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From the regular solids to quivers

by

Gwyn Bellamy
Glasgow

Gwyn.Bellamy@glasgow.ac.uk

Lectures at the LMS Undergraduate Summer School
Loughborough, July 2015

This course will be a whirlwind tour through representation theory, a
major branch of modern algebra. We being by considering the symmetry
groups of the regular solids, which leads naturally to the notion of a reflection
group and its associated root system. The classification of these reflection
groups gives us our first examples of quivers (= direct graphs). Though easy
to define, well see that the representation theory associated to quivers is very
rich. We will use quivers to illustrate the key concepts, ideas and problems
that appear throughout representation theory. Coming full circle, the course
will culminate with the beautiful theorem by Gabriel, classifying the quivers
of finite type in terms of the roots systems of reflection groups. The ultimate
goal of the course is to give students a glimpse of the beauty and unity of
this field of research, which is today very active in the UK.

Recommended literature

H.S.M. Coxeter Regular Polytopes. Dover, 1973.

J.E. Humphreys Reflection Groups and Coxeter Groups. Cambridge Univ.
Press, 1990.



Exercises: The Platonic solids

1. If the Schläfi symbol of the Platonic solid P is {p, q}, use Euler’s formula V −E +F = 2 to

show that

V =
4p

4− (p− 2)(q − 2)
, E =

2pq

4− (p− 2)(q − 2)
, F =

4q

4− (p− 2)(q − 2)
,

where V,E and F are the number of vertices, edges and faces respectively of P .

2. Recall from the first lecture that a reflection on Rn is a linear map s : Rn → Rn such that

dim FixRn(s) = n− 1 and s2 = id.

(a) Show that FixRn(s) = Ker(id− s).

(b) Choose α such that FixRn(s) = Hα. Derive the formula

sα(x) = x− 2(x, α)

(α, α)
α

for a reflection.

(c) Prove that s is diagonalizable. What are the eigenvalues of sα?

(d) Deduce that det(sα) = −1.

Hint: For part (c), if x1, . . . , xn−1 is a basis of Hα, show that x1, . . . , xn−1, α is a basis of Rn

and calculate the action of s with respect to this basis.

3. There is a purely topological proof of the fact that there are are only five Platonic solids.

The key topological fact is that Euler’s formula holds: V −E +F = 2. Using this, together

with the relations pF = 2E = qV , show that

1

p
+

1

q
=

1

2
+

1

E
.

Deduce that there are only five Platonic solids.

4. Using the fact that g ∈ W (P ) is a reflection if and only if it has one eigenvalue equal to −1

and two eigenvalues equal to 1, count the number of reflections in W (H) and W (D).
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Exercises: Reflection groups and root systems

1. Let

E =

{
x =

n+1∑
i=1

xiεi ∈ Rn+1 |
n+1∑
i=1

xi = 0

}
,

where {ε1, . . . , εn+1} is the standard basis of Rn+1 with (εi, εj) = δi,j. Let R = {εi − εj | 1 ≤
i 6= j ≤ n+ 1}.

(i) Show that R is a crystallographic root system.

(ii) Construct two different sets of simple roots for R.

(iii) By considering the action of the reflections sεi−εj on the basis {ε1, . . . , εn+1} of Rn+1,

show that the Weyl group of R is isomorphic to Sn+1.

2. Show that the symmetric matrix

A =

 1 − cos π
5

0

− cos π
5

1 − cos π
3

0 − cos π
3
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corresponding to the Coxeter graph
5

of type H3 is positive definite. What is the

determinant of A? Hint: recall that cos π
3

= 1
2

and cos π
5

= 1+
√
5

2
.

3. The angle between roots in a crystallographic reflection groups. Recall the following table

in section 2.5 of the lecture notes. The only possible values of 〈α, β〉 are:

〈β, α〉 〈α, β〉 θ

0 0 π
2

1 1 (?)

−1 −1 2π
3

1 2 (??)

−1 −2 3π
4

1 3 π
6

−1 −3 (? ? ?)

(a) What are the angles θ in (?), (??) and (? ? ?)?

(b) What about 〈β, α〉 = 〈α, β〉 = ±2?
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(c) Let α, β ∈ Rn. Show that sβsα is a rotation of Rn. Hint: decompose Rn = R{α, β} ⊕
Hα ∩Hβ and consider sβsα acting on R{α, β}. If e1, e2 is an orthonormal basis of R2,

write out sα and sβ explicit.

4. The hypercube Hn is the n-dimensional analogue of the square (n = 2), or cube (n = 3).

Concretely, we can realize Hn in Rn as the set of points

Hn = {v ∈ Rn | − 1 ≤ vi ≤ 1 i = 1, . . . , n}.

The group of symmetries of Hn is denoted Bn. It is called the hyperoctahedral group.

(i) How many vertices does the Hn have? How about edges, or faces?

(ii) The (n− 1)-dimensional faces of Hn are the copies of Hn−1 given by {v ∈ Hn | vi = 0}.
Using the fact that Bn permutes these (n−1)-dimensional faces, show that Bn permutes

the set {e±i | i = 1, . . . , n}, where

e±i = (0, . . . , 0,±1, 0, . . . , 0).

(iii) Deduce that w is a sign permutation matrix i.e. a matrix where each row has only one

non-zero entry which is either a 1 or −1, and similarly for the columns.

(iv) What is the order of the group Bn?
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Exercises: Quivers

1. A homomorphism between representations. Let M = {(Cvi , ϕα)} and N = {(Cwi , ψα)} be

representations of a quiver Q. Then a homomorphism f : M → N is a collection of linear

maps fi ∈ HomC(Cvi ,Cwi) for each i ∈ Q0 such that the diagrams

Cvt(α) Cvh(α)

Cwt(α) Cwh(α)

ϕα

ft(α) fh(α)

ψα

commute for all α ∈ Q1. The space of all homomorphisms from M to N is denoted

HomQ(M,N).

