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4 EDITORIAL

LMS NEWSLETTER 500: EDITORIAL

The LMS Newsletter celebrates its 500th issue. This
gives occasion to reflect on the past and wonder what
might lie ahead. What will the 1000th issue look like?

As so often, to have a glimpse of the future we must
look for clues in the past, not just of the Newsletter
but of the Society itself.

Founded in 1865, the Society is one of the oldest
mathematical societies in the world (with its roots
going back even further to 1717, the foundation of
the Spitalfields Society). Despite its name, already
in its early years, the membership of the Society
represented a much broader geographic area than
the capital and it quickly grew into a national society.
Indeed, it became known internationally and served as
a stimulus and model for many other mathematical
societies around the world. I would pick two remarkable
things from those early days that I feel we can be
especially proud of. One is that the Society stood out
among other societies, including the Royal Society, in
the rigour that it applied to the refereeing process.
Articles to be published in the Proceedings of the LMS
received two independent written reports. The other
is that it was open to women. Within its first twenty
years the Society not only accepted several female
members but also had papers presented by them.

There is of coursemuchmore to celebrate, in particular
the names closely connected with the Society — De
Morgan, Hardy, Pólya, Whitehead to name just a few
remembered through our prizes and lecture series
— and the mathematical research published by the
Society. In March I was fortunate to have been able
to attend the highly successful Society meeting in
honour of Alan Turing. The event highlighted his paper
’On Computable Numbers, with an Application to the
Entscheidungsproblem’, published in the Proceedings
in 1936 as one of the foundational papers in computer
science and introducing the concept now known as a
Turing machine.

The activities of the Society are not limited to research,
and it is in the Newsletter where members can read
more about these. Recent issues have reported on
our Levelling Up programme, the Protect Pure Maths
campaign, and now our reaction to and initiatives
arising from the invasion of Ukraine by Russia. The
Society recognises a community of mathematicians
that needs to be nourished and supported.

Turning to the Newsletter itself, it started with a few
black and white pages filled with news items, adverts

and announcements of Society meetings before the
electronic age. Much of this material is now most
efficiently dispersed by our regular eUpdates, and
the Newsletter was remodelled five years ago into a
bi-monthly magazine packed with news items from
around the wider and international community, policy
round-ups, obituaries, reviews and short mathematical
contributions.

Our Vice-President Cathy Hobbs mentioned in the last
issue that Council is considering making the Newsletter
an online-only publication to save costs and to support
the Society’s efforts to become greener. This, however,
ought not change the nature of the Newsletter as a
forum for members and as a source of information
on Society activities, policy, and news.

Can we see 500 issues ahead from now, which at
the present rate of publication would take us to the
year 2105? Let me not predict the uncertain fate of
the Newsletter in a world that seems to change its
preferred mode of communication at faster and faster
rates from email through blogs to Twitter and TikTok.
Even the future nature of mathematical research
lends itself to speculation. Will computer generated
theorems and computer aided proofs be the norm?
Can AI replace theory building mathematics in the style
of Grothendieck? Whatever the answer, I am sure that
mathematics will play a vital role in the next century,
so I see no diminished need for a mathematical society
like ours. I have every expectation that scientific rigor
and inclusivity, the hallmarks of our early Society, will
remain central for the advancement of mathematics.
My belief in humanity also makes me think that the
Society will see it fit to care for its members and
the wider community. And of course, one way or
another, some version of the Newsletter will be part
of that future Society, to “provide a sense of identity,
community, and connection for members”.

Professor Ulrike Tillmann
LMS President

I am delighted to welcome you to the 500th issue of
the LMS Newsletter. The Newsletter is a treasure of the
British mathematical community and I am honoured
to be the Editor-in-Chief for the jubilee issue. I am
sure you will enjoy reading it as much as I did.

Dr Alina Vdovina
Editor-in-Chief, LMS Newsletter
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LMS NEWSLETTER 500

The LMS Newsletter:
A Look Back From Former Editors

The LMS Newsletter through the years, from the perspective of some former
Editors-in-Chief.

On the occasion of the 500th issue of the LMS
Newsletter, we thought it would be interesting to reflect
on where we have come from through the eyes of the
Newsletter Editors over the years. Younger readers may
be surprised to know that the Newsletter started as a
single sheet of A5 paper, sent out monthly. Through
the years this evolved into a many-paged A5 booklet
format, initially black and white but moving to colour
in the early 2000s, and then the thorough re-launch in
September 2017 to arrive at the format you read today.
Nowadays the Newsletter is published online as well as
in paper format, and a larger number of readers than
ever before can access it freely via the LMS webpages.
The content has evolved too, from being predominantly
news about the Society and events it organised to
having a much wider scope including book reviews,
relevant events hosted by others, European news and
now, mathematical content.

We asked a number of former editors of the Newsletter
to reflect on their time in the role and what made it
memorable. Affection for the Newsletter, in whatever
format it has taken, comes over in their brief reflections.
We hope you find this delve into history interesting.

Susan Oakes, Cathy Hobbs

David Brannan: My Role in The
LMS Newsletter (1973–76)

When I became LMS
Secretary in 1971, LMS
had been conducting a
review (in which Samuel
James (“S.J.”) Taylor of
West�eld College was
a key player) about
‘modernising’ the LMS

— extending its activities, launching the LMS
Bulletin, attracting a wider membership, increasing
attendance at meetings, and so on. The review

included the establishment of an LMS Newsletter (a
mini-version of the AMS Notices) in place of the
former monthly LMS postcard that was posted on 1st
of the month to advertise that month’s LMS meeting.

We started in September 1973, so that the LMS could
advertise the Royal Society’s offer of funding to support
people who wished to attend the 1974 ICM in Vancouver.
I negotiated with Messrs C.F. Hodgson (who had been
LMS printers since 1865, but sadly closed in the
mid-1980s) to print it. Pat Hodgson wanted to know
what the format should be. We had rather little content,
so it would not take much to fill a page of whatever
size! I had recently converted (at Simon Fairthorne’s
suggestion) from imperial paper to metric, so I had
sheets of A4 loose leaf paper in my drawer. I pulled out
one sheet, folded it over, and mailed it to Pat saying
“something like this size, please”. So the first few issues
were a single A5 sheet of paper, printed two-sided,
published every month apart from August as that was a
‘holiday’ month. (Later it expanded to become a folded
A4 sheet, then multi-sheeted and stapled.) I also made
an agreement with AMS that we’d get advance proofs
by air mail of the AMS Notices so we could reproduce
freely anything from it that we wanted so long as we
assigned the proper attribution. I edited issues 1–3.

Then in November 1973 John Britton (who had recently
been appointed to Queen Elizabeth College where I
worked) was elected as LMS Meetings and Membership
Secretary and I became LMS Council and General
Secretary (I had organised the division in two of my
LMS post, with Council’s approval, due to the heavy
workload— an idea I had digging my allotment in Ealing
in summer 1972!). Technically we were joint Editors, but
John did the practical side and I simply supplied some
content, dealt with queries, and assisted John.

