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Executive Summary

Computer architectures are

undergoing their most radical

change in a decade. In the past,

processor performance has been

improved largely by increasing

clock speed — the faster the clock

speed, the faster a processor can

execute instructions, and thus the

greater the performance that is

delivered to the end user. This

drive to greater and greater clock

speeds has stopped, and indeed in

some cases is actually reversing.

Instead, computer architects are

designing processors that include

multiple cores that run in parallel.

For the purposes of this report we

shall think of a core as one

independent ‘brain’, able to execute

its own stream of instructions,

independently fetching the data it

requires and writing its own results

back to a main memory. This shift

from increasing clock speeds to

increasing core counts — and thus

increasing parallelism — is

presenting significant new

opportunities and challenges.

During this architectural shift a new

class of many-core computer

architectures is emerging from the

graphics market into the

mainstream. This new class of

processor already exploits

hundreds or even thousands of

cores. Many-core processors

potentially offer an order of

magnitude greater performance

than conventional processors, a

significant increase that, if

harnessed, can deliver major

competitive advantages.

But to take advantage of these

powerful new many-core

processors, most users will have to

radically redesign their software,

potentially needing completely new

algorithms that can exploit massive

parallelism.

The many-core
opportunity

For computationally challenging

problems in business and scientific

research, these new, highly

parallel, many-core architectures

represent a technological

breakthrough that can deliver

significant benefits in science and

business benefits. Such a

step-change in available computing

performance could enable faster

financial trades, higher-resolution

simulations, the design of more

competitive products such as

increasingly aerodynamic cars and

more effective drugs for the

treatment of disease.

Thus new many-core processors

represent one of the biggest

advances in computing in recent

history. They also indicate the

direction of all future processor

design — we cannot avoid this

major paradigm shift into massive

parallelism. All processors from all

the major vendors will become

many-core designs over the next

few years. Whether this is many

identical mainstream CPU cores or

a heterogeneous mix of different

kinds of core remains to be seen,

but it is inevitable that there will be

lots of cores in each processor, and

importantly, to harness their

performance, most software and

algorithms will need redesigning.

There is significant competitive

advantage to be gained for those

who can embrace and exploit this

new, many-core technology, and

considerable risk for any who are

unable to adapt to a many-core

approach. This report explains the

background to these developments,

presents several success stories,

and describes a number of ways to

get started with many-core

technologies.
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From Multi-Core to Many-Core: Background and Development

Historically, advances in computer

hardware have delivered

performance improvements that

have been transparent to the end

user – software has run more

quickly on newer hardware without

having to make any changes to that

software. We have enjoyed

decades of ‘single thread’

performance improvement, which

relied on converting exponential

increases in available transistors

(known as Moore’s Law [83]), into

increasing processor clock speeds

and advances in microprocessor

pipelining, instruction-level

parallelism and out-of-order

execution. All these technology

developments are essentially

‘under the hood’, with existing

software generally performing

faster on next generation hardware

without programmer intervention.

Most of these developments have

now hit a wall.

In 2003 it started to become

apparent that several fundamental

physical limitations were going to

change everything. Herb Sutter

noticed this significant change in

his widely cited 2004 essay ‘The

Free Lunch is Over’ [110]. Figure 1

is taken from Sutter’s paper,

updated in 2009, and shows how

single thread performance

increases, based on increasing

clock speed and instruction level

parallelism improvements, could

only have continued at the cost of

significant increases in processor

power consumption. Something

had to change — the free lunch

was over.

The answer was, and is,

parallelism. It transpires that, for

various semiconductor

physics-related reasons, a

processor containing two 3GHz

cores will use significantly less

energy (and thus dissipate less

waste heat) than an alternative

processor containing a single 6GHz

core. Yet in theory the dual-core

3GHz device can deliver the same

performance as the single 6GHz

core (much more on this later).

Today even laptop processors

contain at least two cores, with

most mainstream server CPUs

already containing four or six cores.

Thus, due to the power

consumption problem, increasing

core counts have replaced

increasing clock speeds as the

main method of delivering greater

hardware performance. (For more

details see Box 1 later.)

Of course the important implication

of ‘the free lunch is over’ is that

most existing software will not just

go faster when we increase the

number of cores inside a

processor, unless you are in the

fortunate position that your

performance-critical software is

already ‘multi-core aware’.

So, hardware is suddenly and

dramatically changing: it is

delivering ever more performance,

but is now doing so through rapidly
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Figure 1: Graph of four key technology trends from ‘The Free Lunch is Over’: transistors per processor, clock

speed, power consumption and instruction level parallelism [110].
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increasing parallelism. Software

will therefore need to change

radically in order to exploit these

new parallel architectures. This

shift to parallelism represents one

of the largest challenges that

software developers have faced.

Modifying existing software to make

it parallel is often (but not always)

difficult. Now might be a good time

to re-engineer many older codes

from scratch.

Since hardware designers gave up

on trying to maintain the free lunch,

incredible advances in computer

hardware design have been made.

While mainstream CPUs have been

embracing parallelism relatively

slowly as the majority of software

takes time to change to this new

model, other kinds of processors

have exploited parallelism much

more rapidly, becoming massively

parallel and delivering large

performance improvements as a

result.

The most significant class of

processor to have fully embraced

massive parallelism are graphics

processors, often called Graphics

Processing Units or GPUs.

Contemporary GPUs first appeared

in the 1990’s and were originally

designed to run the 2D and 3D

graphical operations used by the

burgeoning computer games

market. GPUs started as

fixed-function devices, designed to

excel at graphics-specific functions.

GPUs reached an inflection point in

2002, when the main graphics

standards, OpenGL [68] and

DirectX [82] started to require

general-purpose programmability in

order to deliver advanced special

effects for the latest computer

games. The mass-market forces

driving the development of GPUs

(over 525 million graphics

processors were sold in 2010 [63])

drove rapid increases in GPU

performance and programmability.

GPUs quickly evolved from their

fixed-function origins into

fully-programmable, massively

parallel processors (see Figure 2).

Soon many developers were trying

to exploit these low-cost yet

incredibly high-performance GPUs

to solve non-graphics problems.

The term ‘General-Purpose

computation on Graphics

Processing Units’ or GPGPU, was

coined by Mark Harris in 2002 [51],

and since then GPUs have

continued to become more and

more programmable.

Today, GPUs represent the

pinnacle of the many-core

hardware design philosophy. A

modern GPU will consist of

hundreds or even thousands of

fairly simple processor cores. This

degree of parallelism on a single

processor is usually called

‘many-core’ in preference to

‘multi-core’ — the latter term is

typically applied to processors with

at most a few dozen cores.

It is not just GPUs that are pushing

the development of parallel

processing. Led by Moore’s Law,

mainstream processors are also on

an inexorable advance towards

many-core designs. AMD started

shipping a 12-core mainstream x86
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Figure 2: The evolution of GPUs from fixed function pipelines on the left, to fully programmable arrays of

simple processor cores on the right [69].
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CPU codenamed Magny-Cours in

2010 [10], while in Spring 2011

Intel launched their 10-core

Westmere EX x86 CPU [102].

Some server vendors are using

these latest multi-core x86 CPUs to

deliver machines with 24 or even

48 cores in a single 1U ‘pizza box’

server. Early in 2010 Intel

announced a 48-core x86 prototype

processor which they described as

a ‘cloud on a chip’ [61]. These

many-core mainstream processors

are probably the future of server

CPUs, as they are well suited to

large-scale, highly parallel

workloads of the sort performed by

the Googles and Amazons of the

internet industry.

But perhaps the most revealing

technology trend is that many of us

are already carrying heterogeneous

many-core processors in our

pockets. This is because

smartphones have quickly adopted

this new technology to deliver the

best performance possible while

maintaining energy efficiency.