(a) Consider the representations

M : C2 C N : C C
(a,b)

(c,d)

x

y

where a, b, c, d, x, y ∈ C. If (a, b) = (2, 1), (c, d) = (6, 3), x = 1 and y = 3, construct

a non-zero homomorphism f : M → N . Are there any homomorphisms f : M → N

when (a, b) = (2, 2), (c, d) = (6, 4), x = 2 and y = 2 ? In general, what conditions

do a, b, c, d, x and y need to satisfy for HomQ(M,N) to be non-zero? What is the

dimension of HomQ(M,N) in this case?

(b) Recall that the representations of the quiver e1
α

are simply pairs (Cn, A),

where A : Cn → Cn is an n × n matrix. If M = (Cn, A), show that HomQ(M,M) =

{B : Cn → Cn |[A,B] = 0}, where [A,B] := AB−BA is the commutator of A and B.

2. Let Q be a quiver. Recall that, for each i ∈ Q0, we have defined the representation E(i) of

Q.

(a) Show that the representation E(i) is simple.

(b) If Q has no oriented cycles, show that every simple representation equals E(i) for some

i ∈ Q0.
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(c) Consider the quiver e1 e2

α

β . Show that the representation C C
3

2 is simple.

3. Let Q be the quiver
e2

e1 e5 e3

e4

α

β γ

δ

Write down the basis of paths for the path algebra CQ. What is dimCQ?

4. Let Q be the quiver e1 e2 e3
α β

and let

A =


 a b c

0 d e

0 0 f

 ∣∣∣ a, b, c, d, e, f ∈ C


be the algebra of upper triangular 3 × 3 matrices, where multiplication is just the usual

matrix multiplication. Construct an explicit isomorphism of algebras CQ ∼−→ A.
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Exercises: Gabriel’s Theorem

1. You’ll notice that the positive definite Euler graphs are precisely the positive definite Coxeter

graphs that are simply laced i.e. have at most one edge between any two vertices. Let

(−,−)C , resp. (−,−)E, be the Coxeter form, resp. the Euler form, associated to a graph Γ.

(a) Show that if Γ is simply laced then (−,−)E = 2(−,−)C .

(b) If Γ is not simply laced, show that there is no λ ∈ R such that (−,−)E = λ(−,−)C .

(c) Show that the symmetric matrix (
2 −m
−m 2

)

corresponding to the Euler graph
m

is positive definite if and only if m = 1.

When is it positive semi-definite?

(d) By considering the subgraphs
m

with m > 1 of Γ, show that a non-simply

laced Euler graph is not positive definite.

(e) Deduce Theorem 4.8 from Theorem 2.18.

2. Let i ∈ Q0 be a sink. Show that S+
i (E(i)) = 0.

3. Consider the representation M given by

C

C C2 C

C

(1,0)

(0,1)

(1,2)

(1,1)

If we label the central vertex by i, what is S−i (M)?

4. Let Q be the quiver e1 e2 e3
α

β
of type A3. The corresponding root system,

with reflection group S4 was considered in the first exercise on reflection groups and root

systems. Thus, the positive roots are

R+ = {ε1 − ε2, ε2 − ε3, ε3 − ε4, ε1 − ε3, ε2 − ε4, ε1 − ε4},
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which, under the identification ei 7→ εi − εi+1, corresponds to

R+ = {e1, e2, e3, e1 + e2, e2 + e3, e1 + e2 + e3}.

For each of the above dimension vectors construct an explicit indecomposable representation

of Q.
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Introduction to the theory of complex networks

by

Anthony Coolen
King’s College London
ton.coolen@kcl.ac.uk

Lectures at the LMS Undergraduate Summer School
Loughborough, July 2015

Complex networks are increasingly popular and useful as representations
of complex systems that consist of many interacting variables. They now
appear as the lingua franca in many disciplines, ranging from engineering,
physics and computer science, via economics, financial markets and the social
sciences, to biology and medicine. The nodes (or vertices) of the networks are
taken to represent the variables of the dynamical system, and links (or bonds)
tell us which pairs of nodes share a direct connection. The rationale behind
network science is that many features of complex many-variable systems can
be deduced already from the topology of the network of pair-interactions
alone.

This short course gives a gentle introduction to the field of complex net-
works and graphs. It consists of three parts. In the first part we give examples
of networks and graphs in different disciplines, and introduce the definitions
and terminology that are used to characterise and quantify their topologi-
cal features. This includes adjacency matrices, degrees, degree distributions,
clustering coefficients, modularity, and path length statistics. In the second
part we illustrate the connection between dynamical processes that are de-
fined for variables on the nodes of networks and the eigenvalue spectra of their
adjacency matrices and Laplacian matrices, and we establish several proper-
ties of these spectra. The third part is devoted to random graph ensembles,
focusing mainly on the Erdös-Rènyi ensemble, and on phase transitions in
such ensembles.

Recommended literature:

MEJ Newman Networks: An Introduction. Oxford UP, 2010.

B Bollobas Random Graphs. Cambridge UP, 2001.



Introduction to the Theory of Complex Networks

EXERCISES

(i) Which if the two graphs

on the right is simple?

Which is directed?

Give for each graph the

vertex set V and

the edge set E. �
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(ii) Calculate the adjacency matrices for the two graphs above, upon relabelling the nodes of the

first graph such that its vertex set becomes V = {1, . . . , 9}.
(iii) Calculate the clustering coefficients for all nodes in the second of the above graphs. Why

would we not calculate them for the first graph?

(iv) Calculate the closeness centrality and the betweenness centrality of nodes i = 2 and i = 3 in

the second graph of (i).

