
From Platonic solids to quivers

Gwyn Bellamy

June 21, 2016

Abstract

This course will be a whirlwind tour through representation theory, a major branch

of modern algebra. We being by considering the symmetry groups of the Platonic solids,

which leads naturally to the notion of a reflection group and its associated root system.

The classification of these reflection groups gives us our first examples of quivers (= direct

graphs). Though easy to define, we’ll see that the representation theory associated to quivers

is very rich. We will use quivers to illustrate the key concepts, ideas and problems that

appear throughout representation theory. Coming full circle, the course will culminate with

the beautiful theorem by Gabriel, classifying the quivers of finite type in terms of the root

systems of reflection groups. The ultimate goal of the course is to give students a glimpse of

the beauty and unity of this field of research, which is today very active in the U.K.



Exercises: The Platonic solids

1. If the Schläfi symbol of the Platonic solid P is {p, q}, use Euler’s formula V −E +F = 2 to

show that

V =
4p

4− (p− 2)(q − 2)
, E =

2pq

4− (p− 2)(q − 2)
, F =

4q

4− (p− 2)(q − 2)
,

where V,E and F are the number of vertices, edges and faces respectively of P .

2. Recall from the first lecture that a reflection on Rn is an orthogonal transformation s ∈
O(R, n) such that dim FixRn(s) = n− 1 and s2 = id.

(a) Show that FixRn(s) = Ker(id− s).

(b) Prove that s is diagonalizable. What are the eigenvalues of s?

(c) Deduce that det(s) = −1.

(d) Choose α such that FixRn(s) = Hα. Derive the formula

sα(x) = x− 2(x, α)

(α, α)
α

for a reflection.

Hint: For part (b), if H := Ker(id− s), consider the space H⊥. Show that s acts on H⊥.

3. There is a purely topological proof of the fact that there are are only five Platonic solids.

The key topological fact is that Euler’s formula holds: V −E +F = 2. Using this, together

with the relations pF = 2E = qV , show that

1

p
+

1

q
=

1

2
+

1

E
.

Deduce that there are only five Platonic solids.

4. Using the fact that g ∈ W (P ) is a reflection if and only if it has one eigenvalue equal to −1

and two eigenvalues equal to 1, count the number of reflections in W (H) and W (D).
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Exercises: Reflection groups and root systems

1. Let

E =

{
x =

n+1∑
i=1

xiεi ∈ Rn+1 |
n+1∑
i=1

xi = 0

}
,

where {ε1, . . . , εn+1} is the standard basis of Rn+1 with (εi, εj) = δi,j. Let R = {εi − εj | 1 ≤
i 6= j ≤ n+ 1}.

(i) Show that R is a crystallographic root system.

(ii) Construct two different sets of simple roots for R.

(iii) By considering the action of the reflections sεi−εj on the basis {ε1, . . . , εn+1} of Rn+1,

show that the Weyl group of R is isomorphic to Sn+1.

2. Show that the symmetric matrix

A =

 1 − cos π
5

0

− cos π
5

1 − cos π
3

0 − cos π
3
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corresponding to the Coxeter graph
5

of type H3 is positive definite. What is the

determinant of A? Hint: recall that cos π
3

= 1
2

and cos π
5

= 1+
√
5

2
.

3. The angle between roots in a crystallographic reflection groups. Recall the following table

in section 2.5 of the lecture notes. The only possible values of 〈α, β〉 are:

〈β, α〉 〈α, β〉 θ

0 0 π
2

1 1 (?)

−1 −1 2π
3

1 2 (??)

−1 −2 3π
4

1 3 π
6

−1 −3 (? ? ?)

(a) What are the angles θ in (?), (??) and (? ? ?)?

(b) What about 〈β, α〉 = 〈α, β〉 = ±2?
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(c) Let α, β ∈ Rn. Show that sβsα is a rotation of Rn. Hint: decompose Rn = R{α, β} ⊕
Hα ∩Hβ and consider sβsα acting on R{α, β}. If e1, e2 is an orthonormal basis of R2,

write out sα and sβ explicit.

4. The hypercube Hn is the n-dimensional analogue of the square (n = 2), or cube (n = 3).

Concretely, we can realize Hn in Rn as the set of points

Hn = {v ∈ Rn | − 1 ≤ vi ≤ 1 i = 1, . . . , n}.

The group of symmetries of Hn is denoted BCn. It is called the hyperoctahedral group.

(i) How many vertices does the Hn have? How about edges, or faces?

(ii) The (n− 1)-dimensional faces of Hn are the copies F±i of Hn−1 given by {v ∈ Hn | vi =

±1}. Since BCn permutes these (n − 1)-dimensional faces, it will permute their mid-

points {e±i | i = 1, . . . , n}, where

e±i = (0, . . . , 0,±1, 0, . . . , 0).

