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The many faces of polyhedra

1. Pick’s theorem

Let L = Z2 ⊂ R2 be integer lattice, P be polygon with vertices in L (integral polygon)

Figure 1. An example of integral polygon

Let I and B be the number of lattice points in the interior of P and on its boundary respectively. In the example
shown above I = 4, B = 12.

Pick’s theorem. For any integral polygon P its area A can be given by Pick’s formula

(1) A = I+
B

2
− 1.

In particular, in our example A = 4+ 12
2
− 1 = 9, which can be checked directly.

The following example (due to Reeve) shows that no such formula can be found for polyhedra. Consider the
tetrahedron Th with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, h), h ∈ Z (Reeve’s tetrahedron, see Fig. 2).

Figure 2. Reeve’s tetrahedron Th

It is easy to see that Th has no interior lattice points and 4 lattice points on the boundary, but its volume is
Vol(Th) = h/6.
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2. Ehrhart theory

Let P ⊂ Rd be an integral convex polytope, which can be defined as the convex hull of its vertices v1, . . . , vN ∈
Zd:

P = {x1v1 + . . . xNvN, x1 + . . . xN = 1, xi ≥ 0}.
For d = 2 and d = 3 we have convex polygon and convex polyhedron respectively.

Define
LP(t) := |tP ∩ Zd|,

which is the number of lattice points in the scaled polytope tP, t ∈ Z.
Ehrhart theorem. LP(t) is a polynomial in t of degree d with rational coefficients and with highest coefficient
being volume of P:

LP(t) = Vol(P)t
d + · · ·+ 1.

LP(t) is called Ehrhart polynomial.

Define also Ehrhart series by

EhrP(z) =
∑
t∈Z≥0

LP(t)z
t.

Example 1. Let �d be the d-dimensional unit cube:

�d = {(x1, . . . , xd) : 0 ≤ xi ≤ 1} = [0, 1]d.

Then t�d = [0, t]d and Ehrhart polynomial is

L�d
(t) = (t+ 1)d.

The Ehrhart series is

Ehr�d
(z) =

∑
t≥0

(t+ 1)dzt =
1

z

∑
j≥1

jdzj =
1

z

(
z
d

dz

)d
1

1− z
.

In particular,

Ehr�1
(z) =

d

dz

1

1− z
=

1

(1− z)2
,

Ehr�2
(z) =

1

z

(
z
d

dz

)2
1

1− z
=

z+ 1

(1− z)3

Ehr�3
(z) =

1

z

(
z
d

dz

)3
1

1− z
=
z2 + 4z+ 1

(1− z)4

Ehr�4
(z) =

1

z

(
z
d

dz

)4
1

1− z
=
z3 + 11z2 + 11z+ 1

(1− z)5

The coefficients of the numerators are known as Eulerian numbers A(d, k), which count the permutations of
{1, 2, . . . , d} with k ascents.

Example 2. Let ∆d be the standard d-dimensional simplex:

∆d = {(x1, . . . , xd) : x1 + · · ·+ xd ≤ 1, xi ≥ 0}.
Then

t∆d = {(x1, . . . , xd) : x1 + · · ·+ xd ≤ t, xi ≥ 0}.
The Ehrhart polynomial is

L∆d
(t) =

(
d+ t

d

)
=

(t+ d)(t+ d− 1) . . . (t+ 1)

d!

and the Ehrhart series is

Ehr∆d
(z) =

∑
t≥0

(
d+ t

d

)
zt =

1

(1− z)d
.

Example 3. For integral polygon P

LP(t) = At
2 +

B

2
t+ 1,

where A is the area and B the number of boundary points of P.

The Ehrhart series is

EhrP(z) =
(A− B

2
+ 1)z2 + (A+ B

2
− 2)z+ 1

(1− z)3
.
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3. Ehrhart-Macdonald reciprocity

Let P be an integral convex polytope and define interior Ehrhart polynomial LP0(t) as the number of interior
lattice points in tP.

There is a remarkable Ehrhart-Macdonald reciprocity: for any convex integral polytope of dimension d

LP0(t) = (−1)dLP(−t),(2)

EhrP0(z) = (−1)d+1EhrP(
1

z
)(3)

where the latter is understood as equality of rational functions (but not formal series).

Example. For unit cube we have

L�0
d
(t) = (t− 1)d = (−1)d(−t+ 1)d = (−1)dL�d

(−t).

For a polygon P

LP0(t) = At2 −
B

2
t+ 1 = LP(−t).

4. Exercises-I

1. Prove Pick’s formula for any integral triangle. Hint: see Fig.3.

Figure 3. Embedding of an integral triangle into a rectangle

2. Find Ehrhart polynomial and Ehrhart series for the standard octahedronO with the vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1)
and pyramid P (see Figure 4).