(v) Prove that the average in-degree k
in

(A)= 1
N

∑
i k

in
i (A) and the average out-degree k

out
(A)=

1
N

∑
i k

out
i (A) of any graph are always identical. Show that in simple nondirected graphs the

number of links is L= 1
2
Nk̄(A), where k̄(A)=N−1 ∑

i≤N ki(A) is the average degree.

(vi) Prove the following general bounds for the modularity: −1
2
≤ Q(A) ≤ 1

2
.

(vii) Assign the following module labels to the nodes of the right graph in exercise (i): x1 = x2 = 1,

x3 = x4 = x5 = 2. Calculate the graph’s modularity Q(A).

(viii) Calculate the spectrum %(µ|A) of the second graph in (i). Use your result to calculate the

average degree, and to prove that this graph has no closed paths of odd length.

(ix) Show how for regular N -node graphs one can express the Laplacian eigenvalue spectrum

%Lap(µ|A) in terms of the adjacency matrix eigenvalue spectrum %(µ|A).

(x) For the Erdös-Rènyi model we know that 〈k̄(A)〉 = p?(N−1). Calculate 〈k̄2(A)〉. Calculate

the variance σ2
k̄ = 〈k̄2(A)〉−〈k̄(A)〉2 in the finite connectivity regime, and express it in terms

of 〈k〉 for N →∞. What can you conclude from the result?

(xi) Let α ∈ [0, 1] and q1, q2 ∈ IN. Calculate the generating function G(x) for the following degree

distribution: p(k) = αδk,q1 + (1−α)e−q2qk2/k!.

(xii) Confirm that the three generating functions for regular, Poissonnian, and exponential random

graphs all obey: G(0) = p(0), G(1) = 1, and limx→1 x
d

dx
G(x) = 〈k〉. Calculate expressions

for 〈k2〉 from the three generating functions.

(xiii) Prove that 〈k2〉 ≥ 〈k〉 for all graphs, with equality if and only if p(k) = 0 for all k > 1.

(xiv) Construct a large 2-regular graph, i.e. one with p(k) = δk,2 and large N , that does not have

a giant component. Prove your claim.



A complex life

by

Professor Darren Crowdy
Imperial College London

d.crowdy@imperial.ac.uk

LMS Undergraduate Summer School
July 2015

“But think of Adam and Eve like an imaginary number, like the square
root of minus one: you can never see any concrete proof that it exists, but if
you include it in your equations, you can calculate all manner of things that
couldn’t be imagined without it.”

The Golden Compass, Philip Pullman

Imaginary, or complex, numbers have long fascinated not just mathemati-
cians but the public at large; it is bemusing and intriguing that an “imagined”
abstraction can have real-life utility. In this short lecture series I will give
evidence, drawn mainly from my own research interests, that complex anal-
ysis is an indispensable – and powerful – mathematical tool with perennial
relevance to modern day applications in science and engineering. I’ll have
something to say about lotus leaves, ketchup, optical fibres and micro-robots,
among other things.



The mathematics and physics of random matrices

by

Giovanni Felder
ETH Zurich

giovanni.felder@math.ethz.ch

Lectures at the LMS Undergraduate Summer School
Loughborough, July 2015

What are the eigenvalues of a matrix with random entries? This type of
question appears today in various areas of mathematics and physics. We
will make the question more precise in specific examples and explain the
relation to orthogonal polynomials, electrostatic equilibrium and conformal
mappings.

Recommended literature

M. L. Mehta Random Matrices. San Diego, Academic Press, 1991.

P. A. Deift Orthogonal polynomials and random matrices: a Riemann-
Hilbert approach. Courant Lecture Notes in Mathematics, Vol 3, NY, 1999.

G. W. Anderson, A. Guionnet, O. Zeitouni An introduction to random
matrices. Cambridge University Press, 2010.



THE MATHEMATICS AND PHYSICS OF RANDOM MATRICES

Exercise sheet and literature

We’ll mostly discuss (2), (4), (6) in class. Problem (1) is a teaser and the other
exercises are supposed to provide background material.

(1) Build a big square matrix, say 400 by 400, with zeros and ones chosen by
flipping a coin for each entry. Plot its eigenvalues fuin the complex planes.
Where are they? (I suggest that you use a computer to both flip the coin
and compute the eigenvalues)

(2) Let S2(R) = {X = (xij) ∈M2(R) |x12 = x21} be the space of real symmet-
ric 2 by 2 matrices. Show that if f : S2(R)→ R is continuous and invariant
under conjugation by orthogonal matrices,∫
S2(R)

f(X)dx11dx12dx22 = π

∫
λ1≥λ2

f

(
λ1 0
0 λ2

)
(λ1 − λ2)dλ1dλ2.

(3) A complex n × n matrix A is called normal if AA∗ = A∗A (A∗ is the
adjoint matrix, obtained by transposing A and taking complex conjugated
entries). TFAE: (i) A is normal (ii) A = UΛU∗ for some unitary matrix U
and diagonal matrix Λ (iii) A has an orthonormal basis of eigenvectors (iv)
A = X + iY for some hermitian matrices X, Y such that XY = Y X.

(4) Let fN (y) =
∑N
k=0 y

k/k!e−y. Show that

lim
N→∞

fN (Nx) =

{
1 if 0 ≤ x < 1,

0, if x > 1.

Hint: show that fN (y) can be written as 1 −
∫ y

0
e−ttN/N !dt and google

“Laplace’s method” (while you’re at it, Wikipedia needs your help on this
topic).

(5) The purpose of this exercise is to translate the statement of the Gauss
divergence theorem∫

D

(∂xv1 + ∂yv2)dxdy =

∫
∂D

v · nds

for a compact region D ⊂ R2 with smooth boundary ∂D to the language
of differential forms.
(a) The differential of a function f(x, y) is the 1-form ∂xfdx + ∂yfdy.

