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The	paper	contains	two	theorems

The	first	theorem	is	the	one	she	is	most	famous	
for	among	physicists

“For	every	symmetry,	a	conservation	law”

The	second	theorem	is	also	used	by	physicists
e.g.	general	relativity,	the	Bianchi	identities

Emmy Noether,	‘Invariant	Variation	Problems’,	1918

Why	did	Emmy	Noether derive	these	theorems?
What	puzzle	was	she	trying	to	solve?



When	Emmy	Noether formulated	her	two	theorems,	what	puzzle	was	
she	trying	to	solve?

Answer:	a	puzzle	about	the	status	of	energy	conservation	in	Einstein’s	
General	Theory	of	Relativity

More	specifically:	she	offered	a	proof	of	a	claim	made	by	Hilbert	(1917)	that	
energy	conservation	has	a	different	status	in	Einstein’s	theory,	and	that	this	
is	characteristic	of	“generally	covariant”	theories

Important:	Noether’s proof	needs	both of	her	theorems.
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Hilbert,	1917,	response	to	Klein
“With	your	considerations	on	the	energy	theorem	I	am	in	full	factual	agreement:	with	Emmy	
Noether,	whose	help	I	called	upon	for	clarification	of	questions	pertaining	to	the	analytical	
treatment	of	my	energy	theorem	more	than	a	year	ago,	I	found	accordingly	that	the	energy	
components	set	up	by	me,	just	as	those	of	Einstein,	can	be formally	transformed	by	means	of	
the	Lagrangian differential	equations	.	.	. of	my	first	contribution,	into	expressions	whose	
divergence	identically	,	that	is	without	reference	to	the	Lagrangian equations	[	.	.	. ]	vanishes.	

Since	on	the	other	hand	the	energy	equations	of	classical	mechanics,	of	the	theory	of	elasticity,	
and	of	electrodynamics,	are	fulfilled	only	as	a	consequence	of	the	Lagrangian differential	
equations	of	these	problems,	then	it	is	justified	if	you	accordingly	do	not	recognise in	my	
energy	equations	the	analogues	of	those	of	your	theory.

Certainly	I	maintain	that	for	general relativity,	that	is,	in	the	case	of	general	invariance	of	the	
Hamiltonian function,	[such]	energy	equations	.	.	. in	general	do	not	exist	.	.	.	I	might	designate	
this	circumstance	as	a	characteristic	trait	of	the	general	theory	of	relativity.	For	my	assertion,	
mathematical	proof	should	be	adduced.”
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Noether,	‘Invariant	Variation	Problems’,	1918

Concluding	section	of	her	paper:

“From	the	foregoing,	finally,	we	also	obtain	the	proof	of	a	Hilbertian
assertion	about	the	connection	of	the	lack	of	proper	energy	theorems	
with	“general	relativity”	(Klein’s	first	note,	Göttinger Nachr.	1917,	Reply,	
1st para),	and	even	in	a	generalized	group	theoretic	version.”

What’s	the	issue	with	“energy	theorems”	in	connection	with	“general	relativity”?



Summer	1915:	Einstein	visits	Göttingen
• Einstein	has	been	working	towards	a	theory	of	
gravity…
• 1905,	publication	of	special	relativity
• since	1912,	series	of	papers	towards	a	theory	of	gravity
• December	1915,	publication	of	the	Einstein	Field	Equations	of	
general	relativity	

… but	he	has	not	yet	arrived	at	general	relativity

• Einstein	gives	six	two-hour	lectures	on	
gravitation	theory	(was	Noether in	the	
audience?),	and	meets	Hilbert

• “general	covariance”	and	“energy	conservation”	
play	a	prominent	role	in	his	thinking
• the	significance	of	“general	covariance”	for	Einstein
• the	role	of	energy	conservation	in	relation	to	general	
covariance
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Summer	1915:	Einstein	visits	Göttingen

Three	things	Hilbert	seems	to	have	taken	away:

• search	for	generally	covariant	field	equations
• need	some	sort	of	restriction
• use	energy	conservation	to	get	that	restriction
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Hilbert	adopts	general	covariance	as	an	axiom	and	investigates	it	consequences	for	
theories	of	gravitation	and	electromagnetism

He	sees	that	any	generally	covariant	field	equations	for	electromagnetism	and	gravity	
will	have	“dependency	relations”	among	them

He	thinks	all	will	be	well	physically	because	of	energy	conservation
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December	1915:	Einstein	publishes	the	Einstein	Field	Equations	of	his	
General	Theory	of	Relativity

• generally	covariant

• energy	conservation	no	longer	used	to	restrict	the	covariance	of	the	field	
equations

This	leaves	Hilbert	with	two	puzzles
• what	about	the	causality	problem	(dependency	relations)?
• what	happens	to	energy	conservation?

Hilbert’s	assertion:
Conservation	of	energy	in	generally	covariant	theories	has	a	“different	
status”	than	in	theories	that	are	not	generally	covariant
Reason:	the	dependency	relations	that	arise	among	the	field	equations	
due	to	general	covariance



Hilbert,	1917,	response	to	Klein
“With	your	considerations	on	the	energy	theorem	I	am	in	full	factual	agreement:	with	Emmy	
Noether,	whose	help	I	called	upon	for	clarification	of	questions	pertaining	to	the	analytical	
treatment	of	my	energy	theorem	more	than	a	year	ago,	I	found	accordingly	that	the	energy	
components	set	up	by	me,	just	as	those	of	Einstein,	can	be formally	transformed	by	means	of	
the	Lagrangian differential	equations	.	.	. of	my	first	contribution,	into	expressions	whose	
divergence	identically	,	that	is	without	reference	to	the	Lagrangian equations	[	.	.	. ]	vanishes.	

Since	on	the	other	hand	the	energy	equations	of	classical	mechanics,	of	the	theory	of	elasticity,	
and	of	electrodynamics,	are	fulfilled	only	as	a	consequence	of	the	Lagrangian differential	
equations	of	these	problems,	then	it	is	justified	if	you	accordingly	do	not	recognise in	my	
energy	equations	the	analogues	of	those	of	your	theory.

Certainly	I	maintain	that	for	general relativity,	that	is,	in	the	case	of	general	invariance	of	the	
Hamiltonian function,	[such]	energy	equations	.	.	. in	general	do	not	exist	.	.	.	I	might	designate	
this	circumstance	as	a	characteristic	trait	of	the	general	theory	of	relativity.	For	my	assertion,	
mathematical	proof	should	be	adduced.”
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General	covariance	and	energy	conservation
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Summer	1915:	Einstein	has	been	working	towards	a	theory	of	gravity,		but	he	has	not	yet	arrived	at	general	
relativity
• general	covariance	and	energy	conservation	play	a	prominent	role	in	his	thinking
• thinks	that	no	generally	covariant	theory	is	to	be	had,	restricts	the	covariance	of	his	field	equations	using	

energy	conservation

Hilbert	seized	on	general	covariance,	and	put	it	at	the	heart	of	his	own	investigations	into	field	equations	for	
physics
• sees	that	any	generally	covariant	field	equations	for	electromagnetism	and	gravity	will	have	

“dependency	relations”	among	them
• thinks	all	will	be	well	physically	because	of	energy	conservation	

December	1915:	Einstein	publishes	the	Einstein	Field	Equations,	which	are	generally	covariant,	and	for	
which	energy	conservation	no	longer	plays	any	restricting	role

Hilbert	revisits	his	own	conclusions	concerning	the	consequences	of	general	covariance
Asserts	that	energy	conservation	in	generally	covariant	theories	has	a	“different	status”	than	in	theories	
that	are	not	generally	covariant,	due	to	the	dependency	relations	that	arise	among	the	field	equations,	in	
turn	due	to	general	covariance	
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Noether’s first	theorem:	can	be	used	to	connect	
invariance	properties	of	e.g.	action	functionals
to	conservation	laws

Noether’s second	theorem:	can	be	used	to	show	
dependency	relations	among	the	field	equations

Using	them	both	together:
“From	the	foregoing,	finally,	we	also	obtain	the	proof	of	
a	Hilbertian assertion	about	the	connection	of	the	lack	
of	proper	energy	theorems	with	“general	relativity”…,	
and	even	in	a	generalized	group	theoretic	version.”