Finally in 1976 John stood down as Secretary and was
succeeded by Barry Johnson, who became the new
Newsletter Editor in our place.
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Norman Biggs: Newsletter Recollections
(1980–83)

I joined the LMS Council
in 1979 and was Editor
of the Newsletter
from October 1980
to December 1983
(Numbers 72–104). At
that time it was an
austere and serious

publication, but I recall two events that sparked
some liveliness.

The International Congress of Mathematicians was
due to take place in Poland in 1982, but it had to
be postponed because of the abnormal political
situation in that country. Eventually the IMU decided
that the Congress should go ahead in 1983, but
there was much discussion in the community
about the ethics of visiting Poland in the unusual
circumstances. Frank Adams volunteered to give his
view, and an open letter from him was circulated with
Newsletter 94. It was clear that opinions di�ered, so
I asked a few people who had close contacts with
Polish mathematicians to comment. The views of
Keith Devlin, Wilfrid Hodges, and Garth Dales were
circulated with Newsletter 95.

The other event was the wedding of Charles and
Diana in 1981. This would not normally have featured
in the sober pages of the Newsletter, but I could
not resist the opportunity for mischief of the April
Fool kind. An item appeared in Newsletter 78 stating
(wrongly) that the LMS was considering presenting
a suitable gift to the happy couple, and inviting
members to write to the President with suggestions
by 1 April. Fortunately the President (Barry Johnson)
appreciated the joke, although he had to write a few
soothing letters to outraged members who had not.

David Chillingworth: LMS Newsletter
Editor 2002–09

During my time as
Editor the Newsletter
transformed itself from
black and white to
multicolour format,
involving several
technical meetings with
designers on layout and
pantone shades: not
really my comfort zone.
In keeping with the

smarter, brighter appearance I tried to introduce
some levity with a monthly Sidney Harris cartoon
(example below), although unfortunately their ironical
mathematical humour sometimes mis�red. Although
the Newsletter is the o�cial organ of the Society, I
felt that it ought to be more of a forum for members
to express their views, especially during the debate
on the major issue of a possible merger with the
IMA. Although there were of course o�cial progress
reports on this from time to time, and invitations
for members to express their views, it did not seem
to me that enough e�orts were made to alert the
readership to what was really happening: did they
really want Council and the LMS sta� to spend such
a huge amount of time and e�ort on a project that
might come to nothing, and did they realise if they
didn’t pay attention they could wake up one morning
and �nd the LMS had disappeared? Divergence from
the o�cial track was, however, not permitted.

Tony Mann: LMS Newsletter Editor 2010–17

I had the privilege of
being tenth editor of the
LMS Newsletter from the
June 2010 issue, when
I took over from David
Chillingworth, until the
July 2017 issue, the �nal
issue in the old format
before the Newsletter
evolved into the more

extended magazine we now have. I was fortunate to
bene�t from David’s guidance and to have excellent
support from Reports Editors Stephen Huggett,
Robert Wilson and Iain Stewart, and Reviews Editors
Colva Roney-Dougal and David Singerman. But my
grand title of ‘General Editor’ was of course a
complete misnomer — all the work was done by the
‘Administrative Editor’, Susan Oakes, who produced
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an immaculate Newsletter eleven months of every
year (there being no issue in August).

My memories of my time as editor include our annual
team meeting, at which arguably the most important
decision to be taken was the colour to be used as
the basis of the Newsletter for the following year,
with inspiration often being taken from the fruit bowl
in front of us.

There were controversies. If I remember correctly,
the biggest postbag received during my time as
editor came when the Newsletter changed to a glossy
paper (for reasons of economy). No fewer than
two members wrote to us about this change! If my
memory is to be trusted, the correspondents were
equally divided for and against the new paper, with
the ability to read the Newsletter in one’s bath being
cited as a positive bene�t of the change.

I thoroughly enjoyed my time as General Editor, and I
am very grateful to everyone named above for their
support, and especially to Susan and the production
team, for making my job so easy. And I’d also like to
congratulate the subsequent editors and their teams,
who have taken the Newsletter to a new level.

Iain Mo�att: LMS Newsletter Editor 2017-19

As Editor, I took the
Newsletter through
its most recent
redesign, changing it
from its previous A5
format to its current
layout, and introducing
mathematical feature
articles. I interviewed
for the editorship during

December 2016. The idea for a redesign had already
been circulating in the LMS, and in advance of
my appointment the LMS had agreed that the
redesigned Newsletter should include feature articles,
have an Editorial Board, be produced in LaTeX,
and have a ‘clean’ design and particular physical
dimensions. Otherwise, they allowed me a blank
page to make things work. But they also set the
target of September 2017 for the �rst issue of the
new format, which, because of printing times, gave a
very ambitious six months or so to bring everything
together!

First up was creating the initial Editorial Board, and
deciding on the broad content and visual design.
There is a proper order to do this in, but the tight
timeline meant ignoring it. So that December and
January was a blur of phone calls to potential Editorial
Board members, conversations with designers and
LMS sta�, and cutting up old issues of the Newsletter
with scissors to glue together new ones.

Once the layout design was decided, and armed with
some knowledge of how much would �t on a page,
I could start reaching out to mathematicians for
feature articles. I am extremely grateful to everyone
who contributed articles, but especially to those
who took the leap in the dark to write for the �rst
few issues. Then with a small Editorial Board we
could start re�ning the content, and, with LMS sta�,
the production processes. As the printer’s deadline
for the �rst issue closed in, it was the switch to
producing the Newsletter in LaTeX that nearly derailed
things. The new class �le arrived close to the deadline,
and there was a last-minute scramble of hacks and
workarounds to get the layout we wanted. But we
made it thanks to the e�orts of everyone involved.

With the �rst issue of the redesigned Newsletter
out, our focus changed to regular production and
to incremental improvements. Since stepping down
as editor in December 2019 I’ve enjoyed seeing the
redesigned Newsletter growing and improving under
its subsequent editors and editorial boards.

LMS Newsletter Editors 1973–present

1973 D.A. Brannan
1973–76: D.A. Brannan and J.L. Britton
1976–80: B.E. Johnson
1980–83: N.L. Biggs
1984–87: C. Kosniowski
1988–02: S.M. Oakes (joint with A.R. Pears

and D.J.H. Garling)
1993–98: A.R. Pears
1998–02: D.J.H. Garling
2002–09: D.R.J. Chillingworth
2010–17: A.J.S. Mann
2017–19: I. Mo�att
2020–21: E. Lingham
2021–present: A. Vdovina
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LMS NEWS

Ukraine

From the LMS President

At the time of writing in mid-March 2022, a
catastrophe continues to unfold following the
unprovoked invasion of Ukraine by Russian
government forces. The consequences for the
people of Ukraine, their homes, their livelihoods
and their institutions are devastating. It is in equal
parts heartbreaking and infuriating to witness this
destruction and the repression and victimisation of
the brave Russians who dare to oppose the actions
of their government. The Society stands in solidarity
with everyone affected by this horrible violence.