Show that d(fg) = fdg + gdf where the product of a function by a
1-form is defined as f(pdx+ qdy) = fpdx+ fqdy.

(b) The differential of a 1-form α = p(x, y)dx + q(x, y)dy is defined as
dα = (∂xq − ∂yp)dxdy. Deduce the Stokes formula∫

D

dα =

∫
∂D

α

from the divergence theorem. Discuss the question of orientation of
the line integral on the right.

1



2 THE MATHEMATICS AND PHYSICS OF RANDOM MATRICES

(c) Identify R2 with C via (x, y) 7→ z = x + iy. Show that df = ∂zfdz +
∂z̄fdz̄ and d(pdz+qdz̄) = (∂zq−∂z̄p)dzdz̄ with dzdz̄ = −2idxdy. Here
∂z = 1

2 (∂x − i∂y), ∂z̄ = 1
2 (∂x + i∂y).

(d) If f is homolorphic then df(z) = f ′(z)dz where f ′ is the complex
derivative of f .

(6) The Navier–Stokes equations for the velocity field u(t, x, y, z) ∈ R3 and
pressure field p(t, x, y, z) ∈ R of a viscous incompressible fluid in the absence
of external forces are

ρ(∂tu+ (u · ∇)u) = µ∆u−∇p, divu = 0.

The density ρ and the viscosity µ are positive constant parameters. The
differential operators u · ∇ = u1∂x + u2∂y + u3∂z and ∆ = ∂2

x + ∂2
y + ∂2

z act
on each component of u.
(a) Find the solution in the space between plates at z = ±b/2 such that

(i) u = u(z) only depends on z, (ii) u obeys the no slip boundary
conditions u(±b/2) = 0, (iii) the pressure gradient ∇p is a constant
vector perpendicular to the z-axis. The solution is unique up to adding
a constant to p.

(b) Show for this solution, the average velocity v = 1
b

∫ b/2
−b/2 u(z)dz is pro-

portional to the pressure gradient:

v = − b2

12µ
∇p.

References

[1] M. L. Mehta. Random Matrices. San Diego, Academic Press, 1991

[2] P. A. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach.
Courant Lecture Notes in Mathematics, Vol 3, New York: Courant Institute of Mathematical

Sciences, 1999

[3] G. W. Anderson, A. Guionnet, O. Zeitouni, An introduction to random matrices, Cambridge
University Press, 2010



Introduction to tropical geometry.

by

Mark Gross
Cambridge

mgross@dpmms.cam.ac.uk

Lectures at the LMS Undergraduate Summer School
Loughborough, July 2015

Algebraic geometry is the study of solution sets to polynomial equations.
Typically, one works over algebraically closed fields such as the complex
numbers, and the first interesting examples are algebraic plane curves, i.e.,
curves defined by an equation of the form f(x, y) = 0, where x and y can
take values in the complex numbers. Here f is a polynomial in two variables.

The solution sets to such equations are in general two real-dimensional
objects sitting inside a real four-dimensional vector space, and hence tend
to be difficult to visualize. However, it is easier to draw a two-dimensional
picture by considering the ”amoeba” of the curve, i.e., the image of the curve
under the map C2 → R2 given by taking absolute value. For certain curves, it
is easy to understand what the amoeba looks like. This leads us to piecewise
linear, or limiting, approximations to amoebas known as ”tropical curves.”

Tropical geometry is the study of these limiting objects, and can viewed
as a form of algebraic geometry over not the field C but the so-called ”tropical
semi-ring” or ”max-plus semi-ring”. This semi-ring, as a set, is the set of
real numbers, but addition is replaced with maximum and multiplication by
addition. Thanks to work of Mikhalkin and others, it is now understood that
many classical algebraic geometry results have tropical analogues which are
purely combinatorial in nature.

In this series of lectures, I will explore the motivation for tropical geom-
etry and state and prove some elementary results, as well as discuss their
application to curve-counting.



Continued Fractions and Hyperbolic Geometry

Caroline Series

Loughborough LMS Summer School

July 2015



Outline

Why is it that 22/7 and 355/113 are chosen as good approximations to π? In fact 355/113

= 3 + 1/(7 + 1/16) approximates π to six decimal places. They are examples of continued

fractions, which are used to get ‘best approximations’ to an irrational number for a given

upper bound on the denominator, so-called Diophantine approximation.

There is a beautiful connection between continued fractions and the famous tiling of

the hyperbolic (non-Euclidean) plane shown in the figure above. It is called the Farey

tessellation and its hyperbolic symmetries are the 2x2 matrices with integer coefficients and

determinant one, important in number theory. We shall use the Farey tessellation to learn

about both continued fractions and hyperbolic geometry, leading to geometrical proofs of

some classical results about Diophantine approximation.

Lecture 1 We describe the Farey tessellation F and give a very quick introduction to the

basic facts we need from hyperbolic geometry, using the upper half plane model.

Lecture 2 We introduce continued fractions and explain the relationship between contin-

ued fractions and F .

Lecture 3 We use F to visualise some classical results about continued fractions and out-

line a few of the many applications and further developments.

Everything needed about continued fractions and hyperbolic geometry will be explained

in the lectures, but to prepare in advance you could look at any of the many texts on these

subjects. Here are a few sources:

G. H. Hardy and E. M. Wright. The Theory of Numbers. Oxford University Press,

Many editions.