Emmy Noether,	‘Invariant	Variation	Problems’,	1918



Noether’s theorems
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where
• k is	one	of	the	𝜌 parameters
• Ei is	the	Euler	derivative	for	the	field	i
• the	form	that	𝜉#$, 𝑎#$, and	𝑏#$, take	depend	on	
the	form	of	the	invariance	transformation



Noether’s theorems	
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Mathematical	theorems	formulated	using	
• variational techniques
• group	theory,	Lie	groups

Both	theorems	begin	from	the	same	variational problem,	applied	to	some	S (an	integral	of	some	function	
of	independent	variables,	dependent	variables,	and	their	derivatives):	

If	the	first	order	functional	variation	in	S vanishes	for	an	arbitrary	region	of	integration,	what	general	
conditions	must	hold?

Theorem	I	considers	the	special	case	where	S is	invariant	under	a	continuous	group	of	transformations	
depending	on	constant parameters.

• finite	groups,	“global”	transformations	
• the	variations	we	are	consider	are	infinitesimal	global transformations	that	leave	S invariant
• (“global”	symmetries	are	the	ones	we	are	familiar	with	from	“classical”	theories)

Theorem	II	considers	the	special	case	where	S is	invariant	under	a	continuous	group	of	transformations	
depending	on	arbitrary	functions	of	the	independent	variables.	

• infinite	groups,	“local”	transformations	
• the	variations	we	consider	are	infinitesimal	local transformations	that	leave	S invariant
• (the	“general	covariance”	of	the	Einstein	Field	Equations	is	an	example	of	a	“local”	symmetry)



Noether’s theorems
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Theorem	I	considers	the	special	case	where	S is	invariant	under	a	continuous	group	of	
transformations	depending	on	constant parameters.

For	every	constant	parameter,	there	is	an	
expression	(in	terms	of	the	variables	and	their	
derivatives)	whose	divergence	vanishes	when	
the	Euler-Lagrange	equations	are	satisfied When	Ei=0,	we	arrive	at	a	continuity	equation

Theorem	II	considers	the	special	case	where	S is	invariant	under	a	continuous	group	of	
transformations	depending	on	arbitrary	functions	of	the	independent	variables.	
For	every	arbitrary	function,	there	is	a	dependency
among	the	variables	and	their	derivatives	that	
takes	a	specific	form…



Hamilton’s	Principle	and	Noether’s Problem	compared

Hamilton’s	Principle:
• end	points	fixed
• arbitrary	variations
• require	the	variation	in	the	
action	to	vanish
• upshot:	Euler-Lagrange	
equations

Noether’s Problem:
• end	points	not	fixed
• specific	variations…
• … chosen	to	be	those	for	which	
the	variation	in	the	action	
vanishes
• upshot:	Noether’s theorems
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Noether’s theorems
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Theorem	I	considers	the	special	case	where	S is	invariant	under	a	continuous	group	of	transformations	
depending	on	constant parameters.

For	every	constant	parameter,	there	is	an	expression	(in	
terms	of	the	variables	and	their	derivatives)	whose	
divergence	vanishes	when	the	Euler-Lagrange	
equations	are	satisfied

Theorem	II	considers	the	special	case	where	S is	invariant	under	a	continuous	group	of	transformations	
depending	on	arbitrary	functions	of	the	independent	variables.	
For	every	arbitrary	function,	there	is	a	dependency among	the	variables	and	their	derivatives	that	
takes	a	specific	form…

“From	the	foregoing,	finally,	we	also	obtain	the	proof	of	a	Hilbertian assertion	about	the	
connection	of	the	lack	of	proper	energy	theorems	with	“general	relativity”…,	and	even	in	
a	generalized	group	theoretic	version.”