It is the penetration of many-core

architectures into all three

predominant processor markets —

consumer electronics, personal

computers and servers — that

demonstrates the inevitability of this

trend. We now have to pay for our

lunch and embrace explicit

parallelism in our software but, if

embraced fully, exciting new

hardware platforms can deliver

breakthroughs in performance and

energy efficiency.

Box 1: The Power Equation

Processor power consumption is the primary hardware issue driving the development of many-core architectures.

Processor power consumption, P, depends on a number of factors, which can be described by the power equation,

P = ACV2 f ,

where A is the activity of the basic building blocks, or gates in the processor, C is the total capacitance of the gates’

outputs, V is the processor’s voltage and f is its clock frequency.

Since power consumption is proportional to the square of the processor’s voltage, one can immediately see that re-

ducing voltage is one of the main methods for keeping power under control. In the past voltage has continually been

reducing, most recently to just under 1.0 volt. However, in the types of CMOS process from which most modern

silicon chips are made, voltage has a lower limit of about 0.7 volts. If we try to turn voltage down lower than this, the

transistors that make up the device simply do not turn on and off properly.

Revisiting the power equation, one can further see that, as we build ever more complex processors using exponentially

increasing numbers of transistors, the total gate capacitance C will continue to increase. If we have lost the ability to

compensate for this increase by reducing V then there are only two variables left we can play with: A and f , and it is

likely that both will have to reduce.

The many-core architecture trend is an inevitable outcome from this power equation: Moore’s Law gives us ever more

transistors, pushing up C, but CMOS transistors have a lower limit to V which we have now reached, and thus the only

effective way to harness all of these transistors is to use more and more cores at lower clock frequencies.

For more detail on why power consumption is driving hardware trends towards many-core designs we refer the reader

to two IEEE Computer articles: Mudge’s 2001 ‘Power: a first-class architectural design constraint’ [85] and Woo and

Lee’s ‘Extending Amdahl’s Law for Energy-Efficient Computing in the Many-Core Era’ from 2008 [121].
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Success Stories

Before we analyse a few many-core

success stories, it is important to

address some of the hype around

GPU acceleration. As is often the

case with a new technology, there

have been lots of inflated claims of

performance speedups, some even

claiming speedups of hundreds of

times compared to regular CPUs.

These claims almost never stand

up to serious scrutiny and usually

contain at least one serious flaw.

Common problems include:

optimising the GPU code much

more than the serial code; running

on a single host core rather than all

of the host cores at the same time;

not using the best compiler

optimisation flags; not using the

vector instruction set on the CPU

(SSE or AVX); using older, slower

CPUs etc. But if we just compare

the raw capabilities of the GPU with

the CPU then typically there is an

order of magnitude advantage for

the GPU — not two or three orders

of magnitude. If you see speedup

claims of greater than about a

factor of ten then be suspicious. A

genuine speedup of a factor of ten

is of course a significant

achievement and is more than

enough to make it worthwhile

investing in GPU solutions.

There is one more common issue

to consider, and it is to do with the

size of the problem being

computed. Very parallel systems

such as many-core GPUs achieve

their best performance when

solving problems that contain a

correspondingly high degree of

parallelism, enough to give every

core enough work so that they can

operate at close to their peak

efficiency for long periods. For

example, when accelerating linear

algebra, one may need to be

processing matrices of the order of

thousands of elements in each

dimension to get the best

performance from a GPU, whereas

on a CPU one may only need

matrix dimensions of the order of

hundreds of elements to achieve

close to their best performance

(see Box 2 for more on linear

algebra). This discrepancy can

lead to apples-to-oranges

comparisons, where a GPU system

is benchmarked on one size of

problem while a CPU system is

benchmarked on a different size of

problem. In some cases the GPU

system may even need a larger

problem size than is really

warranted to achieve its best

performance, again resulting in

flawed performance claims.

With these warnings aside let us

look at some genuine success

stories in the areas of

computational fluid dynamics for

the aerospace industry, molecular

docking for the pharmaceutical

industry, options pricing for the

financial services industry, special

effects rendering for the creative

industries, and data mining for

large-scale electronic commerce.

Computational fluid
dynamics on GPUs:
OP2

Finding solutions of the

Navier-Stokes equations in two and

three dimensions is an important

task for mathematically modelling

and analysing flows in fluids, such

as one might find when considering

the aerodynamics of a new car or

when analysing how airborne

pollution is blown around the tall

buildings of a modern city.

Computational fluid dynamics

(CFD) is the discipline of using

computer-based models for solving

the Navier-Stokes equations. CFD

is a powerful and widely used tool

which also happens to be

computationally very expensive.

GPU computing has thus been of

great interest to the CFD

community.

Prof. Mike Giles at the University of

Oxford is one of the leading

developers of CFD methods that

use unstructured grids to solve

challenging engineering problems.

This work has led to two significant

software projects: OPlus, a code

designed in collaboration with

Rolls-Royce to run on clusters of

commodity processors utilising

message passing [28], and more

recently OP2, which is being

designed to utilise the latest

many-core architectures [42].

OP2 is an example of a very

interesting class of application

which aims to enable the user to

work at a high level of abstraction

while delivering high performance.

It achieves this by providing a

framework for implementing

efficient unstructured grid

applications. Developers write their

code in a familiar programming

language such as C, C++ or

Fortran, specifying the important

features of their unstructured grid

CFD problem at a high level. These

features include the nodes, edges

and faces of the unstructured grid,

flow variables, the mappings from

edges to nodes, and parallel loops.

From this information OP2 can

automatically generate optimised

code for a specific target

architecture, such as a GPU using

the new parallel programming

languages CUDA or OpenCL, or

multi-core CPUs using OpenMP

and vectorisation for their SIMD

instruction sets (AVX and

SSE) [58]. We will cover all of these

approaches to parallelism in more

detail later in this report.

At the time of writing, OP2 is still a

work in progress, in collaboration
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with Prof. Paul Kelly at Imperial

College, but early results are

already impressive. Using an airfoil

test code with a single-precision 2D

Euler equation, a problem with 0.75

million cells and 1.5 million edges

has been solved in 7.4 seconds

using a single NVIDIA C2070 GPU.

Double-precision performance was

roughly half this, taking 15.4

seconds on the same problem.

When OP2 generates similarly

optimised code for a pair of

contemporary Intel ‘Westmere’

6-core 2.67GHz X5650 CPUs, the

same problem takes 34.2 seconds

to solve in single precision and 44.6

seconds in double precision. One

GPU has therefore delivered

impressive relative speedups of

4.6X and 2.9X for single and double

precision respectively, compared to

12 top-of-the-range CPU cores.

OP2 is being developed as an open

source project and potential users

can contact Prof. Giles via the

project webpage [44].

Other CFD examples — Another

successful project using GPUs for

CFD has been Turbostream,

developed by Tobias Brandvik and

Dr Graham Pullan in the Whittle

Laboratory at the University of

Cambridge [18, 19]. In contrast to

OP2’s unstructured grid approach,

Turbostream solves the

Navier-Stokes equations by

discretising the problem onto a

structured grid and then performing

explicit time-stepping to solve the

resulting partial differential

equations (PDEs) using a

three-dimensional stencil operation.

Turbostream is another example of

an approach that enables the

programmer to work at a higher

level of abstraction: rather than

programmers having to write

complex, low-level code

themselves, the programmer

specifies the required stencil

operations in a high-level

description from which Turbostream

automatically generates optimised

code targeting the latest GPUs and

multi-core CPUs.