In these circumstances, holding the 2022 International
Congress of Mathematicians (ICM) in St Petersburg
in July was clearly going against the ICM’s aim of
promoting international cooperation in mathematics.
The Society announced in February that, as
the Adhering Organisation to the International
Mathematical Union (IMU) for the UK, it would not send
delegates to an ICM in St Petersburg. The IMU decided
shortly thereafter that the ICM 2022 would take place
as a fully virtual event, hosted outside Russia.

As I write, the Society is reviewing all its activities in
light of the invasion and UK government sanctions
on Russia. The Society champions the sharing
of mathematical knowledge and the development
of an international community of mathematicians.
But the unprovoked aggression of the Russian
government renders continued joint working with
Russian institutions impossible.

In relation to its academic publishing activities,
the Society must consider the three Russian
mathematical journals, the English translation of which
the Society co-publishes. These journals are: Russian
Mathematical Surveys; Izvestiya: Mathematics; and
Sbornik: Mathematics. The Society must also consider
the future of the journal exchanges it operates with
Russian institutions, and the approach that it will take
to papers submitted to all its journals for publication
authored or co-authored by individuals affiliated with
or funded by Russian institutions.

The Society is also seeking to work with other UK
and international mathematical societies to assist
mathematicians who seek refuge in the UK. We

want to help them reconnect with their mathematical
community and restart their careers, and to signpost
them to sources of practical and emotional support.
It is vital that our mathematical colleagues know that
they are not alone in facing the disastrous events that
have overtaken them. We know that they would do
the same for us.

Professor Ulrike Tillmann

The Only Constant Is Change. . .
A farewell from Caroline Wallace, outgoing
Executive Secretary

As Members will know, I have made the difficult
decision to depart from the Society at the end of May.
This follows a change in my personal circumstances
that has opened up some new and unexpected
opportunities for me. I feel very lucky indeed to
have had the privilege of leading the Society’s staff
team, and to have contributed to the Society’s vital
work supporting research mathematicians, advancing
mathematical knowledge and promoting mathematics.
It has been a genuine delight to work with such
dedicated Trustees, Committee members and staff.
And mathematics is, and always will be, close to my
heart in terms of its codification of reasoning, logical
thinking and scholarly imagination - some of the most
inspiring characteristics of our species.

My time at the Society has been marked (but not
marred) by some truly world-changing events, not
least the covid-19 pandemic. These challenging times
have helped me find new reservoirs of resilience
and pragmatism that I didn’t know I had. As others
have articulated much more clearly than me, we can’t
choose the times we live in; “all we have to decide is
what to do with the time that is given to us”. And I
couldn’t have asked for a better group of people with
whom to weather the storm — thank you.

I wish the Society and my successor all the very
best for the future as you continue to support the
mathematics community and share the profound
advances and insights of mathematics with the world.

Caroline Wallace
LMS Executive Secretary
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Environmental Sustainability at the LMS

The LMS has recently begun to work through a plan that
addresses the environmental sustainability of the Society,
in terms of the activities it undertakes, the activities it
sponsors and the physical premises occupied by the
Society. The climate emergency will affect everyone in
all parts of the world and Council has agreed that it is
critical that the Society joins in the efforts to take action
now, however difficult or overwhelming this may seem.

The LMS is organising its efforts under three general
headings.

(1) It will address its own environmental sustainability
as an organisation.

(2) It will examine the steps it can take to reduce the
harmful effects to the environment that its activities
can cause, while maintaining their high quality and
overall effectiveness.

(3) It will try to build a community of action within the
mathematical sciences community, raising awareness
of environmental issues in our working lives and
indicating ideas and good practice about how to
address these, as well as encouraging and celebrating
mathematical research that contributes to our
understanding of the climate and the environment.

We will be reporting regularly on the specific steps
that we are taking as each is rolled out. To begin,
Andrew Dorward, the Head of Buildings and Conferences,
explains below some of the steps we have taken as an
organisation.

Iain Gordon
LMS Vice-President and

Council Environment Champion

An initial focus has been on De Morgan House, and
a programme of energy saving initiatives is currently
underway. The De Morgan House Buildings Team has
completed the upgrade to energy-efficient LED lighting
in most of the communal areas; the staircase alone has
96 candle lightbulbs, which have all been changed to LED.
Room by room, old fluorescent lighting tubes are being
removed and replaced with energy efficient LED panels.

In 2020 new energy-efficient ‘A’ rated boilers were
installed at De Morgan House which now provide all the
heating needs of the building. A policy is also in place
that, prior to purchase, all new equipment is reviewed to
assess its energy efficiency, which is considered when
deciding what to purchase.

The use of electricity and gas at De Morgan House is
also actively managed by the Head of Buildings and
Conferences, with heating timers installed, and radiators
manually turned off when rooms in the building are not
in use. This has become ever more important owing to
new working patterns and ensures empty rooms are not
heated unnecessarily.

De Morgan House electricity is provided from fully
renewable sources, via its energy provider. De Morgan
House achieved a rating of ‘C’ in a recent energy
performance survey, noting that a less energy-efficient
‘D’ rating is typical for similar buildings. The buildings
team will continue to try to improve on this rating with
further energy efficient improvements planned for 2022
and 2023. Energy efficiency is now a key priority when
setting the annual budget for the running of De Morgan
House, as we strive to reduce our carbon footprint as
much as possible.

In addition, to reduce the known environmental impact
from meat consumption, the De Morgan House
Conference Business is also looking to move to more
vegetarian and vegan catering options. The aim is to
provide non-meat catering as standard for all events.

The move towards sustainability is also guiding the
Society’s choice of investments. The majority of the
assets are held in funds administered by Cazenove
Capital, part of the Schroders Group, and their
performance is assessed annually. At the last meeting
with our fund managers, there was a special focus
on sustainable investment, and we were satisfied that
Schroders is well placed to help us in this respect.
Following subsequent discussions at Council and the
Investment Sub-Committee, it was agreed to transfer
initially 20% of the Society’s investment portfolio from
Cazenove’s Charity Multi-Asset Fund to its Responsible
Multi-Asset Fund (RMAF). The RMAF has enhanced
Environment, Social and Governance (ESG) indices,
reducing risk in all these areas. It excludes (for example)
fossil fuels and armaments, and its investors will want to
know the extent to which its activity is supporting human
rights. The Society is continuing the move to sustainable
investment at a steady rate, yet acknowledges that the
performance (and the definition) of ESG funds will come
under scrutiny in the changing world.