When	Ei=0,	we	arrive	at	a	continuity	equation



Noether’s theorems:	the	proof	of	Hilbert’s	assertion
When	our	theory	is	invariant	under	
global	transformations	only,
Noether’s first	theorem	applies,	and	
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yields	a	“proper”	conservation	
law.

Specifically:																	

follows	as	a	consequence	of	Ei=0

When	our	theory	is	invariant	under	local	
transformations,	Noether’s second	theorem	applies,	and	
there	are	dependencies	among	the	Euler	derivatives.
When	the	global	group	of	transformations	is	a	subgroup	
of	the	local	group,

follows	as	a	consequence	of	these	dependencies,	and	is	
therefore	“improper”.

In	general	relativity,	for	which	the	field	equations	
are	generally	covariant,	energy	conservation	
becomes	“improper”.



But	what	is	the	physical	significance	of	this	
mathematical	result?
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Hilbert	and	Klein	think	that	the	status	of	energy	conservation	is	different	in	
generally	covariant	theories:	the	energy	theorems	become	“mathematical	
identities”	rather	than	being	of	physical	significance.

Einstein	disagrees.	He	writes	to	Klein	(13	March	1918):	“I	do	not	find	your	remark	
about	my	formulation	of	the	conservation	laws	appropriate.”

How	do	Noether’s theorems	help	us	think	about	this?



From	Noether’s first	and	second	theorems	we	know:

In	non-generally	covariant	theories:	
the	divergence	of	the	energy	expression	vanishes	only	as	consequence	of	the	laws,	as	
Hilbert	said.

In	generally	covariant	theories:	
• general	covariance	leads	to	a	lack	of	independence	among	the	Euler	derivatives
• these	dependency	relations	lead	to	the	energy	expression	having	a	particular	form
• the	divergence	of	the	energy	expression	vanishes	in	virtue	of	this	form,	independently	

of	the	field	equations
so	in	this	sense	(of	not	depending	on	the	field	equations,	but	rather	on	their	mathematical	
form)	Hilbert	and	Klein	are	right

But:
the	dependency	relations	of	the	second	theorem	are	not	always	physically	empty:	they	
express	dependencies	among	the	fields	(e.g.	between	the	matter	fields	and	the	metric	in	
general	relativity)	and	so	need	not	lack	physical	significance.	In	this	sense,	Einstein	was	
right.
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Einstein	on	Noether’s theorems

Einstein	wrote	to	Hilbert:	“Yesterday	I	received	from	Miss	Noether a	
very	interesting	paper	on	invariants.	I’m	impressed	that	such	things	can	
be	understood	in	such	a	general	way.	The	old	guard	at	Göttingen
should	take	some	lessons	from	Miss	Noether!	She	seems	to	know	her	
stuff.”
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When	Emmy	Noether formulated	her	two	theorems,	what	puzzle	was	
she	trying	to	solve?

Answer:	a	puzzle	about	the	status	of	energy	conservation	in	Einstein’s	
General	Theory	of	Relativity

More	specifically:	she	offered	a	proof	of	a	claim	made	by	Hilbert	(1917)	that	
energy	conservation	has	a	different	status	in	Einstein’s	theory,	and	that	this	
is	characteristic	of	“generally	covariant”	theories

Important:	Noether’s proof	needs	both of	her	theorems.
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This	talk	draws	on	my	D.Phil.	completed	under	the	direction	of	Harvey	Brown;	joint	research	on	Noether’s theorems	with	
Harvey	Brown;	and	K.	Brading (2005)	“A	note	on	General	Relativity,	Energy	Conservation,	and	Noether’s Theorems”,	in	The	
Universe	of	General	Relativity,	Einstein	Studies	11,	ed.	A.	J.	Kox and	J.	Eisenstaedt,	125-135.