A. Ya. Khinchin Continued Fractions. University of Chicago Press, 1935.

C. Series. Hyperbolic geometry notes MA448. Unpublished lecture notes, available at

homepages.warwick.ac.uk/~masbb/

For an introduction to the Farey tessellation and continued fractions from a slightly

different viewpoint see

A. Hatcher. Toplogy of Numbers. Unpublished draft book, available at www.math.

cornell.edu/~hatcher/TN/TNpage.html

1
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1 The Farey Tessellation and the hyperbolic plane

Fractions p/q, r/s 2 Q are called neighbours if |ps � rq| = 1. Their Farey sum, denoted

p/q �F r/s, is defined to be (p + r)/(q + s). Note that if p/q < r/s are neighbours, then

so are p/q < p/q �F r/s and p/q �F r/s < r/s. Figure 1, drawn in the complex plane, is

formed by the following procedure:

• Draw vertical lines from n to 1 at each integer point n 2 R. Label these points n/1.

Note that for each n 2 Z, the pair (n/1, (n+ 1)/1) are neighbours.

• Join each adjacent pair (n/1, (n+ 1)/1) by a semicircle with its centre on R.

• Mark the point n/1�F (n+1)/1 = (2n+1)/2. Join the adjacent neighbours n/1, (2n+

1)/2 and (2n+ 1)/2, (n+ 1)/1 by semicircles centred on R.

• Inductively, suppose that p/q < r/s are Farey neighbours joined by an arc. Join p/q

to (p+ r)/(q + s) and (p+ r)/(q + s) to r/s by semicircles.

• Continue in this way.

Figure 1: The Farey Tessellation

Exercise 1.1. Check by induction that if p/q, r/s are joined by an arc of F then

 
p r

q s

!

has determinant ±1.
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The Farey tessellation is a tessellation or tiling of the hyperbolic plane. This means there

is a basic figure, a so-called ideal triangle, whose images under some group of symmetries

cover the hyperbolic plane without overlaps.

To understand this we need a bit of background on hyperbolic geometry. Everything

we shall use is worked through in detail in the first few chapters of [10], but we explain

what we need briefly here. Hyperbolic geometry originated as geometry in which Euclid’s

parallel postulate fails. It is the geometry of space with constant curvature �1. All we need

to know is that 2-dimensional hyperbolic geometry can be modelled as the upper half plane

H = {z 2 C : =z > 0} with the metric ds2 = (dx2 + dy2)/y2, where z = x + iy. What

this means is that to find the length of an arc � joining points A,B we have to integrate:

`(�) =
R
� ds =

R
�

p
dx2 + dy2/y and dH(A,B) = inf� `(�).

Here is an example. Let A = ai and B = bi so that A,B are on the imaginary axis I,
and assume b > a. Let � be any arc joining A to B. Then

`(�) =

Z

�
ds =

Z

�

p
dx2 + dy2/y �

Z

�
dy/y =

Z y=b

y=a
dy/y = log b/a.

Moreover if we take �0 to be the vertical path from A to B then `(�0) = log b/a. Hence

dH(ai, bi) = log b/a. Note that this shows that the vertical path �0 is a shortest distance

path, otherwise called a geodesic or a hyperbolic line.

The boundary at infinity The above formula shows that dH(i, ti) ! 1 as t ! 0. Thus

the real axis is at infinite distance from a point in H. Notice that the real axis R is not

included in H. Clearly the point 1 is also at infinite distance from any point in H. We

view R [1 as a circle, known as the boundary (or circle) at infinity.

1.1 Isometries of H

To understand a geometry and its tilings we need to understand its isometries, that is, its

distance preserving maps. The isometries of H have a very nice description in terms of

the group SL(2,R). This is the group of 2 ⇥ 2 matrices with real entries and determinant

1, i.e.

⇢ 
a b

c d

!
: a, b, c, d 2 R, ad � bc = 1

�
. SL(2,R) acts on H in the following way.

Let T =

 
a b

c d

!
2 SL(2,R) and z 2 H. Then T (z) = (az + b)/cz + d). By convention,

T (1) = a/c and T (�d/c) = 1.

Exercise 1.2. Show that:

a. if =z > 0 then =(az + b)/cz + d) > 0.

b. T maps the circle at infinity to itself.
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c. if T =

 
a b

c d

!
and T 0 =

 
a0 b0

c0 d0

!
then T 0(T (z)) = (T 0T )(z), where T 0T is the matrix

product of T 0 with T and T 0(T (z)) is the image of T (z) under T 0.

d. if (az + b)/(cz + d) ⌘ z then a = d = ±1, b = c = 0.

Exercise 1.2 (c) shows that to compose maps we simply need to multiply matrices. (d)

shows that the group PSL(2,R) = SL(2,R) / ± Id (where Id =

 
1 0

0 1

!
) acts freely on

H, that is, if T (z) = z then T = id as an element of PSL(2,R). Where it won’t lead to

confusion, we often use

 
a b

c d

!
to represent a transformation in PSL(2,R).

Proposition 1.1. PSL(2,R) acts by isometries on H. In other words, if T 2 PSL(2,R),
then dH(T (P ), T (Q)) = dH(P,Q) for any P,Q 2 H.

Proof. To abbreviate, write |dz| =
p

dx2 + dy2. Let T =

 
a b

c d

!
2 SL(2,R) and let

w = T (z) = (az+ b)/cz+d). We claim that |dw|/=w = |dz|/=z and consequently
R
� |dz| =R

T (�) |dw|.

Exercise 1.3. Finish the proof!

Linear fractional transformations

A mapping of the form z 7! (az + b)/cz + d), where a, b, c, d 2 C and ad� bc 6= 0 is called

a linear fractional transformation or Möbius map. Möbius maps carry circles to circles

and preserve angles. Here ‘circle’ is interpreted to mean either an ordinary circle or a line

through infinity. For more details and a proof see [10] Chapter 1.

