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How Number Theory Enables a Secure Internet

Nigel P. Smart

If you use a mobile phone, have a games console, or use a variety of Internet services then
most likely you are utilizing the results of over 200 years of research in the mathematics of
elliptic curves. Elliptic curve based cryptography is all around us, yet it is the outcome of
hundreds of years of research into basic pure mathematics. It is a great story of how the
impact of mathematics cannot be predicted; indeed we shall see that not even mathematicians
can predict impact of their work 5-10 years ahead of time.

For want of sounding like an episode from The Big Bang Theory; Our story starts in ancient
Greece. It is well known that ancient Greek mathematics was concerned with geometry and
in particular that of the circle. In high school we learn about the functions sine, cosine and
tangent, which enable us to perform calculations with the circle. For example by computing
arc lengths, areas and the like. In addition the Greeks examined the geometry of the other
conic sections; the parabola and the ellipse. Both the circle, parabola and the ellipse can be
described by quadratic equations; and one of the most famous ancient Greek results was the
work of Pythagoras on integer solutions to the equation

x2 + y2 = z2.

We now jump forward hundreds of years to a series of what looks like disparate different
generalizations of the above ancient work. On one hand we have the famous generalisation
of Pythagoras by Fermat; namely “Fermat’s Last Theorem” where he examined the integer
solutions to the equation

xn + yn = zn.

On the other hand there was an interest in generalizing sine, cosine etc to the case of dealing
with arc lengths and areas of ellipses. An endeavor which led to the creation of the elliptic
functions; these are functions which are the natural extension of the sine and cosine functions
from school; and they arise in many areas of mathematics; for example in the solution of various
differential equations.

A final generalisation came from extending the quadratic equations considered by the
ancients to cubic equations. This turned out to be related to the elliptic functions above;
just as elliptic functions could be combined (or added) to form new elliptic functions it turned
out that on a wide class of cubic equations the solutions of the equation could also be combined
(or added) to form new equations. The equations which had this property ended up being called
“elliptic curves”, and it was found that the operation of obtaining new points from old ones
endowed the solutions of an elliptic curve with a group law.

We now fast forward to the 1970’s. In the intervening years the pure mathematical study of
these results appeared to grow further and further away from reality. The study of Fermat’s
Last Theorem produced some amazingly beautiful mathematics in the area known as Number
Theory; but none of this work would seem to have any application in what we would now call
“impact”. Indeed the famous British number theorist, writing around the time of the Second
World War, G.H. Hardy wallowed in the uselessness of number theory.
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Much of United Kingdom number theory from the Second World War onwards has been
focused on understanding the theory of elliptic curves. From early work of Mordell in Cambridge
[11] (whose work was then generalized by Weil), through to the work of Cassels on the Selmer
group attached to an elliptic curve [5]. The early computing era allowed Birch and Swinnerton-
Dyer to conduct (using the EDSAC computer in Cambridge) a series of ground breaking
experiments in trying to understand the theoretical properties of these curves [1, 2]. Indeed
by the 1970’s the pure mathematics community realized that elliptic curves provided an area
for investigation into some of the great unifying theories of pure mathematics; aiming to find
subtle connections between analysis, algebra and geometry.

Let us pause to just list some of the topics from pure mathematics developed up to the
point of the 1970’s which would probably be considered of little value at the time, but which
were related to these theoretical questions: p-adic numbers, modular curves, the Weil and Tate
pairings, class groups, class field theory,

We now turn to three different developments ranging over the decade of between 1975
and 1985. In the first development, Hardy’s puritan view of number theory was overturned
when Diffie, Hellman, Rivest, Shamir and Adleman [6, 12] invented the concept of public key
cryptography. This is a form of cryptography which seems intertwined with number theory; the
first schemes developed in the 1970’s were based on the difficulty of factoring large numbers.
Without public key cryptography the Internet as we currently know it could not exist; as it
would be impossible to securely transmit data without having pre-agreed some shared secret
key.

In a second development Rene Schoof was asked a relatively random question by Henri
Cohen (who was visiting Hendrik Lenstra in Amsterdam at the time). Rene was a student at
the time, and the question was whether there was a fast algorithm to compute the number of
points on an elliptic curve over a finite field. Rene answered the question in the affirmative
that evening, but decided to do nothing with the algorithm as this seemed to be a problem
completely lying within the realm of pure mathematics. Submitting the algorithm to a journal
Rene tagged on a relatively dull application to finding square roots in a finite field so as to
show some “application”. The paper was finally published in 1985 [14].

The resulting algorithm, now called Schoof’s algorithm, used much of the beautiful pure
mathematics developed over the previous 150 years. For example, in an extension by Atkin
and Elkies (which is the variant now implemented) modular forms are used in a vital way.