Turbostream has achieved

impressive performance

improvements, with speedups in

the range of 10–20X on the latest

NVIDIA GPUs compared with

optimised code running on a fast

quad-core Intel CPU. Additionally

Turbostream has shown good

scalability, using up to 64 GPUs at

once. Turbostream is available to

license and the reader is referred to

the project website for more

information [20].

Others have also been achieving

great success in using GPUs to

accelerate CFD problems. BAE

Systems has announced it is using

a GPU-accelerated cluster to

deliver near-interactive speeds for

their CFD simulations [37]. A team

at Stanford University was recently

successful in modelling hypersonic

airflows using a GPU-based

system [33].

These early successes indicate

that CFD is an application area that

should see increasing benefit from

GPUs in the future; for additional

information see the CFD Online

website [24].

Molecular docking
using GPUs: BUDE

The University of Bristol has been

at the forefront of molecular

docking for the past decade [41].

Molecular docking is the process of

simulating the interaction between

two molecules, where one molecule

is typically a protein of medical

interest in the human body, and the

second represents a potential new

drug.

The Bristol University Docking

Engine (BUDE) was originally

developed to run on a commodity

cluster of x86-based CPUs, but as

early as 2006 it was ported to one

of the first generation of many-core

processors, the CSX architecture

from ClearSpeed [75]. In 2010

Figure 3: GPUs have enabled BAE Systems to investigate the aerodynamic performance of aircraft through

advanced CFD simulations (source: BAE Systems).
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Figure 4: BUDE molecular docking performance in seconds (lower is better).

BUDE was ported to the OpenCL

parallel programming language.

Figure 4 compares the

performance of this OpenCL code

running on a GPU to the original,

optimised Fortran code running on

a fast, quad-core CPU. The results

for both performance and energy

efficiency were compelling for the

GPU-based system: NVIDIA

C2050 GPUs gave a real-world

speedup of 4.0X versus a fast

quad-core CPU while using about

one half of the energy to complete

the same work [76, 77].

An important benefit of using the

new OpenCL parallel programming

language was the ability to run

exactly the same code on a range

of different GPUs from different

vendors, and even on multi-core

x86 CPUs. Thus BUDE can now

use whichever hardware is the

fastest available at any given time.

BUDE can also use GPUs and

CPUs at the same time to deliver

the maximum possible aggregate

performance.

Options pricing using
GPUs: NAG

One of the earliest application

areas explored using GPUs was

Monte-Carlo-based numerical

integration for derivative pricing and

risk management in financial

markets. The primary need in this

application is the ability to generate

rapidly high-quality pseudo-random

or quasi-random numbers.

Fortunately parallel algorithms for

generating these kinds of random

numbers already exist, and several

of these algorithms are well

matched to the GPU’s many-core

architecture.

The Numerical Algorithms Group

(NAG) is a provider of high-quality

numerical software libraries. NAG

is one of the first vendors to support

GPUs – their GPU-accelerated

pseudo-random number generators

show speedups of between 5X and

34X when running on NVIDIA’s

C2050 GPU, compared to Intel’s

highly optimised MKL library when

running on all eight cores of a

contemporary Intel Core i7 860

operating at 2.8GHz [17]. The

exact speedup of these routines

depends on the kind of random

number generator being used

(MRG32k3a, Sobol or MT19937)

and also the distribution required

(uniform, exponential or normal).

However, in modern financial

models, generating the random

numbers is typically only a fraction

of the overall task, with the models

themselves often requiring

considerable computation to

evaluate. Since the Monte Carlo

method is inherently parallel, the

entire simulation can be performed

on the GPU, where the abundance

of computing power means that

these complex models can be

evaluated very rapidly. This

capability has attracted several

users from the financial services

industry, including several of the

more sophisticated insurance

companies. This class of potential

GPU user is faced with modern risk

management requirements such as

‘Solvency II’, which require large

amounts of simulation. When

combined with the complex

cashflow calculations inherent in

insurance portfolios, this application

becomes massively parallel and

very compute-intensive, making it

well suited to modern GPUs.

NAG has published the results it

achieved while working with two of

its tier-one financial services

customers. One of these customers

has used NAG’s GPU-accelerated

random number generator library to

speed up its ‘local vol’ code and

saw speedups of approximately ten

times compared to a fast quad-core

x86 CPU.

In summary, the generation of large

sets of pseudo-random numbers for

Monte Carlo methods has been

one application area where GPUs

have had a big impact. Speedups

for the random number generation

routines of 100X or more versus a

single CPU core are regularly

achieved, often translating into
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real-world performance

improvements of 10X or more

compared to a host machine with a

total of eight cores, as in the NAG

cases described above.

Have we just ignored the earlier

warning about excessive

speedups? Not quite — this is a

rare instance where the GPU really

does have an additional

performance advantage over the

CPU. GPUs uniquely include

dedicated hardware for executing

certain functions very quickly, in

only a few clock cycles. These

functions include exponential, sine,

cosine, square root and inverse

square root amongst others. Many

of these functions are used

extensively when generating

pseudo-random numbers, and so in

this instance GPUs really do have a

greater performance advantage

over CPUs than the peak speed

comparison would indicate.

For an overview of GPUs in

computational finance see [43].

Special effects
rendering using GPUs:
Double Negative

London-based Double Negative is

the largest visual effects company

in Europe [31]. Their Oscar-winning

work can be seen in many of the

big blockbuster movies over the last

twelve years. One of the biggest

industrial users of

high-performance computing,

visual effects companies require

datacentres with thousands of

servers to produce their

computer-generated visuals.

Water, smoke and fire-based

effects have become increasingly

popular in movies over the last few

years, with Double Negative’s

proprietary fluid solver ‘Squirt’

being a key part of their success.

The image of the volcanic

explosion on the front cover of this

report was generated by Double

Negative using this software. The

computationally expensive process

of solving the Navier-Stokes

equations required by these

fluid-based effects have led Double

Negative to investigate the potential

of GPUs. Double Negative recently

added a GPU-based Poisson

solver to their fluid simulations,

resulting in as much as a 20X

speedup of this component of their

workflow. These results motivated

Double Negative to install their first

GPU-based render-farm.

Double Negative is now developing

a specialist language and compiler

to make GPUs easier to use for

their visual effects artists. Results

are again impressive, with a 26X

speedup on an NVIDIA C2050

GPU compared to the original

single-threaded C++ code running

on one core of a 3.33GHz six-core

Intel X5680 CPU (the speedup

would be about 4.4X if all six cores

of the host could be used at once

with perfect scaling on the

CPU) [14]. These increases in

performance have motivated

Double Negative to investigate

using GPUs for other applications,

such as image manipulation tools

and deformers, in a bid to

accelerate as much as possible of

their visual effects workflow.

Accelerating database
operations using
GPUs: 3DMashUp

It may be clear that many-core

architectures will shine on

computationally intensive codes,

but what about more data-driven

applications?

Researchers are now looking at

using GPU architectures to improve

the performance of computationally

intensive database operations. One

of the first companies developing

this technology is the

California-based 3DMashUp.

3DMashUp has developed a

solution using a PostgreSQL-based

relational database that embeds

GPU code alongside data within

the database itself. Users can

query the GPU-aware database,

transparently causing the GPU

code to be executed on the data, all

the while remaining within the

context of the database.

This approach has a number of

benefits, one of which is that the

data and the code can remain

resident in the database at all

times. The overhead of calling

OpenCL GPU code from within the

database is just 4 microseconds,

making this a convenient and

efficient way to exploit GPUs for

large database users with

computationally expensive

processing requirements. It also

brings GPU acceleration to

mainstream markets. For example,

users who have very large image

databases may now process these

images using GPUs just by

integrating the appropriate

3DMashUp methods and installing

the latest GPUs in their system.

Users of the database do not have

to care about GPU programming at

all in this scenario; their tasks ‘just

run faster’.