Exercise 1.4. a. Show that under the action of PSL(2,R), a vertical line in H is carried

either to another vertical line or to a semicircle centred on R.

b. Show that T =

 
1 0

1 1

!
maps the imaginary axis I to the semicircle with centre 1/2

joining 0 to 1.

c. Let ⇠ < ⌘ 2 R. Find a map T 2 PSL(2,R) which maps 0 to ⇠ and 1 to ⌘.

d. Why is any semicircle with centre on R a geodesic (straight line) in H?

e. Show that there is a unique geodesic joining any two points in H, namely the semicircle

through the two points with centre on R.
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The group SL(2,Z)

The group SL(2,Z) is the subgroup of SL(2,R) all of whose entries are integers. We define

PSL(2,Z) = SL(2,Z) /± Id.

Exercise 1.5. a. Show that J =

 
0 1

�1 0

!
is the unique non-trivial element of SL(2,Z)

which maps I to itself.

b. Check that, as an isometry of H, J has order 2 and fixes i.

The ‘tiles’ of F are all ideal triangles. This means that each tile has three geodesic sides,

which meet in pairs on the boundary at infinity, i.e. R [1. We denote the triangle with

vertices 0, 1,1 by �, called the basic triangle. When we need to be strict, we consider that

� is the closed triangle including its sides (but excluding the 3 vertices which lie outside

H) and we let �� denote its interior, that is, � excluding its sides.

Exercise 1.6. a. Find the element S 2 PSL(2,Z) which sends 0 ! 1, 1 ! 1,1 ! 0.

b. Conclude that the stabiliser of � in PSL(2,Z) has order 3.

c. Show that S has a unique fixed point in H, and find it.

The following proposition allows us to prove the key facts about F .

Proposition 1.2. The ideal triangles in the Farey tessellation F cover the hyperbolic plane

without overlaps (except of their boundaries). Moreover if g 2 SL(2,Z), then g(�) is a

triangle in F .

Proof. From the construction, it is clear that every point in H is contained in at least one

(closed) ideal triangle of the construction. We have to show that no two triangles overlap.

First note that every triangle in the tessellation is the image of � under some element

in SL(2,Z). In fact by Exercise 1.1, if p/q, r/s are joined by an arc of F and if we assume

that p/q > r/s then det

 
p r

q s

!
= 1 so that T =

 
p r

q s

!
2 SL(2,Z). By Exercise 1.4,

T carries the positive imaginary axis I to the hyperbolic line joining p/q to r/s, in other

words, the semicircle with these endpoints. Moreover T carries 1 to the point p/q � r/s so

that it takes the other two sides of � to semicircular arcs joining these new neighbours.

Let T be the set of triangles in F . If E 2 T , let E� denote its interior. We have

to show that E�
1 \ E�

2 = ; for any E1, E2 2 T . We have just shown that Ei = gi(�) for

some gi 2 SL(2,Z). So it is enough to show that �� \ g(��) = ; for any g 2 SL(2,Z).

(Why?) Let g =

 
a b

c d

!
so that a/c > b/d. By translating and rotating � if needed

(using the transformation S of Exercise 1.6), we may assume that the side of g(�) joining
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a/c to b/d cuts the imaginary axis I (why?), so that a/c > 0 > b/d. We claim this is

impossible for g 2 SL(2,Z). Note that without loss of generality we can take d > 0,

(why?) so automatically b < 0. Then a, c have the same sign. If both are positive then

1 = ad� bc � 1 + 1 = 2 which is impossible. The other case is similar.

The same argument shows that g(�) 2 T for any g 2 SL(2,Z). This completes the

proof.

Here are some important consequences of Proposition 1.2.

Corollary 1.3. 1. Every pair of neighbouring rationals are the endpoints of some side

of F .

2. Every point p/q 2 Q is a vertex of F . Hint: Use the Euclidean algorithm!

3. The Farey tessellation F is invariant under the action of PSL(2,Z).

Exercise 1.7. Prove Corollary 1.3. Hint for (2): Use the Euclidean algorithm!

Exercise 1.8. a. Let J =

 
0 �1

1 0

!
as in Exercise 1.5. Suppose that g 2 PSL(2,Z)

carries I to another side s of F , so that g(i) 2 s. Prove that gJg�1 is the unique

non-trivial element in PSL(2,Z) which fixes s.

b. Find an element g 2 SL(2,Z) which carries I to the hyperbolic line from 0 to 1 and

hence or otherwise, find the unique non-trivial element of PSL(2,Z) which fixes the

point (1 + i)/2.

Exercise 1.9. a. Explain why J maps any hyperbolic line through i to itself, interchang-

ing endpoints.

b. With g as in Exercise 1.8, prove that T = gJg�1J = ±
 
1 1

1 2

!
maps the hyperbolic

line L joining i to (1+ i)/2 to itself. Hint: T is the product of two ⇡ rotations about points

on L.

c. What are the end points of this line? Check they are fixed by T .

We will come back to this transformation T later.

Finally, here is an exercise on hyperbolic geometry which we will need in the last lecture.

Exercise 1.10. a. Let H be the region above the horizontal line =z = h. Explain why

the image of H under T =

 
a b

c d

!
is the region inside a disk tangent to R at a/c.

b. Prove that the radius of this disk is 1/2hc2. Hint: Suppose the disk has radius r, so its

highest point is a/c + 2ir. Explain why h is the imaginary part of T�1(a/c + 2ir) and hence

find the formula relating r and h.
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Mathematical billiards

by

Sergei Tabachnikov
Penn State and ICERM, USA

tabachni@math.psu.edu

Lectures at the LMS Undergraduate Summer School
Loughborough, July 2015

This mine-course is an introduction to mathematical billiards. I shall
start with a motivation: a mechanical system with elastic collisions is inter-
preted as a billiard. I plan to cover the following topics: variational approach
to billiard trajectories, the area preserving property of the billiard map, ge-
ometry of the space of oriented lines, billiards in conics and geometrical
consequences, including the Poncelet Porism. About 30 exercises will be
offered.