At around the same time Victor Miller was looking at an algorithm to compute the Weil
pairing, a mathematical object which had been invented so as to solve the problem of finding
the number of rational solutions to an elliptic curve equation. Which itself links to the prior
work of Mordell and Cassels on the Selmer group. Miller found that a prior statement of
Davenport that the function would be hard to compute was false. Indeed Miller found a very
efficient algorithm, now called Miller’s algorithm, but just like Schoof the algorithm was not
seen to be interesting as it had no obvious compelling application. It was not until 2004 that
Miller’s paper was finally published [10]; although a manuscript had been circulating for many
years previously.

So we now find ourselves in the mid 1980’s. We have public key cryptography and a bunch
of apparently useless mathematics lying around which are related to elliptic curves. At this
point Victor Miller [9] and Neil Koblitz [4] independently come up with the concept that
elliptic curves could be used to construct new public key cryptosystems. Not only that but the
resulting cryptographic systems would be more secure and more efficient than the ones based
on integer factoring. The invention of this Elliptic Curve Cryptography was announced in 1985
at two separate events.

However, a key obstacle remained. To produce elliptic curves for use in cryptography one
needed a method to compute the number of points on an elliptic curve over a finite field.
Luckily we already knew how to do this efficiently, due to Schoof’s algorithm published in the
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same year. Note, this is the same algorithm which had a few months previously been rejected
due to lack of application!

Before continuing with our narrative, it is worthwhile stopping to say that since the mid
1980’s even more advanced techniques have been applied to the computation of the number of
points on an elliptic curve, bringing in various areas of hitherto “theoretical” mathematics.
One algorithm is specially tailored to curves whose endormorphism ring is an order in a
quadratic number field with low class number; this algorithm uses class field theory to solve
the problem. Another method, Satoh’s algorithm, (now used for small finite fields) makes
use of p-adic numbers, isogeny cycles, the arithmetic-geometric mean amongst other things.
The generalisation to higher degree curves brings in the areas such as cohomology theory and
algebraic geometry.

However, despite Schoof’s algorithm being available, in the late 1980’s the existing imple-
mentation of Schoof’s algorithm were too slow. Therefore to implement early Elliptic Curve
based systems implementers turned to using curves for which the number of points was easy
to compute. The main class they settled on were the so-called supersingular curves. These are
curves whose endomorphism ring (the ring of maps from the curve to itself) is isomorphic to an
order (essentially a sub-ring) in a quaternion algebra. These are very special curves, since most
elliptic curves over finite fields have endomorphism ring isomorphic to an order in a quadratic
number field.

However in the early 1990’s an attack was found on supersingular curves which meant they
were not as secure as had at first been thought [8]. And what was the main trick needed to
implement this attack? None other than that other algorithm with no application, the one
used to compute the Weil and Tate pairing, i.e. Miller’s algorithm. Indeed, Miller’s work had
pointed at the fact that such an attack would exist. Luckily however by this time various
mathematical improvements and increases in computing power enabled the implementation
of Schoof’s algorithm. This enabled the easy switch to general curves (or “ordinary” elliptic
curves), and the increasing uses of elliptic curves in systems. As remarked at the beginning of
the piece, one can now find elliptic curves in almost all of the high-tech equipment we currently
use in our day to day lives. Indeed they are planned to be incorporated in the next generation
of chip-and-pin payment technology.

Returning to an early aspect of the story, we find in the mid 1990s the most celebrated
result of twentieth century mathematics; namely the proof by Wiles of Fermat’s Last Theorem
[15]. This is the highpoint of pure mathematical achievement, but it to is related to our story.
The proof of Fermat’s Last Theorem is intertwined with the theory of elliptic curves, indeed
the result follows from showing that a certain class of elliptic curves are “modular”. Here
the term modular means that they can be parametrized by complex functions which possess
remarkable symmetries. These complex functions are called modular forms; and the modular
forms are themselves related to the modular curves. The self same modular curves which arise
in Schoof’s algorithm.

But our story does not end there. For around eight years, until 2001, it was thought that
Miller’s algorithm provided a negative result in cryptography; namely that supersingular elliptic
curves were not as secure as ordinary elliptic curves. But the reduction in security is only
compared to the gold standard of ordinary curves. In 2001 a series of papers arose [3, 7, 13]
which showed how curves which possess efficiently computable pairings on them could be used
to solve a number of long standing problems in cryptography. Thus was born a whole new field
called “Pairing Based Cryptography”. At the heart of this new field was research to compute
the Weil and Tate pairings (and other pairings) highly efficiently; and all of this research follows
from Miller’s unpublished algorithm. Indeed this is why in 2004 Miller’s paper was eventually
published. At the time of writing, pairing based cryptography can be found in a number of
products.
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So finally we see that it is very hard to predict where pure mathematical research will lead
us. Even mathematicians themselves are unable to predict this, and often (as in the case of
Miller and Schoof) reject work due to its “inapplicability” despite major commercial impact
being just around the corner. Without the work of pure mathematicians over thousands of
years, and in particular the work on the number theory of elliptic curves performed since the
Second World War, we would today not have this important foundational technology for our
information age.
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