The 3DMashUp solution also

transparently handles mapping the

most performance-critical data into

the GPU’s memory as and when it

is needed, removing the need for

users to have to concern

themselves with these low-level

programming details.

This approach appears to be very

promising and is one of the few

examples where the benefits of

GPU acceleration can be invisibly

provided to end users, in this case

with computationally intensive,

large data problems that use

databases to store and manage

that data. For more information see

the 3DMashUp website [26].



A KNOWLEDGE TRANSFER REPORT FROM THE LMS

AND THE KTN FOR INDUSTRIAL MATHEMATICS

11

GPUs in Depth

While several different many-core

architectures have emerged during

the last few years, we will focus on

GPU-based many-core systems for

the following discussion. However,

almost all the principles and

terminology discussed in this

context apply equally to the other

many-core architectures, including

x86 CPUs and consumer

electronics products as previously

described.

A modern GPU is a many-core

device, meaning it will contain

hundreds or even thousands of

simple yet fully programmable

cores, all on a single chip. These

cores are often grouped together

into homogeneous sets with

varying names. The emerging

C-based many-core programming

language OpenCL [67] calls these

simple cores ‘Processing Elements’

or PEs, and the groupings of these

PEs ‘Compute Units’ or CUs.

Another common feature of all

many-core architectures is a

multi-level memory hierarchy.

Typically each Processing Element

will have a small amount of its own

private memory. There is often a

larger memory per Compute Unit

that can be used as shared

memory between all that Compute

Unit’s Processing Elements. There

will also usually be a global

memory which can be seen by all

the Compute Units and thus by all

the Processing Elements. Finally,

there is usually a separate memory

for the host processor system.

OpenCL refers to these four levels

in the memory hierarchy as Private,

Local, Global and Host,

respectively. Figure 5 illustrates the

OpenCL memory hierarchy

terminology. We will adopt

OpenCL’s terminology for the rest

of this report.

The GPU itself is integrated into a

‘host system’. This might mean the

GPU is on its own add-in board,

plugged into a standard PCI

Express expansion slot within a

server or desktop computer.

Alternatively, the GPU may be

integrated alongside the host CPU,

as found inside high-end laptops

and smartphones today.

Increasingly in the future we will

see the many-core GPU tightly

integrated onto the same chip as

the host CPU; in June 2011 AMD

officially launched their first ‘Fusion’

CPU, codenamed Llano, that

integrates a quad-core x86 CPU

with a many-core GPU capable of

running OpenCL programs [104].

NVIDIA already has consumer-level

‘Fusion’ devices in its Tegra

CPU+GPU product line, but at

SuperComputing 2010 in New

Orleans they announced ‘Project

Denver’. This is NVIDIA’s

programme for a high-end

Fusion-class device, integrating

their cutting-edge GPUs with new,

high-end ARM cores [84]. The first

Project Denver products will not

arrive for several years, but NVIDIA

has indicated that this ‘fusion’

approach of integrating their GPUs

alongside their own ARM-based

multi-core CPUs is central to their

future product roadmap.

The reader may come across three

very different configurations of

GPU-accelerated systems,

illustrated in Figure 6. These three

different ways of integrating GPUs

within a system may have very

different performance

characteristics, but their usage

models are almost identical and we

shall treat them in the same way for

the purposes of this report. An

important implication of this wide

range of different approaches is

that GPU-accelerated computing is

not just for supercomputers —

almost all systems are capable of

exploiting the performance of
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Figure 5: The memory hierarchy of a generic GPU (source: Khronos).
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Figure 6: Three different methods of integrating GPUs: add-in graphics cards for a workstation, an integrated

but discrete GPU within a laptop, and a fully integrated, single-chip CPU and GPU (source: NVIDIA, AMD).

GPUs, including laptops, tablets

and even smartphones.

What are the performance benefits

of the current many-core GPU

systems? Just how fast are they?

GPUs are still so new to the area of

scientific computing that no widely

used standard benchmarks exist for

them. This makes it very difficult for

us to compare their performance to

each other, or to traditional CPUs.

Before GPU-oriented benchmarks

mature, we have to ‘make do’ with

much less accurate indicators of

performance, such as peak

hardware capabilities (FLOPS,

bandwidth etc). There are some

early application performance

comparisons we can use too; the

‘Success Stories’ section of this

report gives some real-world

examples.

Let us consider three different

systems as points of reference: a

laptop, a desktop and a server. The

laptop on which this report was

written is a contemporary Apple

MacBook Pro and has a dual-core

CPU running at 2.4 GHz. Its peak

performance is around 40 GFLOPS

(GigaFLOPS), measured in

single-precision floating point

operations per second — 1 GFLOP

is one billion (109) floating point

operations per second.

Double-precision floating point

performance is typically one half

that of single precision

performance on CPUs. The other

important hardware characteristic

for performance is memory

bandwidth — the same laptop has

a peak bandwidth to its main

memory of about 8 GBytes/s.

Under the author’s desk is a PC

containing a reasonably fast CPU:

a dual-core x86 running at 3.16

GHz. This desktop’s peak speed is

nearly 60 GFLOPS single-precision

and its peak memory bandwidth is

about 12 GBytes/s. The fastest

mainstream x86 server CPUs

available on the market in the

Spring of 2011 were Intel’s six-core

Westmere-EX devices which, at

their fastest speeds of 2.4 GHz, are

capable of peak speeds of around

230 GFLOPS per CPU for single

precision, and of over 60 GBytes/s

of main memory bandwidth. The

Westmere figures are truly

impressive, although these

high-end CPUs are both expensive

(with a list price per CPU of $4,616

at launch) and power-hungry

(130W for the CPU alone). Even

so, a single one of these high-end

CPUs would have qualified as a

supercomputer in its own right just

15 or 20 years ago [79].

But many-core performance, as

embodied by the GPUs, is on a

different level. For example, the

desktop machine mentioned above

also contains an NVIDIA GTX 285

GPU. This has a peak speed of

over 1,000 GFLOPS (1 TeraFLOP)

and peak memory bandwidth of

nearly 160 GBytes/s. Hence the

GPU, which only cost a few

hundred pounds, has about 17

times the peak single-precision

performance and over 13 times the

memory bandwidth of the host CPU

in the same system. Even

compared to the quad-core server

CPUs found in most servers today

the GPU is fast, with 10 times the

peak FLOPS and over 5 times the

peak memory bandwidth.

So now the opportunity should be

clear: many-core GPUs can

potentially offer an order of

magnitude greater performance in

peak compute and memory

bandwidth. The challenge is

translating this into real-world

benefits. GPU-based computing is

still in its infancy, but early

indications are that for the right

kinds of applications (an important

proviso), real-world speedups in

the range of 5 to 10 times are being

achieved using GPUs.

Gaining performance:
massive parallelism

The examples we have presented

demonstrate that GPUs are very

fast and can provide up to a tenfold

improvement in performance over

traditional CPUs. The trick to

getting the most from these
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Box 2: Linear Algebra

Linear algebra libraries have been a staple in scientific software since the development of the Basic Linear Algebra

Subprograms (BLAS) by Kincaid and Krogh [70] amongst others in the 1970’s. Today the speed of routines for vector

and matrix arithmetic is critically important to the performance of a wide range of applications. Not surprisingly

therefore, significant effort has gone into optimising linear algebra libraries for GPUs.