Andrew Dorward
Head of Buildings and Conferences, De Morgan House
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Legacy for the Society
The London Mathematical Society acknowledges a
generous bequest from the late Professor Stephen
J. Pride FRSE, formerly of the University of Glasgow
towards its work of advancing the development of
mathematical knowledge. Professor Pride was an
LMS member, and served as a member of the LMS
Editorial Board for 10 years. The Society is extremely
grateful to all Members who wish to remember the
Society in their wills.

Recently Published Survey Articles
in the Bulletin

The Bulletin of the
London Mathematical
Society continues to
publish de�nitive survey
articles, something it
has done since its very
�rst issue in 1969. Three
survey articles have
been published so far
in 2022, all with open
access.

• ’Some recent advances in topological
Hochschild homology’; Akhil Mathew;
doi.org/10.1112/blms.12558

• ’A user’s guide to the local arithmetic of
hyperelliptic curves’; Alex Best, Alex Betts, Matthew
Bisatt et al.; doi.org/10.1112/blms.12604

• ’Non-commutative amoebas; Grigory Mikhalkin and
Mikhail Shkolnikov; doi.org/10.1112/blms.12622

The Managing Editors of the Bulletin, Andrey Lazarev
and Sibylle Schroll, welcome the submission of survey
articles through the journal’s EditFlow submission
site: bit.ly/35qBkMY.

LMS Publications Committee
Strategic Retreat
The LMS Publications Committee will be holding a
strategic retreat in June to discuss long-term goals and
how to achieve them. Broadly, there are two questions:
“What should the LMS be publishing in 10 or 15 years’
time?” and “How do we get there from here?” The first
question is to be answered principally on mathematical
grounds, and will consider our journals’ identity, content
and coverage independent of considerations of finance,
contracts and the transition to open access, while the
second question considers the latter issues and journal

development more broadly. I would welcome thoughts
from LMS members on these or related issues.

Niall MacKay
LMS Publications Secretary

Email: publications.secretary@lms.ac.uk

Cecil King Travel Scholarships

Prachi Sahjwani and Valentin Kunz

The Cecil King Travel Scholarships are funded by the
Cecil King Memorial Foundation. They are designed
to advance the educational and vocational training of
young people who display outstanding potential in the
sphere of mathematics.

Each year the LMS administers two £6,000 travel awards
to support early career mathematicians for a period of
study or research abroad, typically three months. One
scholarship is usually awarded to a mathematician in
any area of mathematics and one to a mathematician
whose research is applied in a discipline other than
mathematics.

The awards are competitive and are based on written
proposals describing the intended programme of study
or research and the benefits to be gained from such
a visit. The Early Career Research Committee of the
LMS has a panel of specialists representing a broad
spectrum of mathematics who are tasked with analysing
the quality and standard of the applications, along with
the scientific merit of the research project.

Applicants should be mathematicians in the United
Kingdom or the Republic of Ireland who are registered
for a doctoral degree or have completed one within 12
months of the closing date for applications. The LMS
encourages applications from women, disabled, Black,
Asian and Minority Ethnic candidates, as these groups
are under-represented in the field of mathematics in
both the United Kingdom and the Republic of Ireland.

https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.12558
https://doi.org/10.1112/blms.12604
https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.12622
https://edf.lms.ac.uk/submit_new.php?j=blms
mailto:publications.secretary@lms.ac.uk
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The application deadline for the 2023 programme is 15
November 2022. The application form will be available
on the LMS website later in 2022. Shortlisted applicants
will be invited to an interview during which they will
be expected to make a short presentation on their
proposal. Interviews will take place in January 2023.

Following this year’s round of applications, we are
delighted to announce that the 2022 Cecil King Travel
Scholarships were awarded to Prachi Sahjwani, PhD
student at the University of Cardiff, and to Valentin
Kunz, PhD student at the University of Manchester.

Prachi Sahjwani proposed a study programme at the
University of Freiburg, Germany. Her main research
interests are in Geometric Analysis, specifically applying
analysis and geometric flow techniques to solve
problems in geometry.

Valentin Kunz is due to visit Harvard University, USA
and his research will be on invariant Cauchy-Riemann
mappings between spheres, which have many surprising
properties.

It is hoped that the Cecil King Travel Scholarship
will be of great benefit to both recipients and will
support the development of their academic careers.
More information about the Scholarships is available at
tinyurl.com/2p92jzpz.

Valeriya Kolesnykova
Accounts, Fellowships & Membership Assistant

Forthcoming LMS Events

The following events will take place in the next few
months:

LMS Meeting and Hirst Lecture:
6 May, De Morgan House, London

Northern Regional Meeting:
24 May, Leeds

LMS/Gresham Lecture: The Maths of
Gyroscopes and Boomerangs:
25 May, Museum of London and online

LMS Meeting at the BMC:
7 June, King’s College, London

LMS Meeting and Aitken Lecture:
1 July, BMA House, London

LMS–INI–Bath Symposium: K-Theory and
Representation Theory:
18-22 July, University of Bath

LMS–Bath Symposium: New Directions in Water
Waves: 18-29 July

LMS-Bath Symposium: Combinatorial Algebraic
Geometry: 1-5 August 2022

A full listing of forthcoming LMS events can be found
on page 70.

OTHER NEWS

Isaac Newton Institute
Solidarity Initiatives

To help our fellow mathematicians who have
become refugees, the INI has initiated a Solidarity
list (tinyurl.com/2p8fdhh6) to connect those who
need help and those who are able to o�er
it. Refugee researchers in the mathematical
sciences can also be o�ered six months of
accommodation and subsistence through our
special INI Programme Solidarity for mathematicians
(newton.ac.uk/event/slm). An accompanying satellite
programme is being set up which will allow
researchers to take their six months stipends also
to other universities in the UK. For more information
write to Ulrike Tillmann (oms@newton.ac.uk).

Professor Sir John Ball Elected
President of RSE

Former LMS President
Professor Sir John Ball
has been elected as
President of the Royal
Society of Edinburgh.
Sir John succeeds
Professor Dame Jocelyn
Bell Burnell, who
commented:

“I am delighted to hand
over to Professor Sir

John Ball as the new President of the Royal Society
of Edinburgh. During my Presidency, I set out RSE’s

https://www.newton.ac.uk/information/solidarity-list/
https://www.newton.ac.uk/event/slm/
mailto:oms@newton.ac.uk
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desire to play an even greater role in the wellbeing
of Scotland and all its people. Returning to RSE
as interim President in May, I have been very
pleased to see the progress that has been made
over recent years through initiatives such as the
Women in Science exhibition and, most recently, the
Post-covid-19 Futures Commission. I look forward to
seeing RSE’s continued development and evolution
under Sir John’s Presidency.”