Recommended literature:

V. Kozlov, D. Treshchev. Billiards. A genetic introduction to the dy-
namics of systems with impacts. AMS, Providence, RI, 1991.

S. Tabachnikov. Geometry and billiards. AMS, Providence, RI, 2005.

N. Chernov, R. Markarian. Chaotic billiards. AMS, Providence, RI, 2006.



LMS. Billiards: Exercises

1. Find a 6-periodic billiard trajectory in every right triangle and inter-
pret it as a periodic motion of two mass points on a segment, subject to
elastic collisions.

2. Consider the motion of three mass points m1,m2,m3 on a circle, sub-
ject to elastic collisions. Assume that the center of mass of the points has
zero angular speed. Prove that this is the billiard in an acute triangle; find
the angles of this triangle.

3. Prove that the foot points of the altitudes of an acute triangle form
therein a 3-periodic billiard trajectory (Fagnano).

4. In which angles can the billiard reflection be continuously defined for
the trajectories that hit the corner?

5. Consider the elastic collision of two identical balls in R3, one at rest
and the other moving. Show that after collision they will move in orthogonal
directions.

6. Consider two identical discs of radius r on the torus R2/Z2, with a
fixed center of mass and subject to elastic collisions. Describe the motion of
this system as a 2-dimensional billiard.

7. Deduce Snell’s Law from Fermat’s Principle.

8. Prove that a smooth convex plane body has at least two diameters.
What about dimension 3? Dimension n?

9. (i) A (plane) periscope is a system of two mirrors that send a (say)
vertical beam of light to a vertical beam, inducing an invertible transfor-
mation of one beam to another (that is, a transformation of their normal
sections). Given such a local transformation of segments, show that there
exists a periscope that realizes it.
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(ii)* Which local transformation of 2-dimensional disc can be realized by a
periscope in R3?

10. Prove that the set of 2-periodic billiard trajectories has zero area
(with respect to the area form ω).

11. What is the topology of the space of non-oriented lines in the plane?
Of non-oriented great circles on the sphere?

12. How does the change of origin affect the coordinates on the space of
oriented lines?

13. (i) Prove that, up to a factor, ω is the only isometry-invariant area
form on the space of oriented lines.
(ii) Does the space of oriented lines in R2 have an isometry-invariant metric?
What about the space of oriented great circles on the sphere?

14. What is the effect of refraction (subject to Snell’s Law) on ω?

15. Let Γ be a closed convex plane curve, and γ a closed, possibly self-
intersecting, curve inside Γ; let L and ` be their lengths. Prove that there
exists a line that intersects γ at least [2`/L] times.

16. The distance between the lines on a ruler paper is 1. Find the prob-
ability that a needle of length 1, randomly dropped on the paper, intersects
a line. What is the expected number of intersections for a needle of length
L? (Buffon’s needle problem).

17. (i) Formulate and prove Crofton’s formula for S2. Apply it to prove
that the total curvature of a closed space curve is not less than 2π.
(ii)* Prove that the total curvature of a knotted curve in R3 is not less than
4π (Fáry-Milnor theorem).

18. Find the average area of a plane projection of a unit cube.

19. Define the length of a rectangular box as the sum of its dimensions.
Can a box of smaller length contain a box of greater length? Consider 2- and
3-dimensional versions of the problem.

20. Prove that the geometric and analytic definitions of confocal conics
are equivalent.

21. Prove that a billiard trajectory in an ellipse that intersect the segment
between the foci remains tangent to a confocal hyperbola.

2



22. Prove that the geometric and analytic formulations of integrability of
the billiard inside an ellipse are equivalent.

23. Prove that the product of distances from the foci of an ellipse to a
segment of the billiard trajectory is an integral of the billiard ball map.

24. Consider an ellipse
x2

a2
+
y2

b2
= 1,

and consider the diagonal linear map that takes it to a confocal ellipse. Show
that the points related by this map lie on a confocal hyperbola.

25. Let F1 and F2 be the foci of an ellipse. The billiard reflection gives a
transformation of the lines emanating from F1 to the lines through F2. Iden-
tify pencils of lines with the projective line RP1 via the stereographic projec-
tion. Show that the resulting transformation of RP1 is Möbius (fractional-
linear). Deduce that the billiard trajectory through the foci tends to the
great axis of the ellipse.

26. Find a geometrict proof of ‘the most elementary theorem of elemen-
tary geometry’.

27. Prove the Euler-Fuss relations for n = 3 and n = 4:

1

R− a
+

1

R + a
=

1

r
;

1

(R− a)2
+

1

(R + a)2
=

1

r2
,

where R > r are the radii of the circles and a is the distance between their
centers.
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Groups, graphs and virology

by

Reidun Twarock
University of York

reidun.twarock@york.ac.uk

Lectures at the LMS Undergraduate Summer School
Loughborough, July 2015

This lecture course will cover the group theoretical underpinnings of virus
architecture. After a brief introduction to symmetry groups and Caspar
and Klugs approach to the modeling of viral capsids in terms of spherical
graphs and tilings, we will introduce non-crystallographic Coxeter groups
and their affine extensions. We will demonstrate how these can be used
to predict the organization of material in viruses at different radial levels
simultaneously, including capsid structure and genome organization. We
will moreover show that these group theoretical techniques can also account
for the atomic positions in nested carbon cage structures called fullerenes,
thus demonstrating that mathematics developed for specific applications can
have much wider impact in Science.

A background in group theory is not required, but would be an advantage.
In the colloquium talk, we will demonstrate how these insights can be used to
better understand how viruses form and infect their hosts, and thus underpin
the development of novel anti-viral therapies.

Recommended literature:

J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Uni-
versity Press, 1990.