Most vendors supply optimised BLAS and LAPACK (Linear Algebra PACKage) libraries for their hardware. CPU

vendor libraries include Intel’s MKL [59], AMD’s ACML [7] and IBM’s ESSL [55]. GPU vendor libraries include

NVIDIA’s CuBLAS [93] and AMD’s GPU ACML [8]. These libraries speed up the BLAS routines by optimising the

original BLAS code for the targetted hardware. This approach has been reasonably successful up to now, but there are

questions about its long-term scalability. The author has first-hand experience in this area, having led one of the first

teams to develop a many-core optimised BLAS/LAPACK library in 2003 while at ClearSpeed. The concern is around

this approach to programming, and whether it is realistic to be able to write a serial program that calls a software

library that ‘magically’ hides all the complexity of using massive parallelism in an optimal fashion. Experience has

shown that, to get the best performance, one usually has to port most of the application to the massively parallel part

of the system, and not just rely on calls to libraries with parallel implementations.

To address this issue, the PLASMA and MAGMA research projects have been looking at the implications of

heterogeneous and many-core architectures for future BLAS and LAPACK libraries [5]. These projects have shown

that it is possible to achieve a significant fraction of peak performance for LAPACK-level routines, such as Cholesky

and LU solvers, on heterogeneous, multi- and many-core systems, going as far as using multiple GPUs in a single

accelerated system to achieve more than 1.1 TeraFLOPS of single precision performance [71].

many-core architectures is

parallelism, and lots of it. The GPU

hardware itself is massively

parallel, with today’s GPUs already

including hundreds or thousands of

simple cores, and GPUs with tens

of thousands of cores due to

appear within the next few years.

The most popular programming

models for GPUs, NVIDIA’s

CUDA [96] and the cross-platform

open standard, OpenCL [67],

encourage programmers to expose

the maximum parallelism possible

in their code in order to achieve the

best performance, both now and in

the future. In general these are just

good software design practices and

we encourage all software

developers to start thinking this way

if they have not already — within a

few years almost all processors will

be of a many-core design and will

require massively parallel software

for best performance.

This requirement for massive

parallelism may at first appear

intimidating. But fortunately the

kind of parallelism required does

not have to be coarse-grained ‘task’

parallelism; it can simply be

fine-grained ‘data’ parallelism. This

is usually much easier to find and

often corresponds to traditional

vector processing with which many

software developers are already

familiar. Computationally intensive

applications almost always have a

large degree of data parallelism

inherent in the underlying problem

being solved, ranging from the

particle parallelism in classical

N-body problems to the row and

column parallelism in matrix-based

linear algebra. But it remains a

fundamental point: to get the best

performance from many-core

architectures you will want to

expose the maximum parallelism

possible in your application.

This is a very important point and is

worth restating: we will go so far as

to make the potentially

controversial statement that most

existing software will need to be

completely redeveloped, possibly

even requiring new algorithms, in

order to scale well on the

increasingly parallel hardware we

will all be using from now on.

There is an equally important

implication that we will also state

explicitly: all computer hardware is

likely to remain on the increasingly

parallel trend for at least the next

ten to twenty years. Hardware

designers predict that processors

will become an order of magnitude

more parallel every five years,

meaning that in fifteen years’ time,

processors will be of the order of a

thousand times more parallel than

the already very parallel processors

that exist today!

We will come back to what this

means for all of us as users or

developers of software in the ‘Next

Steps’ section later in this report.
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GPU parallel
programming models

With the rapidly increasing

popularity of GPU-based

computing, multiple different

programming models have

emerged for these new platforms.

These include vendor-specific

examples, such as NVIDIA’s

CUDA, The Portland Group’s PGI

AcceleratorTM [113], CAPS

enterprise’s HMPP Workbench [23]

and Microsoft’s DirectCompute [81],

as well as open standards such as

OpenCL. We shall now look at the

two most widely used GPU

programming models in more

detail: CUDA and OpenCL.

CUDA

NVIDIA’s CUDA is currently the

most mature and easiest to use

parallel programming model for

GPUs, first appearing on the

market in 2006 [91]. CUDA was

designed to be familiar to as many

software developers as possible,

and so its first instantiation began

as a variant of the C programming

language, called CUDA C. Indeed,

in developing CUDA C code it is

often possible to incrementally port

an existing C application, using

profiling to identify those parts of

the code that consume most of the

run-time (the ‘hot spots’) and

converting these to run in parallel

on the many-core GPU.

This ‘incremental porting’ approach

can be very effective and certainly

lowers the barrier to entry for many

users. But in our experience, most

software developers find that they

can only get so far with this

approach. The reason for this

limitation usually comes back to the

design of the underpinning

algorithm. If it was not designed to

be massively parallel, then it is

likely that the current software

implementation cannot easily be

modified in an incremental way in

order to make it massively parallel.

Of course there are always

exceptions, but often the

incremental porting approach will

only take you so far.

Coming back to CUDA C, to

demonstrate how familiar it can be,

consider the two code examples in

Figure 7. On the left is some

ordinary ANSI C code for

performing a simple vector addition.

Because it is written in a serial

programming language, this code

uses a loop and an array index to

run along the two input vectors,

producing one output element at

each loop iteration.

In the CUDA C example on the

right, you can see the loop has

completely disappeared. Instead,

many copies of the function are

executed in parallel, one copy for

each parallel data item we wish to

process. In this instance we would

launch ‘size’ copies of the vector

addition function, all of which could

run in parallel. At execution time

the run-time system decides how to

map efficiently the expressed

parallelism onto the available

parallel hardware resources.

It is important not to underestimate

the level of challenge when writing

code for GPUs. The trivial

examples in Figure 7 are very small

in order to illustrate a point. In a

real example, modifying the

algorithm in order to express

enough parallelism to achieve good

performance on a GPU often

requires significant intellectual

effort. And while the parallel

kernels themselves may often look

quite similar to a highly optimised

sequential equivalent, significant

additional code is required in order

to initialise the parallel environment,

orchestrate the GPUs in the

system, and communicate data

efficiently, often by overlapping the

data movement with computation.

The CUDA C code on the right

hand side of Figure 7 is an example

of a ‘kernel’ — this is common

terminology for the parallel version

of a routine that has been modified

in order to run on a many-core

processor. CUDA uses slightly

different terminology for the

// ANSI C vector addition example

void vectorAdd(const float *a,

const float *b,

float *c,

unsigned int size)

{

unsigned int i;

for (i=0; i<size; i++)

c[i] = a[i] + b[i];

}

// CUDA C vector addition example

__global__ void vectorAdd(const float *a,

const float *b,

float *c)

{

// Vector element index

int nIndex =

blockIdx.x * blockDim.x + threadIdx.x;

c[nIndex] = a[nIndex] + b[nIndex];

}

Figure 7: Simple vector addition examples in C and CUDA C – note the absence of the ‘for’ loop in the CUDA

version.
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Processing Elements (which it calls

‘threads’) and Compute Units

(which it calls ‘thread blocks’) but

generally it is considered to be

fairly straightforward to port code

between CUDA C and similar

programming models, such as

OpenCL.

CUDA threads execute

independently and thus ideally on

independent data — this is why

data parallelism is such a natural fit

for these kinds of architectures.

Threads in a thread block are

grouped to execute essentially the

same program at the same time,

but on different pieces of data. This

data-parallel approach is known as

Single Instruction Multiple Data

(SIMD) [38]. On the other hand,

different thread blocks may execute

completely different programs from

one another if the need arises,

although most applications tend to

run the same program on all the

thread blocks at the same time,

essentially turning the computation

into one large SIMD or vector

calculation.

CUDA’s maturity brings a number

of benefits for software developers,

including a growing number of

software development tools

including debuggers and

profilers [97]. In 2009, CUDA

Fortran arrived, as a joint

development between NVIDIA and

the Portland Group [95]. CUDA

Fortran takes the principles of

CUDA C and weaves them into a

state-of-the-art commercial Fortran

2003 compiler.