LMS Atiyah Fellow 2021–22

Professor Maciej Dunajski, the LMS Atiyah Fellow
2021–22, has taken up his Fellowship to make two
short visits to the Center for Advanced Mathematical
Sciences in the American University of Beirut. In April
he gave a mini-course on Calculus of Variations and
Geometry aimed jointly at students in the AUB and
at the Lebanese University. He also gave a public
Colloquium on geometry, based on his popular book
Geometry, A Very Short Introduction, published by
OUP. Professor Dunajski hopes to make his second
visit to CAMS in September this year.

Abel Prize Laureate 2022

Photo credit: John Griffin/Stony Brook University/Abel Prize

Professor Dennis P. Sullivan, an Honorary Member of
the London Mathematical Society, has been awarded
the 2022 Abel Prize. Dennis Sullivan is best known for
his groundbreaking work on topology and dynamical
systems, two �elds in which ideas about geometric
structure play a central role.

Since it was �rst awarded in 2003, the Abel Prize
has come to represent a lifetime achievement award.
The past 24 Abel laureates carried out most of their
renowned work in the mid-to-late twentieth century.
“It’s nice to be included in such an illustrious list”,
said Sullivan, who has appointments at both Stony
Brook University in Long Island, New York and at
the City University of New York. Read Sullivan’s full
biography at https://tinyurl.com/28bzy5z8.

The Abel Prize Week will take place in Oslo from
23–25 May, and the award ceremony for the 2022
laureate will take place on 24 May at the University
Aula, Oslo (16:00 – 16.40 local time). It will be a
physical event, for which registration is required
(details at tinyurl.com/5dkjw46a). The event will also
be streamed live on The Abel Prize YouTube Channel.

OPPORTUNITIES

LMS Grant Schemes

The next closing date for research grant applications
(Schemes 1,2,4,5,6 and AMMSI) is 15 May 2022.
Applications are invited for the following grants to
be considered by the Research Grants Committee
at its June 2022 meeting. Applicants for LMS Grants
should be mathematicians based in the UK, the Isle
of Man or the Channel Islands. For grants to support
conferences/workshops, the event must be held in
the UK, the Isle of Man or the Channel Islands:

Conferences (Scheme 1)

Grants of up to £5,500 are available to provide
partial support for conferences. This includes
travel, accommodation and subsistence expenses
for principal speakers, UK-based research students,
participants from Scheme 5 countries and Caring
Costs for attendees who have dependents.

Visits to the UK (Scheme 2)

Grants of up to £1,500 are available to provide partial
support for a visitor who will give lectures in at
least three separate institutions. Awards are made

https://abelprize.no/biography/biography-dennis-p-sullivan
https://abelprize.no/events/abel-prize-award-ceremony?_ga=2.18674556.455777934.1645523703-463136895.1642581578
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to the host towards the travel, accommodation and
subsistence costs of the visitor. Potential applicants
should note that the host institutions are expected to
contribute to the costs of the visitor. In addition, the
Society allows a further amount (of up to £200) to
cover Caring Costs for those who have dependents.

Research in Pairs (Scheme 4)

For those mathematicians inviting a collaborator,
grants of up to £1,200 are available to support a
visit for collaborative research either by the grant
holder to another institution abroad, or by a named
mathematician from abroad to the home base of the
grant holder. For those mathematicians collaborating
with another UK-based mathematician, grants of
up to £600 are available to support a visit for
collaborative research either by the grant holder to
another institution or by a named mathematician to
the home base of the grant holder. In addition, the
Society allows a further amount (of up to £200) to
cover Caring Costs for those who have dependents.

Collaborations with Developing Countries
(Scheme 5)

For those mathematicians inviting a collaborator to
the UK, grants of up to £3,000 are available to
support a visit for collaborative research, by a named
mathematician from a country in which mathematics
could be considered to be in a disadvantaged
position, to the home base of the grant holder. For
those mathematicians going to their collaborator’s
institution, grants of up to £2,000 are available to
support a visit for collaborative research by the
grant holder to a country in which mathematics
could be considered to be in a disadvantaged
position. Applicants will be expected to explain in
their application why the proposed country �ts
the circumstances considered eligible for Scheme
5 funding. In addition, the Society allows a further
amount (of up to £200) to cover Caring Costs for
those who have dependents. Contact the Grants
team if you are unsure whether the proposed
country is eligible, or check the IMU’s Commission
for Developing Countries de�nition of developing
countries (tinyurl.com/y9dw364o).

Research Workshop Grants (Scheme 6)

Grants of up to £10,000 are available to provide
support for Research Workshops. Research
Workshops should be an opportunity for a small
group of active researchers to work together
for a concentrated period on a specialised topic.
Applications for Research Workshop Grants can be

made at any time but should normally be submitted
at least six months before the proposed workshop.

Computer Science Small Grants (Scheme 7)

Grants of up to £750 are available to support a
visit for collaborative research at the interface of
Mathematics and Computer Science either by the
grant holder to another institution within the UK or
abroad, or by a named mathematician from within
the UK or abroad to the home base of the grant
holder. Priority will be given to applications from early
career researchers.

African Mathematics Millennium Science
Initiative (AMMSI)

Grants of up to £2,000 are available to support the
attendance of postgraduate students at conferences
in Africa organised or supported by AMMSI.
Application forms for LMS-AMMSI grants are available
at ammsi.or.ke.

ECR Travel Grants

The next closing date for applications for Early Career
Research Travel Grants is 13 May 2022. Applications
will be considered by the Early Career Research
Committee at its June 2022 meeting. Grants of up
£500 are available to provide partial travel and/or
accommodation support for UK-based early career
researchers to attend conferences or undertake
research visits either in the UK or overseas.

More Information

For full details of these grant schemes, and to �nd
information on how to submit application forms, visit
the LMS website: lms.ac.uk/content/research-grants.
Queries regarding applications can be addressed
to the Grants Administrator Lucy Covington (020
7927 0807, grants@lms.ac.uk), who will be pleased to
discuss proposals informally with potential applicants
and give advice on the submission of an application.

LMS Research Schools 2022
The following Research Schools will take place in
2022:

Methods of Random Matrix Theory & Applications
Reading, 16–20 May 2022
Main Lecturers: Estelle Basor (American Institute of
Mathematics); Tamara Grava (University of Bristol
and SISSA); Alexander Its (Indiana University-Purdue
University Indianapolis).

https://www.lms.ac.uk/grants/research-grants
mailto:grants@lms.ac.uk
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Point Con�gurations: Deformations and Rigidity
UCL, 27 June – 1 July 2022
Main Lecturers: Keith Ball (Warwick University);
Werner Krauth (École Normale Supérieure); Franz
Merkl (Ludwig Maximillian University of Munich);
Sylvia Serfaty (New York University).

Bicategories, Categori�cation and Quantum Theory
Leeds, 11–15 July 2022
Main Lecturers: Richard Garner (Macquarie University,
Sydney); Marco Mackaaij (University of Algarve); Chris
Huenen (Radboud University Nijmegen); Sonia Natale
(Universidad Nacional de Còdoba).