T. Keef, J.P. Wardman, N.A. Ranson, P.G. Stockley and R. Twarock,
Structural constraints on the three-dimensional geometry of simple viruses:
case studies of a new predictive tool, Acta Crystallogr A. 69, 140-50, 2013.

P. Dechant, J. Wardman, T. Keef and R. Twarock, Viruses and fullerenes
- symmetry as a common thread? Acta Cryst A 70:162-7, 2014.

D.L. Caspar and A. Klug, Physical Principles in the Construction of
Regular Viruses, Cold Spring Harb. Symp. Quant. Biol. 27, 124, 1962.



Exercises for Mathematical Virology

Reidun Twarock

University of York

1. Warm-up question: Which of the following tables are symmetry tables of a group? State one
axiom that fails to hold if the table does not represent a group. If it is a group, state the
symmetry operations that correspond to the group elements?

(a)

A B C D

A D C B A
B C D A B
C B A D C
D A B C D

(c)

A B C D

A A B C D
B B A A D
C D A C D
D B C D C

(b)

A B C D

A A B C D
B D A B C
C C D A B
D B C D A

(d)

A B C D E

A E C D B A
B C D A E B
C D E B A C
D B A E C D
E A B C D E

2. Icosahedral symmetry and permutation groups:

(a) Show that the 3-cycles in S5 generate the subgroup A5.

(b) Use this result to show that the rotational symmetry group of the icosahedron is iso-
morphic to A5.

In order to do this, consider the following picture:

and work through the steps listed on the next page.
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i. Explain what is meant by duality of the dodecahedron and the icosahedron. What
does this imply for the symmetry groups of these Platonic solids? In particular,
what is the order of the symmetry group of the dodecahedron?

ii. What is the order of A5?

iii. Consider the 5 cubes inscribed into a dodecahedron as in the figure. Number the
cubes by 1 to 5 as marked: black: 1; green: 2; blue: 3; red: 4; yellow: 5. Use this
to explain why each rotation of the dodecahedron corresponds to an element of S5.

iv. By considering rotations about axes which join opposite pairs of vertices, show that
every 3-cycle in S5 is generated in this way.

v. Use the result of part (a) to argue that the rotational symmetry group of the icosa-
hedron is isomorphic to A5.

Note: The figure has been adapted from:
http://www.chiark.greenend.org.uk/⇠sgtatham/polypics/dodec-cubes.html

3. Generators of icosahedral symmetry: Viruses share their rotational symmetries with the icosa-
hedron.

The choice of generators of the icosahedral group is not unique. In the lecture we have
discussed the generators g2, g3 with (g2g3)

5 = 1. Consider here the following options:

(a) g2, g5 with (g2g5)
3 = 1 ,

(b) g3, g5 with (g3g5)
2 = 1 .

For each, indicate explicitly the group elements corresponding to the copies of the funda-
mental domain tesselating the five triangular faces of the icosahedron around the 5-fold axis
representing g5 (i.e. three group elements per triangular face, and hence 15 group elements in
total). As in the lecture, indicate them explicitly on a drawing that represents those 5 faces,
and mark also the location of the symmetry axis corresponding to the second generator.
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4. Viruses and symmetry 1: Bluetongue (left) is a T = 13 virus and Herpes Simplex (right) is
a T = 16 virus.

For each of these viruses:

(a) determine the number of proteins and protein clusters of di↵erent types in the capsid

(b) determine whether their protein organisation has handedness

(c) draw their surface lattices, i.e the hexagonal Caspar-Klug lattice superimposed on one
of the 20 triangular faces of the icosahedron and mark the locations of the icosahedral
symmetry axes.

Are there any other T -numbers between T = 13 and T = 16?

5. Viruses and symmetry 2: Bacteriophage HK97 is a T = 7l virus obeying a rhomb tiling.
What is the number of proteins, pentamers and hexamers in its viral capsid?

6. Viruses and symmetry 3: L-A Virus is a virus infecting yeast:
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Given the tiling above, which is shown superimposed on two of the icosahedral triangular
faces, answer the following questions:

(a) How many proteins are there in the viral capsid?

(b) Does this correspond to a Caspar-Klug triangulation number?

(c) Does this virus have handedness?

7. Non-crystallographic Coxeter groups and root systems: The root system of the non-crystallographic
Coxeter group H2 is given by

� = {±↵1,±↵2,±(↵1 + ⌧↵2),±(↵2 + ⌧↵1),±(⌧↵1 + ⌧↵2)}

where ⌧ := 1
2(1 +

p
5) = 2 cos ⇡

5 , with simple system � = {↵1,↵2}. Note that � consists of
the vectors pointing to the vertices of a decagon.

(a) Using the definition of a Cartan matrix in terms of scalar products between the vectors
in the simple system (simple roots), convince yourself that the o↵-diagonal entries in the
Cartan matrix of H2 are given by �⌧ .

(b) Via an a�ne extension an extra row (a0j , j = 0, 1, 2) and column (aj0, j = 0, 1, 2) are
introduced in the Cartan matrix. Let ↵0 := �⌧(↵1+↵2) and consider the Cartan matrix
for {↵0,↵1,↵2} . Show that the o↵-diagonal elements a01 and a02 of this matrix are both
equal to 1� ⌧ .

8. A�ne extensions of Coxeter groups: An a�ne extended Coxeter group contains o↵-centre
reflections (a�ne reflections) that act on a vector v as follows:

raff↵ v = v + ↵� 2
(v,↵)

(↵,↵)
↵ .

Let r↵v = v � 2 (v,↵)
(↵,↵)↵ denote a reflection at a central plane orthogonal to ↵. Show that

composition of these two operations acts as a translation by ↵, i.e. show that

T↵v := raff↵ r↵v = v + ↵ .
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