OpenCL

OpenCL bears many similarities to

CUDA and indeed NVIDIA is one of

the main contributors to the

OpenCL standard and so this

should be no surprise. The biggest

differences are in the way OpenCL

is being developed. Whereas

CUDA is a proprietary solution

being driven by a single vendor,

OpenCL is an open standard,

instigated by Apple, but now being

driven by a consortium of over 35

companies, including all the major

processor vendors such as Intel,

IBM and AMD. The consortium is

being organised and run by the

Khronos Group [67].

OpenCL is a much more recent

development than CUDA and is

correspondingly less mature.

However, OpenCL also includes a

number of more recent advances

for supporting heterogeneous

computing in systems combining

multiple CPUs and GPUs. The first

version of the OpenCL standard

was released in December

2008 [66], and OpenCL has been

developing rapidly since then. It

has already been integrated into

recent versions of Apple’s OS X

operating system. AMD and

NVIDIA have released

implementations for their GPUs, the

former also including a version that

will run on a multi-core x86 host

CPU. IBM has demonstrated a

version of OpenCL running on its

Cell processor and recently

released a version for their

high-end POWER architecture [56].

Intel released its first OpenCL

implementation for its multi-core

x86 CPUs in late 2010 [27, 60].

Embedded processor companies

are also developing their own

OpenCL solutions, including

ARM [11, 99], Imagination

Technologies [57] and Zii

Labs [122]. These last three

companies provide the CPUs and

GPUs in most of the popular

consumer electronics gadgets,

such as smartphones and portable

MP3 players.

While OpenCL is less mature than

NVIDIA’s CUDA and has some of

the drawbacks of committee

designed standards, its benefits are

the openness of the standard, the

vast resource being ploughed into

its development by many

companies, and most importantly,

its cross-platform capabilities.

OpenCL is quite a low-level

solution. It exposes features that

many software developers may not

have had to deal with before.

CUDA has similar features but

includes a higher-level application

programmer interface (API) that

conveniently handles much of the

low-level detail. But in OpenCL this

is all left up to the programmer.

One example is in the explicit use

of queues for sending commands

such as ‘run this kernel’ from the

host processor to the many-core

GPU. It is expected that as OpenCL

matures, various solutions will

emerge to abstract away this

lower-level detail, leaving most

programmers to operate at a higher

level. An interface has already

been developed that provides this

facility for C++ programs.

One of OpenCL’s other important

characteristics is that it has been

designed to support heterogeneous

computing from Day One; that is, it

supports running code

simultaneously on multiple, different

kinds of processors, all within a

single OpenCL program. When

re-engineering software this is an

important consideration: adopting a

programming environment that

supports a wide range of

heterogeneous parallel hardware

will give developers the greatest

flexibility when deploying their

re-engineered codes in the future.

For example, an OpenCL program

could decide to run one task on

one of the host processor cores,

while running another task using a

many-core GPU, and do this all in

parallel. These multiple OpenCL

tasks can easily coordinate

between themselves, passing data

and signals from one to the other.

Because almost all processors will
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// OpenCL vector addition example

__kernel void vectorAdd(__global const float *a,

__global const float *b, __global float *c)

{

// Vector element index

int nIndex = get_global_id(0);

c[nIndex] = a[nIndex] + b[nIndex];

}

Figure 8: OpenCL vector addition kernel example. Note the similarity with the CUDA example on the right

hand side of Figure 7.

combine elements of both

heterogeneity and many-core in the

future, this is a critical feature to

support. The ability to run OpenCL

code on almost any multi-core

mainstream processor makes it

extremely attractive as a method for

exploiting many-core parallelism,

be it on today’s increasingly

multi-core CPUs or tomorrow’s

heterogeneous many-core

processors.

For completeness, Figure 8 shows

the simple vector addition example

once again, this time in OpenCL.

To learn more about OpenCL,

Scarpino’s ‘A gentle introduction to

OpenCL’ [105] is a good place to

start. Two OpenCL text books are

due to appear at about the same

time as this report: Munshi et al’s

‘OpenCL Programming Guide’ [86]

and Gaster et al’s ‘Heterogeneous

Computing with OpenCL’ [40].

Other many-core
programming models

While we have focused our

descriptions on the many-core

programming models that are

emerging to support GPUs, there

exist other models that were

created primarily to support

multi-processor systems. There are

many such models, but the most

commonly used fall mainly into two

categories — message passing

and shared memory.

Message passing programming

models provide methods for

running collections of tasks in

parallel, and for communicating

data between these tasks by

sending messages over

communication links.

Shared memory programming

models assume a system of

parallel processors connected

together via a memory that can be

seen by all of the processors.

Both of these models are used in

the mainstream today and we shall

briefly describe the most common

examples of each.

Message passing, MPI — MPI ‘is

a message-passing application

programmer interface (API),

together with protocol and semantic

specifications for how its features

must behave in any

implementation’ [49]. MPI has been

proven to scale to large

high-performance computing

systems consisting of hundreds of

thousands of cores and underpins

most parallel applications running

on large-scale systems. It is most

commonly used to communicate

between tasks running on multiple

servers, with the MPI protocol used

to send messages over the network

connecting the servers together.

As well as providing basic

primitives for point-to-point

communications, MPI includes

collective communication

operations such as broadcast and

reduction. The more recent MPI

version 2 (MPI-2) adds support for

parallel I/O and dynamic process

management [112].

Many implementations of MPI exist,

with the standard specifying

bindings for C, C++ and Fortran.

Shared memory, OpenMP —

OpenMP is the most commonly

used high-level shared-memory

programming model in scientific

computing [25]. Its API is

implemented in the form of

compiler directives for C, C++ and

Fortran. Most major hardware

vendors support it, as do most

major compilers, including GNU

gcc, Intel’s ICC and Microsoft’s

Visual Studio.

OpenMP supports task-level

parallelism (also known as Multiple

Instruction Multiple Data or MIMD)

in addition to the data-level

parallelism (SIMD) that we have

already met [38]. Sections of code

that can be executed in parallel are

identified with the addition of

special compiler markers, or

pragmas, that tell an

OpenMP-compatible compiler what

to do. In theory these pragmas are

simply ignored by non-OpenMP

compilers, which would generate

valid serial executables from the

same source code.

For comparison, Figure 9 shows

our by now familiar simple vector
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!$omp parallel default(none) &

!$omp shared(a, b, c) private(i)

!$omp do

do i = 1, size

c(i) = a(i) + b(i)

end do

!$omp end do

!$omp end parallel

Figure 9: Vector addition example in Fortran extended with OpenMP.

addition, this time in OpenMP, and

for variety, in Fortran (the OpenMP

Fortran pragmas are the lines

beginning with ‘!$omp’).

Work is already under way

developing the next major version

of OpenMP [109] and early signs

indicate that consideration is being

given to extensions for supporting

many-core architectures. Thus if

the reader is already using

OpenMP we would recommend

following the developments in this

area from the standards committee

and also active OpenMP vendors

such as Cray.

Hybrid solutions — It is possible

to combine two or more of these

parallel programming models for

hybrid solutions. In the parallel

programming mainstream today,

one of the most common

approaches is to use a hybrid

system of OpenMP within each

multi-core server node and MPI

between nodes. Much has been

written about this particular hybrid

approach [109].

An increasingly common approach

is to combine MPI with one of the

new GPU-oriented parallel

programming systems, such as

CUDA or OpenCL. This enables the

creation of systems from multiple

nodes, each node including one or

more GPUs. Several of the fastest

computers in the world have

recently been constructed in just

this fashion, including TSUBAME

2.0 at Tokyo Tech in Japan [50].