Unimod 2022
Leeds, 18–22 July 2022

Main Lecturers: Amador Martin-Pizarro (Albert
Ludwig Universität in Freiburg); Assaf Hasson (Ben
Gurion University of the Negev); Zoé Chatzidakis
(École Normale Supérieure)

Elliptic Curves
Baskerville Hall, Hay-on-Wye, 8–12 August 2022
Main Lecturers: Alina Cojocaru (University of Illinois
Chicago); Jennifer Park (Ohio State University); Chao
Li (Colombia University); Joseph Silverman (Brown
University); Jan Vonk (University of Leiden); Christian
Wuthrich (University of Nottingham).

For more information and links to the events visit:
https://www.lms.ac.uk/events/lms-research-schools.

EUROPEAN MATHEMATICAL SOCIETY NEWS

Ukraine

Following the Russian invasion of Ukraine, the EMS
Executive Committee issued a statement expressing
solidarity with the people of Ukraine, and our
colleagues there. The committee also called for
academic cooperation with state institutions and
business enterprises in Russia to be frozen.

Russian Mathematicians

The following is an English translation of an open
letter to the President of the Russian Federation from
Russian mathematicians against the war in Ukraine.
The original is hosted on the webpage of the Russian
scientific publication Troitsky Variant.

Mathematicians Against War

President of the Russian Federation
V. V. Putin
Mr President!

We, mathematicians working in the Russian Federation,
strongly protest against the military invasion of the
territory of Ukraine launched by the Russian army on
February 24, 2022.

The standard of living in a country and its position
in the world are largely determined by the level
of its science. Scientists around the world are
working on problems that have no national and
territorial restrictions, for the well-being of all mankind;
international cooperation, lack of borders for the

dissemination of knowledge and humanistic values
are the foundation on which science is built. Our
long-standing efforts to strengthen the reputation of
Russia as a leading mathematical centre have been
completely devalued in consequence of unprovoked
military aggression initiated by our country.

Mathematics has always been one of the few
areas of fundamental science in which Russia has
maintained a leading world position. As confirmation
of this, Russia was supposed to host the most
prestigious mathematical conference in the world,
the International Congress of Mathematicians, in the
summer of 2022. The International Mathematical
Union cancelled this decision in connection with the
Russian attack on Ukraine. In a situation where our
country has become a military aggressor and, as a
result, a rogue state, Russia’s leading positions in world
mathematics will be irretrievably lost.

In the orders of the President of 4 December 2020,
mathematics was named a priority area for the
development of the Russian Federation; goals were
identified both in the field of fundamental science
and in education. These goals, of course, cannot be
achieved in the current conditions, when the lives of
our closest colleagues – scientists in Ukraine, with
whom we have been connected by many years of
successful joint work, are daily exposed to danger, the
source of which is the Russian army, and when Russia
has found itself in international isolation, without
the possibility of intensive scientific exchange and
cooperation with scientists from other countries.
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We are convinced that no geopolitical interests can
justify casualties and bloodshed. War will only make
the country lose its future, for which we work.

We demand an immediate cessation of military actions
and the withdrawal of Russian troops from the
territory of Ukraine.

ICM 2022 online
The International Mathematical Union has announced
that the International Congress of Mathematicians July
2022 will be held fully (and freely) online, instead of in
Russia. The EMS is an affiliate member of the IMU, and
the EMS Executive Committee welcomes this decision.

EMS 30th Anniversary Celebration
The European Mathematical Society 30th Anniversary
Meeting, originally scheduled for 2020 but postponed
because of the pandemic, was held as a special event
on 31 March at ICMS in Edinburgh.

Institut des Hautes Études
Scientifiques
Events organized at IHES (France) during the coming
months include:

• Conference: 100 years of the Ising model: 30 May –
3 June

• Hadamard Lectures by Carinna Ulcigrai: 1, 2, 3 June
at the Institut de Mathématiques d’Orsay; 7, 8, 9
June at IHES

• Summer school on the Langlands programme: 11–29
July

For further details visit ihes.fr/en.

Institut Henri Poincaré
The IHP has been promoting and hosting worldwide
scientific interdisciplinarity and interaction at the heart
of Paris since 1928. From 5 September to 9 December
2022 the institute will host a three-month program
entitled Geometry and Statistics in Data Sciences.
Registration is free but mandatory.

European Society for Mathematical
and Theoretical Biology
The European Conference on Mathematical and
Theoretical Biology (ECMTB) 2022 will take place 19–23

September in Heidelberg, Germany. It is a joint event
organised by the ESMTB and the SMB (Society for
Mathematical Biology).

EMS Magazine
The latest version of the EMS Magazine is available to
read. Highlights include a message regarding predatory
publishing practices (Thierry Bouche, Stefan Jackowski,
Betül Tanbay), T. Tao and the Syracuse conjecture (J.-P.
Allouche) and a report on the EWM Panel Discussion
on Gender Balance in Mathematics at the European
Congress of Mathematics (Eugénie Hunsicker), with
much more besides!

French Mathematical Society (SMF)
In 2022 the SMF will be 150 years old. Celebration
days will take place on 16, 17 and 18 March
2022. The programme can be found online at
https://smf.emath.fr/150-ans-smf.

Heidelberg Laureate Forum (HLF)
Calling Outstanding Young Researchers — apply now
for the 9th Heidelberg Laureate Forum, September
18–23, 2022! Young researchers in computer science
and mathematics from all over the world are
encouraged to apply for one of the 200 coveted
spots. The HLF offers all accepted young researchers
the opportunity to personally interact with the
laureates of the most prestigious prizes in the
fields of mathematics and computer science: the
recipients of the Abel Prize, the ACM A.M. Turing
Award, the ACM Prize in Computing, the Fields
Medal, and the Nevanlinna Prize engage in a
cross-generational scientific dialogue with young
researchers in Heidelberg, Germany. More information
at heidelberg-laureate-forum.org.

European Women in Mathematics
(EWM)
The EWM’s General Meeting 2022 (EWM GM 2022) will
be held 22–26 August 2022, in Aalto University, Espoo,
Finland. The European Mathematical Society lecturer
will be Claire Voisin (CNRS, Institut de mathématiques
de Jussieu-Paris, France). The plenary speakers will be:
Kathrin Bringmann (Cologne), Maria Bruna (Cambridge),
Nina Holden (ETH Zürich and Courant Institute of
Mathematical Sciences), Kaisa Miettinen (Jyväskylä),
Ilaria Perugia (Vienna). The Gender speaker will be
Jessica Wade (Imperial College London).

https://www.ihes.fr/en
https://smf.emath.fr/150-ans-smf
https://www.heidelberg-laureate-forum.org/
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Deadlines:

• February 28, 2022: submission of minisymposium
proposals

• March 31, 2022: application for travel/accommodation
grants

• May 31, 2022: submission of abstracts

The conference is supported by Aalto Science
Institute, Federation of Finnish Learned Societies
and Foundation Compositio. EWM is supportedby
G-Research and Smith Institute.

