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We have heard so far:

Lie symmetries =⇒ conservation laws; Noether (1918)

Why were they derived? their significance

This talk:

Combat expression swell: use invariants and moving frames

Discrete Noether’s Theorem - embedding the physics via

the Lie symmetry into the numerics



Noether’s Theorem relates to the following problem. Suppose

we have some set of smooth functions, for example,

{f : Ω ⊂ R4 → R3 | f smooth }

and we consider a functional,

f 7→
∫

Ω
L(t,x, f,∇f) dxdt ∈ R.

We seek those f which minimise or maximise this quantity,

usually subject to some boundary conditions.

The integrand, called a Lagrangian, quantifies something

physically important, such as

• distance or time traveled by a particle,
• surface area spanned by the graph of f ,
• a gravitational field subject to some given matter distribution, or

• an electromagnetic field subject to some charge distribution.



{f : Ω ⊂ R4 → Rp | f smooth }

f 7→
∫

Ω
L(t,x, f,∇f) dxdt ∈ R.

The function f extremising the functional satisfies a differential

system, the Euler–Lagrange equations, Ei(L) = 0, i = 1, 2, p.

Noether: If the Lagrangian is invariant under a Lie group

symmetry, there are guaranteed conservation laws;

∑
i

QiEi(L) +
∂

∂t
A0(t,x, f) +

3∑
1

∂

∂xj
Aj(t,x, f) = 0.

The proof is constructive.



The quantity, A0 in the conservation law, is the interesting

quantity.

Symmetry A0

translation in time Energy

translation in space Linear Momenta

rotation in space Angular Momenta

gauge symmetry Charge

spatial diffeomorphisms Potential Vorticity

The motivation for Noether’s Theorem was the conservation of

energy in general relativity.



History and Philosophy:

Series of papers by Katherine Brading, Duke University.

Yvette Kosman-Schwarzbach, The Noether Theorems -

Invariance and Conservation, Springer, 2011.

The complete formulae:

P.J. Olver: Applications of Lie groups to differential equations,

Springer Verlag, 1st edition 1886, 2nd edition, 1993.

Implementation:

Maple’s DifferentialGeometry package, development led by I.A.

Anderson.



How to calculate Euler Lagrange equations:

partial differentiation and integration by parts!!

0 = d
dε|ε=0L[u+ εv]

= d
dε|ε=0

∫ b
a L(x, u+ εv, ux + εvx, uxx + εvxx, . . .) dx

=
∫ b
a

(
∂L
∂uv + ∂L

∂ux
vx + ∂L

∂uxx
vxx + . . .

)
dx

=
∫ b
a

[(
∂L
∂u −

d
dx

∂L
∂ux

+ d2

dx2
∂L
∂uxx

+ . . .

)
v

+ d
dx

(
∂L
∂ux

v + ∂L
∂uxx

vxx −
(

d
dx

∂L
∂uxx

)
v + . . .

)]
dx

=
∫
E(L)v dx+

[
∂L
∂ux

v + . . .
]b
a



The 1-d problem: we have a functional, from the set of smooth

curves defined on [a, b] ⊂ R,

(x, u(x)) 7→
∫ b
a
L(x, u(x), ux, uxx, . . . , u(nx)) dx ∈ R

The curves which extremize this functional solve the Euler

Lagrange equation

Eu(L) = 0.

If the integrand is invariant under a Lie group action, then

Noether’s Theorem

Q · Eu(L) +
d

dx
A = 0,

guarantees first integrals of this differential equation.



Running Example: projective SL(2) action

g · x = x, g · u =
au+ b

cu+ d

g =

 a b

c d

 , ad− bc = 1

Via the chain rule, induce an action on ux etc:

g · ux =
∂(g · u)

∂(g · x)
=

ux

(cu+ d)2

Lowest order invariant is the so-called Schwarzian derivative,

V =
uxxx

ux
−

3

2

u2
xx

u2
x

:= {u;x}.



Suppose our Lagrangian is

L(x, u, ux, . . . , uxxxxx) dx =

( d2

dx2
{u;x}

)2

+
1

2
{u;x}2

 dx.

Then this is invariant under the induced action of SL(2) and

there are three first integrals, one for each dimension of SL(2).

The Euler–Lagrange equation has order 10, and one of the first

integrals is:



Using Maple’s DifferentialGeometry package



We can use the Lie group action to cut down the expression

swell. We can use the power of the Lie group based moving

frames to derive

• Results using a trivariational complex and exterior calculus:

I. Kogan and P.J. Olver, Acta Appl. Math 76 (2003)

• Results, directly using the invariant calculus, with links to Lie

group integrators:

ELM, A practical guide to the invariant calculus, Cambridge

Univ., Press., 2010.

T.M.N. Gonçalves and ELM, Moving frames and Noether’s

conservation laws – the general case. Forum of Math., Sigma,

(2016).



From mathematical wallpaper to structure
Set V = {u;x}, the Schwarzian derivative. Then the
Euler–Lagrange equation Eu(L) = 0 for

u 7→
∫
L(V, Vx, . . . , V(nx)) dx

in terms of V is

H∗(EV (L)) = −(
∂3

∂x3
+ 2V

∂

∂x
+ Vx)(EV (L)) = 0

The operator in front of EV (L) is easily calculated, it comes
from the identity, or syzygy, connecting the two invariants,

V = {u;x}, W =
ux

ut
,

∂

∂t
V = H(W )

where t is a dummy variable chosen to effect the variational
calculation.