Deduce that w is a sign permutation matrix i.e. a matrix where each row has only one

non-zero entry which is either a 1 or −1, and similarly for the columns.

(iii) What is the order of the group BCn?

(iv) The hyperoctahedron is dual to the hypercube. It is defined to be

On = {x ∈ Rn | (x, v) ≤ 1 for all vertices v of Hn}.

Check for n = 2 and n = 3 that one gets the (rotated by π
4
) square and octahedron

respectively.

(v) Show directly from the definition that the symmetries of Hn are also symmetries of On.

This shows that W (Hn) ⊂ W (On).

(vi) Notice that the e±i are the vertices of On. Deduce that W (On) = BCn.

4



Exercises: Quivers

1. A homomorphism between representations. Let M = {(Cvi , ϕα)} and N = {(Cwi , ψα)} be

representations of a quiver Q. Then a homomorphism f : M → N is a collection of linear

maps fi ∈ HomC(Cvi ,Cwi) for each i ∈ Q0 such that the diagrams

Cvt(α) Cvh(α)

Cwt(α) Cwh(α)

ϕα

ft(α) fh(α)

ψα

commute for all α ∈ Q1. The space of all homomorphisms from M to N is denoted

HomQ(M,N).

(a) Consider the representations

M : C2 C N : C C
(a,b)

(c,d)

x

y

where a, b, c, d, x, y ∈ C. If (a, b) = (2, 1), (c, d) = (6, 3), x = 1 and y = 3, construct

a non-zero homomorphism f : M → N . Are there any homomorphisms f : M → N

when (a, b) = (2, 2), (c, d) = (6, 4), x = 2 and y = 2 ? In general, what conditions

do a, b, c, d, x and y need to satisfy for HomQ(M,N) to be non-zero? What is the

dimension of HomQ(M,N) in this case?

(b) Recall that the representations of the quiver e1
α

are simply pairs (Cn, A),

where A : Cn → Cn is an n × n matrix. If M = (Cn, A), show that HomQ(M,M) =

{B : Cn → Cn |[A,B] = 0}, where [A,B] := AB−BA is the commutator of A and B.

2. Let Q be a quiver. Recall that, for each i ∈ Q0, we have defined the representation E(i) of

Q.

(a) Show that the representation E(i) is simple.

(b) If Q has no oriented cycles, show that every simple representation equals E(i) for some

i ∈ Q0.
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(c) Consider the quiver e1 e2

α

β . Show that the representation C C
3

2 is simple.

3. Let Q be the quiver
e2

e1 e5 e3

e4

α

β γ

δ

Write down the basis of paths for the path algebra CQ. What is dimCQ?

4. Let Q be the quiver e1 e2 e3
α β

and let

A =


 a b c

0 d e

0 0 f

 ∣∣∣ a, b, c, d, e, f ∈ C


be the algebra of upper triangular 3 × 3 matrices, where multiplication is just the usual

matrix multiplication. Construct an explicit isomorphism of algebras CQ ∼−→ A.

6



Exercises: Gabriel’s Theorem

1. You’ll notice that the positive definite Euler graphs are precisely the positive definite Coxeter

graphs that are simply laced i.e. have at most one edge between any two vertices. Let

(−,−)C , resp. (−,−)E, be the Coxeter form, resp. the Euler form, associated to a graph Γ.

(a) Show that if Γ is simply laced then (−,−)E = 2(−,−)C .

(b) If Γ is not simply laced, show that there is no λ ∈ R such that (−,−)E = λ(−,−)C .

(c) Show that the symmetric matrix (
2 −m
−m 2

)

corresponding to the Euler graph
m

is positive definite if and only if m = 1.

When is it positive semi-definite?

(d) By considering the subgraphs
m

with m > 1 of Γ, show that a non-simply

laced Euler graph is not positive definite.

(e) Deduce Theorem 4.8 from Theorem 2.18.

2. Let i ∈ Q0 be a sink. Show that S+
i (E(i)) = 0.

3. Consider the representation M given by

C

C C2 C

C

(1,0)

(0,1)

(1,2)

(1,1)

If we label the central vertex by i, what is S−i (M)?

4. Let Q be the quiver e1 e2 e3
α

β
of type A3. The corresponding root system,

with reflection group S4 was considered in the first exercise on reflection groups and root

systems. Thus, the positive roots are

R+ = {ε1 − ε2, ε2 − ε3, ε3 − ε4, ε1 − ε3, ε2 − ε4, ε1 − ε4},
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which, under the identification ei 7→ εi − εi+1, corresponds to

R+ = {e1, e2, e3, e1 + e2, e2 + e3, e1 + e2 + e3}.

For each of the above dimension vectors construct an explicit indecomposable representation

of Q.
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