The IDM Governing Board hopes to increase
signi�cantly the number of schools celebrating the
IDM, either in the classroom, or through a larger
event. One way to interpret the 2022 IDM theme
”Mathematics Unites” is the fact the whole planet

shares the same mathematical language. To illustrate
this through a school activity, some proofs without
words have been added to the material proposed
for classroom activities. The IDM Governing Board
needs your help for reaching the schools and school
networks of your country: invite them to celebrate
and to joint the IDM community be registering to the
IDM newsletter.

EMS News prepared by David Chillingworth
LMS/EMS Correspondent

Note: items included in the European Mathematical
Society News represent news from the EMS and are
not necessarily endorsed by the Editorial Board or the
LMS.

MATHEMATICS POLICY DIGEST

LMS Welcomes R&D
Tax Relief Reform

The Society is delighted that in the Spring Statement
of 23 March, the Chancellor Rishi Sunak announced
that the definition of research and development (R&D)
for tax reliefs will be expanded by clarifying that pure
mathematics is a qualifying cost. This will support the
growing volume of R&D underpinned by mathematical
advances.

In May 2021, the CMS (supported by the LMS) wrote
to Her Majesty’s Treasury regarding the fact that work
in pure mathematics was specifically excluded from
R&D tax relief, which supports companies that work
on innovative projects in science and technology. This
followed an earlier proposal in the Bond Review that
mathematical sciences be encompassed in the HMRC
definition of science and technology and included in
the tax credit scheme. The Society was pleased to see
the impact of this work in the changes announced by
the Chancellor.

National Academy: Next Steps

The task and finish group which was convened to
analyse responses to the recent consultations on the
National Academy for Mathematics and Connected
Centres Network has now outlined a proposal for next
steps. At the time of writing a document summarising

that proposal has been sent to CMS member societies
with a request for feedback.

Multiply Programme
Multiply is a new £559 million government programme
to help transform the lives of adults across the UK, by
improving their functional numeracy skills through free
personal traininng, digital training and flexible courses.
Through this scheme, local areas are encouraged to
invest in meaningful participation that boosts people’s
ability to use mathematics in their daily life and work.
For local allocations in England, Multiply has invited
the Greater London Authority, Mayoral Combined
Authorities and upper tier authorities outside of these
areas to develop investment plans against a national
menu of interventions. For local allocations in Scotland,
Wales and Northern Ireland, Multiply will be delivered
alongside wider programmes of UK Shared Prosperity
Fund (UKSPF) activity; further details can be found
in the UKSPF prospectus at bit.ly/38OscTy. These
programmes aim to start in the 2022/23 academic year.
For more information about the Multiply programme,
see bit.ly/36n0uwi.

Digest prepared by Katherine Wright
Society Business, Research &

Communications Officer

Note: items included in the Mathematics Policy Digest are
not necessarily endorsed by the Editorial Board or the LMS.

https://www.gov.uk/government/publications/uk-shared-prosperity-fund-prospectus
https://www.gov.uk/government/publications/multiply-funding-available-to-improve-numeracy-skills
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New layout and style for the LMS journals and
Mathematika
Ola Törnkvist (LMS Editorial Manager)

London Mathematical Society, London,
UK
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Ola Törnkvist, London Mathematical
Society, De Morgan House, ��–�� Russell
Square, London WC�B �HS, UK.
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Funding information

Abstract
Since the start of ����, the Bulletin, Journal, Proceedings,
Transactions of the London Mathematical Society, the
Journal of Topology andMathematika are published in a
new journal design, which is demonstrated on this page.

KEYWORDS
��-XX (primary)

� NEW JOURNAL DESIGN

From ����, the LMS journals and Mathematika are published in this layout and style. Also,
bibliographies are typeset according to the AMS referencing style [�], with examples given below.
(There are no single quotes around article titles; the title of the item cited will always be typeset
in italics, and the remainder of the reference will be typeset in an upright roman typeface.)
The LMS welcomes PDF manuscripts prepared in any style of TeX or LaTeX. There is no tem-

plate or LaTeX class file for the new journal design; rather, the typesetters will convert any sub-
mission format into the new design.
To submit, please go to www.lms.ac.uk/publications/journals.

JOURNAL INFORMATION
The LMS journals are wholly owned and managed by the London Mathematical Society, a not-
for-profit Charity registered with the UK Charity Commission. All surplus income from its
publishing programme is used to support mathematicians and mathematics research in the
form of research grants, conference grants, prizes, initiatives for early career researchers and the
promotion of mathematics.

REFERENCES
�. M. Letourneau and J. Wright Sharp, AMS Style Guide: Journals, American Mathematical Society, Providence,

RI, ����, Chapter ��, pp. ��–��.
�. A. N. Author, Example of a title of a journal article, Bull. Lond. Math. Soc. �� (����), ��–��.

© ���� The Author. Articles in the LMS journals and Mathematika are published either with Subscription Access under an Exclusive
Licence Agreement or with Open Access under a Creative Commons Licence. The Corresponding Author’s institution may have an open
access policy or an agreement with Wiley to cover the cost of APCs.

LMS Journals ����;�. www.lms.ac.uk/publications/journals �
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REPORTS OF THE LMS

LMS Council Diary —
A Personal View

Council met via video conference on Friday 4 February.
After a welcome from the President, with a particular
welcome to those members new to Council, there
was an update on President’s business. This included
a report on the Council for Mathematical Sciences
(CMS) Town Hall meeting on 11 January, where green
papers had been considered on a National Academy
for Mathematical Sciences and a Connected Centres
Network, which is being followed up by a working group
chaired by the CMS Chair Alison Etheridge, and an
update on the Levelling Up Scheme, for which further
funding is providing a firm foundation for a second
cohort of universities to join the scheme. The President
also outlined recent activities of the Protect Pure Maths
Campaign, such as collection of data on the demand
for mathematics skills in the UK labour market and
a submission to the House of Commons Science and
Technology Select Committee on Diversity in STEM,
and congratulated the Executive Secretary on having a
letter on the Protect Pure Maths campaign published
as the Editor’s Choice in the New Scientist magazine.

There was discussion on several matters arising from
the Minutes of the previous Council meeting. A report
of Vice-President Hobbs on intake to Mathematical
Science degrees was considered, which highlights
that the number of mathematics undergraduates is
growing in some institutions but shrinking in others.
Vice-President Hobbs will speak at the April HoDoMs
Conference about her report as well as at a Joint
Mathematical Council committee workshop in February.
An update was also given on the recruitment of a
new Executive secretary, for which interviews will be
held in April. Vice-President Gordon also reported on
discussions with the chairs of the Early Career Research,
Research Grants, and Society Lectures and Meetings
Committees about how a pilot scheme for taking into
account sustainability in the Society’s events and grant
giving activities might be implemented, which will be
discussed at a later Council meeting.