For Lagrangians of the form L[u] =
∫
L(V, Vx, . . .) dx where

V = {u;x},

c =


a2 −ac −c2

−2ab ad+ bc 2dc

−b2 bd d2


︸ ︷︷ ︸

R(g)−1

∣∣∣∣∣∣∣∣∣∣∣
g=ρ


∂2

∂x2E
V (L) + V EV (L)

−2 ∂
∂xE

V (L)

−2EV (L)



where

ρ : a =
1
√
ux
, b = −

u
√
ux
, c =

uxx

2(ux)3/2
, ad−bc = 1.

• R(gh) = R(g)R(h), and R(ρ(u, ux, uxx)) is equivariant

Which representation yields R(g)? How to find ρ? And how to
calculate the vector of invariants directly?



Answers and observations:
c1

c2

c3

 =


a2 −ac −c2

−2ab ad+ bc 2dc

−b2 bd d2


︸ ︷︷ ︸

∣∣∣∣∣∣∣∣∣∣∣
g=ρ


∂2

∂x2E
V (L) + V EV (L)

−2 ∂
∂xE

V (L)

−2EV (L)



ρ : a =
1
√
ux
, b = −

u
√
ux
, c =

uxx

2(ux)3/2
, ad−bc = 1.

• R(g) is the Adjoint representation of SL(2) on its Lie algebra

• We have three equations for u, ux and uxx. Writing the
vector of invariants as (v1, v2, v3)T and simplifying yields

4c1c3 + (c2)2 = 4v1v3 + (v2)2

v3ux = −c1u2 + c2u+ c3



In general, to solve an invariant ODE of the form

∆(x, V, Vx, Vxx, . . . , Vnx) = 0, with V = {u;x}, once you have

solved for V , you are faced with solving

uxxx

ux
−

3

2

u2
xx

u2
x

= V (x)

for u, However, a moving frame satisfies a linear differential

equation, in this case

ρx =

 0 −1

1
2{u;x} 0


︸ ︷︷ ︸

∈sl(2)

ρ

so Lie group integrators can be brought to bear. Further, it

can be seen that u = ρ−1 · 0, so that once you have the frame,

you have u without further integration.



Zadra and ELM: The numerical Lie group integrators do indeed

commute when used in different directions, and can therefore

be used to integrate conservation laws in more than one

dimension.



Many authors have worked on Noether’s laws for finite

difference Lagrangians, including Hereman, Peng, Hydon, ELM,

. . .

ELM, Rojo, Hydon and Peng: 80pp on moving frames and

finite difference Noether’s Theorem, Parts 1 and 2, now

available on the ArXiv.

The key to getting the finite difference approximation to match

the smooth laws, seems to be, to match the smooth with the

discrete moving frames.

Example: Euler’s Elastica: match famous frame for SE(2) with

the obvious matching discrete frame, use this to read off the

discrete invariant which matches Euclidean curvature.







To incorporate the physics into the numerical model, need to get round the
Ge and Marsden “no go” theorem, so instead:

♦ make the discrete Lagrangian to be

♥ invariant under the induced action on the approximation data, and

♥ have the correct continuum limit

♦ write down the exactly conserved (in approximation space), discrete
Noether law

♦ prove the discrete Euler–Lagrange equation and the discrete conservation

laws, converge to the desired smooth equations and laws in some useful

sense.

ELM and Pryer: Noether-type Discrete Conserved Quantities arising from a

Finite Element approximation of a variational problem, FoCM, 17 (3) 2017.



Challenge: find where the group action has gone to!



For Finite Difference methods, where the approximation data is

the value at a point, you have to have the coordinates of the

independent variables as new dependent variables, whose values

are referred to a fixed (dummy) grid.

For Finite Elements, where the approximation data takes the

form of average values over edges and faces, we can induce

actions as follows,∫
σ
f(x, u) dx 7→

∫
σ
f(g · x, g · u)

∂(g · x)

∂x
dx.



Recall the link between extremisation and Noether’s laws starts

with:

0 =︸ ︷︷ ︸
at extremal

d

dε

∣∣∣
ε=0

∫
L(x, u+ εv, ux + εvx, . . . , u(nx) + εv(nx)) dx

versus

0 =︸ ︷︷ ︸
invariance

d

dt

∣∣∣
t=0

∫
L(g(t)·x, g(t)·u, g(t)·ux, . . . , g(t)·u(nx))

d(g(t) · x)

dx
dx

with g(t) ⊂ G and g(0) = e, the identity element.



And we take this to be the the starting point for the discrete

Noether’s Theorem. If p is the approximation data, we have

0 =︸ ︷︷ ︸
at extremal

d

dε

∣∣∣
ε=0

∫
L̄(p1 + εv1, p2 + εv2, . . . , pn + εvn) dx

and

0 =︸ ︷︷ ︸
invariance

d

dt

∣∣∣
t=0

∫
L̄(g(t) ·p1, g(t) ·p2, g(t) ·p3, . . . , g(t) ·pn) g(t) ·dx

with L̄ the approximate Lagrangian and dx the approximate

volume form.



A bit of fun: Emmy Noether at Stonehenge: in which we show

evolving “sound” waves of a drum beating in the heart of

Stonehenge



• shallow water-type equations and FEM

• exact energy conservation using a trick from geometric

integration of ODES called “the discrete gradient method”

• weak conservation of linear and angular momentum, à la

ELM and Pryer.

We use a precise survey of Stonehenge, using only pegs and

ropes, discovered by Anthony Johnson, “Solving Stonehenge:

the new key to an ancient enigma”, Thames & Hudson, 2008.







THANK YOU!!