Figure 4. Standard octahedron O and pyramid P

3. Check the Ehrhart-Macdonald reciprocity for the standard d-simplex ∆d.

4. Find the Ehrhart polynomials LTh(t) for Reeve’s tetrahedron and show that its coefficients could be negative.
Use the Ehrhart-Macdonald reciprocity to find LT0

h
(t).
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5. Generating functions of sets

Let S ⊂ Rd be a subset. The generating function (or integer-point transform) of S is defined by

σS(z) :=
∑

m∈S∩Zd

zm,

where m = (m1, . . . ,md) ∈ Zd, z = (z1, . . . , zd) ∈ Cd and

zm = zm1

1 . . . zmd

d .

Example. For d = 1 and S = [0,+∞) we have

σS(z) =
∑

m∈Z≥0

zm =
1

1− z
,

for S = [a, b], a, b ∈ Z we have

σS(z) =
∑

a≤m≤b

zm =
za − zb+1

1− z
.

A cone K ⊂ Rd is a set of the form

K = {v+ λ1w1 + · · ·+ λNwN : λi ≥ 0},
v is called apex and wk are generators of the cone K. The cone is called rational if wk ∈ Zd for all k = 1, . . . ,N.

We will consider only d-dimensional cones (or, d-cones) with w1, . . . , wN spanning the whole Rd. The d-cone
K is simplicial if N = d.

For simplicial cones the generating functions can be computed effectively. We demonstrate this in 2 dimensions.

Let v = (0, 0), w1 = (1, 1), w2 = (−2, 3), see the corresponding cone K on Fig.5. The half-open set

Π := {λ1w1 + λ2w2 : 0 ≤ λ1, λ2 < 1}
is called the fundamental parallelogram.

Figure 5. The cone K with its fundamental parallelogram Π

The generating function of the lattice generated by w1 and w2 has the form

σ(z) =
∑

m∈Z2
≥0

zm1w1+m2w2 =
1

(1− zw1)(1− zw2)
=

1

(1− z1z2)(1− z
−2
1 z

3
2)
.

Adding the contribution from the lattices shifted by the integer points inside Π we have the full generating function

σK(z) =
1+ z2 + z

2
2 + z

−1
1 z

2
2 + z

−1
1 z

3
2

(1− z1z2)(1− z
−2
1 z

3
2)

.

Note that the numerator is simply the generating function of Π:

σΠ(z) = 1+ z2 + z
2
2 + z

−1
1 z

2
2 + z

−1
1 z

3
2.

For a general rational simplicial d-cone K = {λ1w1 + · · ·+ λdwd : λi ≥ 0}, we have

σv+K =
σv+Π(z)

(1− zw1) . . . (1− zwd)
,(4)

where Π is half-open fundamental parallelepiped

Π := {λ1w1 + · · ·+ λdwd : 0 ≤ λ1, . . . , λd < 1}.
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6. Cone of P and proof of Ehrhart’s theorem

Let us embed polytope P ⊂ Rd with vertices v1, . . . , vN ∈ Rd into Rd+1 by adding xd+1 = 1:

w1 = (v1, 1), . . . , wN = (vN, 1)

and consider the cone

cone(P) = {λ1w1 + · · ·+ λdwd : λi ≥ 0}.
The original P can be recovered from the cone of P by cutting it with the hyperplane xd+1 = 1, while its scaled
versions tP are intersections with xd+1 = t (see Figure 5).

Figure 6. The cone of P with the dilates of P

Now the key observation is that

σcone(P)(1, . . . , 1, zd+1) = 1+
∑
t≥1

σtP(1, . . . , 1)z
t
d+1 = 1+

∑
t≥1

|tP ∩ Zd|ztd+1 = 1+
∑
t≥1

LP(t)z
t
d+1,

so

σcone(P)(1, . . . , 1, z) = 1+
∑
t≥1

LP(t)z
t = EhrP(z).(5)

Now we can prove Ehrhart’s theorem as follows.

First triangulate P into simplices to reduces the claim to the case when P is a simplex. From formula (4) we can
deduce that

σcone(P)(1, . . . , 1, z) =
σΠ(1, . . . , 1, z)

(1− z)d+1

with σΠ(1, . . . , 1, z) being polynomial in z of degree at most d. Now the theorem follows from the claim that the
Taylor coefficients ak of a rational function

p(z)

(1− z)d+1
=

∑
k≥0

akz
k

with p(z) polynomial of degree d such that p(1) 6= 0, are polynomial in k of degree d.

From the theory of Riemann integral we have

vol(P) = lim
N→∞

|P ∩ ( 1
N
Z)d|

Nd
= lim
N→∞

|NP ∩ Zd|
Nd

= lim
N→∞

LP(N)

Nd
= cd,

where

LP(k) = cdk
d + . . . c0.

Note that we know also c0 = 1, but other coefficients of Ehrhart polynomial are a bit of mystery, and can be
even negative as we have seen in Reeve’s case.

It is interesting that for the numerator of the Ehrhart series all the coefficients are non-negative:

Stanley’s non-negativity theorem. For an integral convex polytope P with

EhrP(z) =
hdz

d + hd−1z
d−1 + · · ·+ h0

(1− z)d+1

we have h0, h1, . . . , hd ≥ 0.
For a simplex P this follows from the interpretation of hk as the number of integer points in the fundamental
parallelepiped Π with xd+1 = k (see formula (4)).
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7. Tangent cones and Brion’s theorem

For any vertex v of a convex polytope P one can naturally define tangent cone as

Kv := {v+ λ(x− v) : x ∈ P, λ ∈ R≥0}
(see Fig. 7).

