariant derivatives of H. Plugging these expressions into the right hand side of
the Codazzi identity (5.23) produces an explicit formula for the Gauss curvature as a rational
function of the invariant derivatives, of order 6 4, of the mean curvature, valid for all surfaces
satisfying the nondegeneracy condition (5.27).

Thus it remains to show that (5.27) is equivalent to mean curvature nondegeneracy of the
surface. First, if (5.24) holds, then

DiDjH = Difj(H) = f ′j (H)DiH = f ′j (H) fi(H), i, j = 1, 2.

This immediately implies that

(D1H) (D2DjH) = (D2H) (D1DjH), j = 1, 2, (5.28)

proving mean curvature degeneracy. Vice versa, noting that, when restricted to the surface,
since the contact forms all vanish, dH reduces to the usual differential, and hence the
degeneracy condition (5.28) implies that, for each j = 1, 2, the differentials dH and d(DjH) are
linearly dependent everywhere on S. The standard characterization of functional dependency,
cf. [110, Theorem 2.16], thus implies that, locally, DjH can be written as a function of H,
thus establishing the mean curvature degeneracy condition (5.24). Q.E.D.

Similar results hold for surfaces in several other classical three-dimensional Klein geometries;
see [60, 121] for details.

Theorem 19. The differential invariant algebra of a generic surface S ⊂ R3 under the
standard action of
• the centro-equi-affine group SL(3) is generated by a single second order differential

invariant;
• the equi-affine group SA(3) = SL(3) nR3 is generated by a single third order differential

invariant, known as the Pick invariant, [144];
• the conformal group SO(4, 1) is generated by a single third order differential invariant;
• the projective group PSL(4) is generated by a single fourth order differential invariant.

Lest the reader be tempted at this juncture to make a general conjecture concerning the
differential invariants of surfaces in three-dimensional space, the following elementary example
shows that the number of generating invariants can be arbitrarily large.

Example 20. Consider the abelian group action

z = (x, y, u) 7−→
(
x+ a, y + b, u+ p(x, y)

)
, (5.29)

where a, b ∈ R, and p(x, y) is an arbitrary polynomial of degree 6 n. In this case, for surfaces
u = f(x, y), the individual jet coordinate functions ujk = Dj

xD
k
yu with j + k > n+ 1 form a

complete system of independent differential invariants. The invariant differential operators are
the usual total derivatives: D1 = Dx, D2 = Dy, which happen to commute. The higher order

differential invariants are generated by differentiating the differential invariants ujk of order
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n+ 1 = j + k. Moreover, these invariants clearly form a minimal generating set, of cardinality
n+ 2.

Complete local classifications of Lie group actions on plane curves and their associated
differential invariant algebras are known, [111]. Lie, in volume 3 of his monumental treatise
on transformation groups, [81], exhibits a large fraction of the three-dimensional classification,
and claims to have completed it, but writes there is not enough space to present the full details.
As far as I know, his calculations have not been found in his archived notes or personal papers.
Later, Amaldi, [3, 4], lists what he says is the complete classification. More recently, unaware
of Amaldi’s papers, Komrakov, [76], asserts that such a classification is not possible since one
of the branches contains an intractable algebraic problem. Amaldi and Komrakov’s competing
claims remain to be reconciled, although I suspect that Komrakov is right. Whether or not
the Lie–Amaldi classification is complete, it would, nevertheless, be a worthwhile project to
systematically analyze the differential invariant algebras of space curves and, especially, surfaces
under each of the transformation groups appearing in the Lie–Amaldi lists.

In conclusion, even with the powerful recurrence formulae at our disposal, the general
problem of finding and characterizing a minimal set of generating differential invariants when
the dimension of the submanifold is > 2 remains open. Indeed, I do not know of a verifiable
criterion for minimality, except in the trivial case when there is a single generating invariant,
let alone an algorithm that will produce a minimal generating set. The main difficulty lies
in establishing a bound on the order of possible syzygies among a given set of differential
invariants. It is worth pointing out that the corresponding problem for polynomial ideals —
finding a minimal Hilbert basis — appears to be intractable. However, the special structure of
the differential invariant algebra prescribed by the form of the recurrence relations gives some
reasons for optimism that such a procedure might be possible.
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105. Muñoz, J., Muriel, F.J., and Rodŕıguez, J., On the finiteness of differential invariants, J. Math. Anal. Appl.

284 (2003), 266–282.
106. Munthe–Kaas, H.Z., and Lundervold, A, On post–Lie algebras, Lie–Butcher series and moving frames,

Found. Comput. Math. 13 (2013), 583–613.
107. Musso, E., and Nicolodi, L., Invariant signature of closed planar curves, J. Math. Imaging Vision 35 (2009),

68–85.
108. Olver, P.J., Symmetry groups and group invariant solutions of partial differential equations, J. Diff. Geom.

14 (1979), 497–542.
109. Olver, P.J., Classical invariant theory and the equivalence problem for particle Lagrangians. I. Binary

Forms, Adv. in Math. 80 (1990), 39–77.
110. Olver, P.J., Applications of Lie Groups to Differential Equations, Second Edition, Graduate Texts in

Mathematics, vol. 107, Springer–Verlag, New York, 1993.
111. Olver, P.J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995.
112. Olver, P.J., Pseudo-stabilization of prolonged group actions. I. The order zero case, J. Nonlinear Math.

Phys. 4 (1997), 271–277.
113. Olver, P.J., Classical Invariant Theory, London Math. Soc. Student Texts, vol. 44, Cambridge University

Press, Cambridge, 1999.
114. Olver, P.J., Moving frames and singularities of prolonged group actions, Selecta Math. 6 (2000), 41–77.
115. Olver, P.J., Joint invariant signatures, Found. Comput. Math. 1 (2001), 3–67.
116. Olver, P.J., Geometric foundations of numerical algorithms and symmetry, Appl. Alg. Engin. Commun.

Comput. 11 (2001), 417–436.
117. Olver, P.J., Generating differential invariants, J. Math. Anal. Appl. 333 (2007), 450–471.
118. Olver, P.J., Invariant submanifold flows, J. Phys. A 41 (2008), 344017.
119. Olver, P.J., Differential invariants of surfaces, Diff. Geom. Appl. 27 (2009), 230–239.
120. Olver, P.J., Differential invariants of maximally symmetric submanifolds, J. Lie Theory 19 (2009), 79–99.
121. Olver, P.J., Moving frames and differential invariants in centro–affine geometry, Lobachevsky J. Math. 31

(2010), 77–89.



46 PETER J. OLVER

122. Olver, P.J., Recent advances in the theory and application of Lie pseudo-groups, in: XVIII International Fall
Workshop on Geometry and Physics, M. Asorey, J.F. Cariñena, J. Clemente–Gallardo, and E. Mart́ınez,
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Original Canine Heart MRI Image Blow Up of the Left Ventricle
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Figure 4. Canine Left Ventricle Signature
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Figure 7. The Baffler Jigsaw Puzzle