Indeed the second fastest

computer in the world in June 2011

was a GPU-powered cluster:

China’s Tianhe-1A system at the

National Supercomputer Center in

Tianjin, with a performance of 2.57

PetaFLOPS (2.57 × 1015 floating

point operations per second, or

2.57 million GFLOPS) [16, 114]. As

of the International

Supercomputing Conference in

June 2011, three of the top ten

supercomputers in the Top500 list

are GPU accelerated. The fraction

of systems in the Top500 that

achieve their performance by GPU

acceleration is set to increase

rapidly.
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Current Challenges

Like all breakthroughs in

technology, the change from

multi-core to many-core computer

architectures will not be smooth for

everyone. There are significant

challenges during the transition,

some of which are outlined below.

1. Porting code to massively

parallel heterogeneous

systems is often (but not

always) harder than ports to

new hardware have been in

the past. Often completely

new algorithms are required.

2. Many-core technologies are

still relatively new, with

implications for the maturity

of software tools, the lack of

software developers with the

right skills and experience,

and the paucity of ported

application software and

libraries.

3. Even though cross-platform

programming languages such

as OpenCL are now

emerging, these have so far

focused on source code

portability and cannot

guarantee performance

portability. This is of course

not a new issue; any highly

optimised code written in a

mainstream language such

as C, C++ or Fortran has

performance portability

issues between different

architectures. However,

differences between GPU

architectures are even

greater than those between

CPU architectures, and so

performance portability is set

to become a greater

challenge in the future.

4. There are multiple competing

open and de facto standards

which inevitably confuse the

situation for potential

adopters.

5. Many current GPGPU

products still carry some of

their consumer graphics

heritage, including the lack of

important hardware reliability

features such as Error

Correcting Codes (ECC) on

their memories. Even where

these features do exist, they

currently incur prohibitive

performance penalties that

are not present in the

corresponding CPU

solutions.

6. There is a lot of hype around

GPU computing, with many

over-inflated claims of

performance speedups of

100 times or more. These

claims increase the risk of

setting expectations too high,

with subsequent

disappointment from trial

projects.

7. The lack of industry standard

benchmarks makes it difficult

for users to compare

competing many-core

products simply and

accurately.

Of all these challenges, the most

fundamental is the design and

development of new algorithms that

will naturally lend themselves to the

massive parallelism of GPUs today,

and to the ubiquitous

heterogeneous multi-/many-core

systems of tomorrow. If as a

community we can design adaptive,

highly scalable algorithms, ideally

with heterogeneity and even

fault-tolerance in mind, we will be

well placed to exploit the rapid

development of parallel

architectures over the next two

decades.
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Next Steps

Audit your software

One valuable practical step we can

each take is to perform an audit of

the software we use that is

performance-critical to our work.

For software developed by third

parties, find out what their policy is

towards supporting many-core

processors such as GPUs. Is their

software already parallel? If so,

how scalable is it? Does it run

effectively on a quad-core CPU

today? What about the emerging 8,

12 and 16 core CPUs? Do they

have a demonstration of their

software accelerated on a GPU?

What is their roadmap for the

software? The software licensing

model is something that you also

need to be conscious of — is the

software licensed per core,

processor, node, user, . . . ? Will

you have to pay more for an

upgrade that supports many-core

processors? Some vendors will

supply these features as no-cost

upgrades; others will charge extra

for them.

It is also important to be specific

about parallel acceleration of the

particular features you use in the

software in question. For example,

at the time of writing there are GPU

accelerated versions of dense

linear algebra solvers in MATLAB,

but not of sparse linear algebra

solvers [73]. Just because an

application claims to be

‘GPU-accelerated’, it does not

necessarily follow that your

particular use of that application will

gain the performance benefit of

GPUs. Your mileage will definitely

vary, so check with the supplier of

your software to verify before

committing.

Plan for parallelism

If you develop your own software,

start thinking about what your own

path to parallelism should be. Are

the users of your software likely to

stick primarily to multi-core

processors in mainstream laptops,

desktops and servers? If so you

should be thinking about adopting

OpenMP, MPI or another widely

supported approach for parallel

programming. You should probably

avoid proprietary approaches that

may not support all platforms or be

commercially viable in the long

term. Instead, use open standards

available across multiple platforms

and vendors to minimise your risk.

Also consider when many-core

processors will feature in your

roadmap. These are inevitable —

even the mainstream CPUs will

rapidly become heterogeneous

many-cores, so this really is a

‘when’ not an ‘if’. If you do not want

to support many-core processors in

the near or medium term, OpenMP

and MPI will be good choices. If,

however, you may want to support

many-core processors within the

next few years, you will need a plan

to adopt either OpenCL or CUDA

sooner rather than later. OpenCL

might be a viable alternative to

OpenMP on multi-core CPUs in the

short term.

If you are going to develop your

own many-core aware software

there is a tremendous amount of

support that you can tap into.

Attend a workshop

In the UK each year there are

several training workshops in the

use of GPUs. The national

supercomputing service

HECToR [53] is starting to provide

GPU workshops on CUDA and

OpenCL programming; the

timetable for these is available

online [52]. Prof Mike Giles at the

University of Oxford regularly runs

CUDA programming workshops; for

the date of the next one see [43].

His webpage also includes

excellent links to other GPU

programming resources. A search

for GPU training in the UK should

turn up offerings from several

universities. There are also

commercial training providers in the

UK that are worth considering,

such as NAG [89]. Daresbury Labs

has a team who track the latest

processor technologies and who

are already experienced in

developing software for GPUs. This

group holds occasional seminars

and workshops, and is willing to

offer advice and guidance for

newcomers to many-core

technologies [30]. GPU vendors

will often provide assistance if

asked, especially if their assistance

could lead to new sales.

There are also many conferences

and seminars emerging to address

many-core computing. The UK now

has a regular GPU developers

workshop. Previous years have

seen the workshop held in

Oxford [1] and Cambridge [2]. The

2011 workshop is due to be held at

Imperial College.

A useful GPU computing resource

is GPUcomputing.net [47]. In

particular it has a page dedicated

to GPU computing in the UK [45].

This site is mostly dominated by the

use of NVIDIA GPUs, reflecting

NVIDIA’s lead in the market, but

over time the site should see a

greater percentage of content

coming from work on a wider range

of platforms.

To get started with OpenCL, one

good place to start is AMD’s
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OpenCL webpage [9]. NVIDIA’s

OpenCL webpage [98] is also

useful, as is their OpenCL ‘jump

start’ guide [92].

We would also recommend reading

some of the latest work in the area

of parallel algorithms. A good place

to start is ‘The view from

Berkeley’ [12], which builds on

earlier work by Per Brinch

Hansen [21]. Tim Mattson’s

‘Patterns for Parallel Programming’

is another notable book in this

area [74]. These works recognise

that most forms of scientific

computation can be decomposed

into a small set of common kernels

often known as ‘dwarfs’, ‘motifs’ or

‘templates’. Decomposing

algorithms into sub-algorithms that

may in turn be classified as a

particular kind of dwarf makes it

easier to exploit the substantial

works of the past and present, thus

simplifying the task of identifying

parallel approaches for your own

algorithms where they are already

known.

Finally, there is an online list of

applications that have already been

ported to NVIDIA’s GPUs [94].
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Appendix 1: Active Researchers and Practitioner Groups

This is a rapidly growing field and there are already many active researchers and developers using GPU computing

in the UK and around the world. The GPU developer conference held at the University of Cambridge in December

2010 saw around 100 attendees, and the Many-Core and Reconfigurable Supercomputing Conference at Bristol in

April 2011 saw over 130 delegates, all actively working within this area.

In the UK

The list below is not intended to be exhaustive but instead to give a cross section of the GPU computing community

in the UK and beyond. Our apologies are offered in advance to anyone we left off this list.