Figure 7. Tangent cones in dimension 2 and 1

Brion’s theorem. For any integral convex polytope P we have the identity of rational functions

σP(z) =
∑

v a vertex of P

σKv
(z)(6)

Example. For P = [a, b] we have

σS(z) =
∑

a≤m≤b

zm =
za − zb+1

1− z
=

za

1− z
+

zb

1− 1/z
=

∑
m≥a

zm +
∑
m≤b

zm = σKa
(z) + σKb

(z).

The general proof is based on a curious identity ∑
m∈Z

zm ≡ 0,

where the left hand side is understood as the sum of two rational functions:∑
m∈Z

zm =
∑
m≥a

zm +
∑
m<a

zm =
za

1− z
+

za−1

1− 1/z
=

za

1− z
+

za

z− 1
≡ 0.

Note that this identity does not make much sense in analysis since two last series never converge simultaneously!

As a corollary we have one more proof that LP(t) is polynomial. Indeed, it is enough to prove it for simplices ∆,
for which we have

L∆(t) = lim
z→1

σt∆(z) = lim
z→1

∑
v a vertex of P

σtKv
(z) = lim

z→1

∑
v a vertex of P

ztvσK0
v
(z),

where K0v is the cone Kv shifted to 0. We know that σK0
v
(z) is a rational function with the denominator vanishing

at z = 1 (see formula (4)), so the limit z→ 1 should be computed using the L’Hôpital’s rule. It is clear that the
result will polynomial in t.

8. Simple polytopes and Dehn-Sommerville relations

A convex polytope P ⊂ Rd is called simple if tangent cone of every vertex is simplicial.

For example, tetrahedron, cube and dodecahedron are simple, but octahedron and icosahedron are not.

Define f-vector as f = (f0, . . . , fd), where fk is the number of k-dimensional faces with fd := 1. For example,
f-vector of cube is (8, 12, 6, 1).

Can one describe all possible f-vectors of convex polytopes? In turns out that for simple polytopes it is possible.

Define f-polynomial as

f(t) :=

d∑
j=0

fjt
j

and h-polynomial as

h(t) := f(t− 1) =

d∑
j=0

hjt
j.
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The coefficients hk satisfy remarkable Dehn-Sommerville relations

hk = hd−k.(7)

In particular, h0 =
∑d
j=0(−1)

jfj = hd = 1, which implies the d-dimensional Euler relation

χ :=

d−1∑
j=0

(−1)jfj = 1+ (−1)d−1.

The right hand side is called Euler characteristic of the boundary ∂P, which is topologically equivalent to a
sphere Sd−1. The claim is that it does not depend on P (in that case P need not to be simple).

The classical Euler relation corresponds to the polyhedral case d = 3:

f0 − f1 + f2 = 2.

It is known (due to Stanley) that hk must satisfy the inequalities

h0 ≤ h1 ≤ · · · ≤ h[d/2],(8)

but there are additional (McMullen’s) inequalities to be satisfied to make these conditions necessary and sufficient
for vector f to be f-vector of a simple convex polytope.

Example. For the cube we have
f(t) = t3 + 6t2 + 12t+ 8,

h(t) = (t− 1)3 + 6(t− 1)2 + 12(t− 1) + 8 = t3 + 3t2 + 3t+ 1.

9. Exercises-II

1. Find the generating function σv+K(z1, z2) of the cone v+ K with v = (−3, 1) and

K = {λ1(2, 1) + λ2(−1, 3) : λ1, λ2 ≥ 0}.

2. For a rational cone K = {λ1w1 + λ2w2 : λ1, λ2 ≥ 0} ⊂ R2 consider v ∈ R2 such that the cone v+K does not
have any integer points on the boundary. Prove that for the fundamental parallelogram Π

v+ Π = −(−v+ Π) +w1 +w2,

and hence

σ−v+K(z1, z2) = σv+K(
1

z1
,
1

z2
),

where both sides should be interpreted as rational functions. Deduce Stanley reciprocity

σK0(z1, . . . , zd) = (−1)dσK(
1

z1
, . . . ,

1

zd
)

for d = 2. Use Stanley reciprocity to prove Ehrhart-Macdonald reciprocity for integral convex d-polytopes

EhrP0(z) = (−1)d+1EhrP(
1

z
).

3. Check Brion’s theorem for the triangle ∆ with vertices (0, 0), (3, 0), (1, 3).

4. Compute h-polynomial for all remaining platonic solids: tetrahedron, octahedron, dodecahedron and icosahe-
dron, and check if Dehn-Sommerville relations are satisfied. The same question for the permutahedron (which
is truncated octahedron) and truncated icosahedron (which is a polyhedral model of football), see Fig. 8.

Figure 8. Permutahedron and truncated icosahedron

A.P. Veselov