University of Bristol: McIntosh-Smith is a computer architect with extensive industrial experience designing

many-core heterogeneous architectures. He has more recently been developing software and algorithms for

GPUs, and has been working on new, massively parallel algorithms for a range of different applications

including molecular docking, computational chemistry, climate modelling, and linear algebra [78].

University of Oxford: Giles is the leading expert in the UK in the use of many-core GPUs for financial applications

and also for unstructured grid problems. Giles runs regular GPU programming workshops in NVIDIA’s

proprietary CUDA programming language [43]. Also at Oxford, Karastergiou has been investigating the use of

GPUs for the real-time processing of data for the future international telescope project, the Square Kilometre

Array (SKA) [64].

University of Warwick: Jarvis’s group has performed extensive work modelling the performance of large-scale

HPC systems, more recently looking at the effects of adding GPUs into these systems. The group has a

particular focus on wavefront codes [62].

Imperial College: Kelly is an expert in high-level tools for automatically generating optimised code for many-core

architectures. His research interests include parallelising compilers and auto-tuning techniques [65].

UCL: Atkinson is one of the leaders in applying GPUs to medical imaging problems, in particular Magnetic

Resonance Imaging (MRI) [13].

Edinburgh Parallel Computing Centre: EPCC is one of the leading providers of high-performance computing

training in the UK [34], and can provide consultancy to help parallelise algorithms and software for parallel

computer architectures.

University of Manchester: Manchester has a vibrant community of GPU users and runs a ‘GPU club’ that meets

on a semi-regular basis, attracting around one hundred attendees to recent events [72].

Queen’s University Belfast: Gillan and Scott lead a group of experts in using many-core architectures for image

processing applications [46, 108]. This group provides expertise and consultancy to third parties who need to

adapt their codes for GPUs and for reconfigurable systems based on Field-Programmable Gate Arrays

(FPGAs).

University of Cambridge: Pullan and Brandvik were two of the earliest adopters of many-core architectures in the

UK. They are experts in using GPUs for CFD and in porting structured grid codes to many-core

architectures [20]. Also at Cambridge, Gratton has been investigating the use of AMD and NVIDIA GPUs for

accelerating cosmology codes [48]. All three are part of Cambridge’s Many-Core Computing Group which

also has expertise in the use of GPUs for medical imaging and genomic sequence processing [22].

Daresbury Laboratories: the Distributed Computing (DisCo) group at Daresbury Labs regularly runs workshops

in the use of many-core architectures and can provide support in porting codes to GPUs. They also have

access to various GPU hardware platforms that they can make available for remote testing [30].
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AWE: Turland leads a group using GPUs to accelerate industrial wavefront simulation codes. His group has been

developing OpenCL-based methods that abstract away from specific architectures and vendor programming

models, allowing them to develop many-core applications that can perform well on a wide range of different

hardware [15].

BAE Systems: Appa was one of the earliest adopters of many-core architectures of GPUs in the world. He now

leads the team within the mathematical modelling group at BAE Systems that is using GPUs to accelerate

CFD computations to great effect [37].

The Numerical Algorithms Group: NAG has a team developing commercial many-core software libraries for

linear algebra and random number generators, amongst others. NAG also provides commercial many-core

training courses and software development consultancy services [89].

The MathWorks: The MATLAB developer is doing a lot of work to target GPUs from within their software, much of

which is taking place at their Cambridge development office [73].

Allinea: Allinea is a UK-based company developing some of the leading multi-core and many-core software

development tools, including debuggers and profilers for GPUs [6]. Developers of large-scale software using

hundreds or thousands of CPUs and GPUs could benefit significantly from these kinds of parallel debuggers.

Internationally

Innovative Computing Lab, University of Tennessee: Dongarra is a world expert in linear algebra libraries. His

group is spearheading the development of highly scalable, dense linear algebra libraries for heterogeneous

many-core processors and massively parallel systems [35, 36].

University of Illinois, Urbana-Champaign: Hwu is another leading global figure in GPU-based computing. His

particular interest is in using GPUs to accelerate medical imaging applications [54]. UIUC is also one of the

leading academic institutions in the use of GPUs to accelerate molecular dynamics and visualisation codes,

such as NAMD and VMD [115].

Oak Ridge National Lab: Vetter’s Future Technologies group at ORNL is planning one of the largest

supercomputers in the world based on GPU technology [116]. Vetter’s group has also developed one of the

first GPU benchmarks, the SHOC suite, which is useful for comparing the performance of different many-core

architectures [29, 117].

Tokyo Institute of Technology: Matsuoka is one of the leading HPC experts in Japan and is a specialist in

building highly energy-efficient supercomputers based on GPU technologies. He is the architect of the

TSUBAME 2.0 GPU-based supercomputer, the fifth fastest in the world as of June 2011. TSUBAME 2.0 is

also one of the most energy-efficient production systems in the world [50]. Matsuoka’s group also develops

GPU software, and has developed one of the fastest FFT libraries for GPUs [90].

Stanford: Pande’s group developed one of the first GPU-accelerated applications, the Folding@Home

screensaver-based protein folding project [100]. This group went on to develop the OpenMM open source

library for molecular mechanics. OpenMM takes advantage of GPUs via CUDA and OpenCL and is a good

starting point for porting molecular dynamics codes to GPUs [39, 101].

NVIDIA: NVIDIA was the first GPU company to see the real potential of GPU-based computing. Introducing the

CUDA parallel programming language in 2006, NVIDIA has the most applications ported to their many-core

architecture. Their ported applications webpage is a good place to find out what software is available for

GPUs [94].

The Portland Group: PGI provides software development tools including a parallel Fortran compiler that

generates code for GPUs [103].

Acceleware: Acceleware provides multi-core and GPU-accelerated software solutions for the electromagnetics

and oil and gas industries [4].

SciComp: SciComp is a financial software services company that provides a suite of software tools that exploit

GPUs and multi-core CPUs to deliver significant performance advantages over traditional approaches [106].
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Appendix 2: Software Applications Available on GPUs

The table below lists several important applications along with their current multi-core and GPU capabilities. These

will be changing all the time so do check for the latest information when considering any application. This list is far

from exhaustive; readers are encouraged to investigate further if their favourite codes are not included.

Software Multi-Core Many-Core

MATLAB

Some built-in ability to exploit parallelism at

the level of libraries such as BLAS and

LAPACK. Additionally provides a ‘Parallel

computing toolbox’ to exploit multi-core

CPUs [111].

Has a beta release of a GPU-accelerated

version of MATLAB [73]. Various third-party

solutions available, such as AccelerEyes’

Jacket [3].

Mathematica

Built-in support for parallelism since

Mathematica 7 [119]; also provides

gridMathematica for large-scale parallel

computation [118].

Mathematica 8 now includes support for

GPUs via CUDA and OpenCL [120].

NAG

NAG has a software library product for

shared memory and multi-core parallel

systems [87].

Has a beta release of random number

generators using CUDA on NVIDIA

GPUs [88].

R

Multiple R packages are available for

exploiting parallelism on multi-core

systems [32].

Numerous open source projects porting R to

GPUs, including R+GPU available in the

gputools R package [80].

SciFinance

This code synthesis tool for building

derivatives pricing and risk models can

already generate multi-core code using

OpenMP [107].

Already supports the generation of CUDA

code for PDEs and SDEs [107].

BLAS, LAPACK

math libraries

Almost all BLAS and LAPACK libraries

already support multi-core processors:

Intel’s MKL, AMD’s ACML, IBM’s ESSL,

ATLAS, ScaLAPACK, PLASMA.

This is an area where much software is

already available for GPUs: NVIDIA’s

CUBLAS, AMD’s ACML-GPU, Acceleware,

EM Photonics’ Cula Tools and MAGMA.
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