After the Treasurer presented the First Quarter Financial
Review and revised budgets for 2021-22, Council
discussed an item on a proposed Code of Conduct for
Trustees, and it was agreed that such a Code of Conduct
should be introduced and would be made public.

Other business included a report from the Elections
Scrutineer, a paper on Committee Membership and
Representatives, and a discussion on the Membership
Census 2022, which showed that the Society had lost
a relatively high number of Ordinary members over
the last two years but there had been a large increase
in the number of members in their twenties. The
importance of emphasising the benefits of membership
was agreed and it was noted that a membership benefit
is highlighted in each issue of the Newsletter.

The meeting concluded with the President thanking
members of Council for their contributions.

Elaine Crooks
Member-At-Large

Levelling Up: Maths —
The First Year

“A very promising start”, says founder Tony Hill.

Levelling Up: STEM nurtures A-level students from
underrepresented groups in Maths, Physics and
Chemistry who may be planning to study a STEM
subject at university. It combines high quality academic
material with an integrated pastoral programme and
is delivered by STEM undergraduates from a local
university. It begins midway through Year 12 and
continues until the A-level examinations in Year 13. The
first cohort, of 225 students, started in March 2021.

The programme is currently in the (highly
resource-intensive) start-up phase with the first
cohort of students completing the programme in
April 2022. The broad aim of the second (roll-out)
phase is to increase the number of participating
universities and refine the programme, as necessary,
over a three year period. In Levelling Up: Maths, this
expansion is already well underway. Working together,
the LMS and the IMA are now supporting eight English
universities for the second cohort, starting in Spring
2022. In addition to first cohort universities Durham
and Leicester, the newly-joined universities comprise
Birmingham, Greenwich, Manchester Metropolitan,
Middlesex, Southampton and UEA.

Students from underrepresented groups can be hard
to reach. Accordingly, our central principle is that



i
i

“NLMS_500” — 2022/4/21 — 12:08 — page 19 — #19 i
i

i
i

i
i

LMS BUSINESS 19

participating universities should intervene close to
home and make their own determination of the precise
underrepresentation focus. For example, amongst
other things, the focus could be on socio-economic,
gender or ethnic underrepresentation, or a mixture of
these. The programme is open to all UK universities.
I’d like to see Levelling Up working with established
regional groupings, such as the five universities in
the North East (NERAP). My ambition, by Spring
2025, is to have an annual national cohort of around
3000 students across the whole Levelling Up: STEM
programme. Due to its central role in STEM, it
is expected that a significant proportion of these
students will be receiving tutoring in Maths.

A key principle of this scheme is that students,
undergraduates and universities will all benefit from
engagement with Levelling Up: STEM. Our goal is to:

(1) Increase aspiration and attainment for students
from underrepresented groups

(2) Enhance the professional skills of undergraduates
from such groups

(3) Engender a deeper understanding of access
challenges within universities

A detailed evaluation of the impact of the
programme on both the students and undergraduate
tutors/mentors is being conducted. The School of
Education at Durham University is co-ordinating the
analysis across the six university departments involved
in the first cohort. Interim findings are now being
used to refine our approach, in preparation for our
second cohort joining this Spring. The final report
will be available in Summer 2022. Future student
evaluation will centre on measuring the improvement
in attainment.

Dr Tony Hill

Report: International Day of
Mathematics

The International Day of Mathematics (IDM)
2022 celebrations took place under the theme
Mathematics Unites with at least 1,650 celebrations in
approximately 100 countries. The theme Mathematics
Unites proposed by a student of Canada, Yulija
Nesterova, can be explored through the following
citations at tinyurl.com/bdfx94ec.

The Mathematics Unites Photo Challenge generated
more than 3,200 entries and the most beautiful and
inspiring photos are shown in galleries.

There were �ve global virtual live celebrations in
each of the �ve international languages native
to the speakers and chair. The celebrations have
been recorded and can be accessed from at
tinyurl.com/2p8pathx.

• Arabic: (Chair: Djamel Eddine Cheriet; Speakers:
Tarig Abdelgadir, Samia Achour, Taous Meriem
Laleg-Kirati)

• Portuguese: (Chair: Maria de Natividade; Speakers:
Ines Guimarães, Marcos Cherinda, Humberto
Bortolossi)

• English: (Chair: Sujatha Ramdorai; Speakers: Katie
Steckles, Wilfred Ndifon, Steven Strogatz, Laura
Wynter)

• French: (Chair: Raïssa Malu; Speakers: Wendelin
Werner, Marie-Françoise Ouedraogo, Moreno
Andreatta, Christian Genest)

• Spanish: (Chair: Jeanette Shakalli; Speakers: Alicia
Dickenstein, Bernardo Recamán, Natalia Jonard,
Eduardo Sáenz de Cabezón)

The celebrations were integrated into a 48 hour Live
Coverage on 14 March 2022, starting 00:00 New
Zealand time and ending 24:00 Paci�c time and for
which the IDM website got more than 30,000 hits
from di�erent people.

UNESCO launched the Open Access tool kit
‘Mathematics for Action: Supporting Science-Based
Decision Making’ as an IDM event. This tool kit
consists of a collection of lively two-page briefs
promoting mathematically-grounded solutions to
global challenges and highlighting the role of
mathematics in addressing the SDGs of the UN 2030
Agenda. It was produced by a consortium of expert
organisations.

The United Nations proclaimed the International
Year of Basic Science for Sustainable Development
2022 (IYBSSD 2022), of which IMU is an organiser.
The 2022 theme ‘Mathematics Unites’ for IDM 2022
expresses in particular that ‘Mathematics unites all
sciences, giving them a common language’. IDM 2022
is naturally part of IYBSSD 2022.

Press releases in �ve languages can be found at
idm314.org/press_kit.html and the message of the
Director General of UNESCO can be found at message
of UNESCO DG.

Christiane Rousseau
University of Montreal

https://tinyurl.com/bdfx94ec
https://tinyurl.com/2p8pathx
https://www.idm314.org/press_kit.html


i
i

“NLMS_500” — 2022/4/21 — 12:08 — page 20 — #20 i
i

i
i

i
i

20 LMS BUSINESS

Report: LMS Invited Lectures on
the Mathematics of Deep Learning

The LMS Invited Lectures on the Mathematics of
Deep Learning were held at Isaac Newton Institute
in Cambridge from 28 February to 4 March 2022
and were organised by Professor Carola-Bibiane
Schönlieb, Professor Colm-Cille Cau�eld, Dr Marcello
Carioni and Dr Subhadip Mukherjee from the
University of Cambridge with the �nancial support
of London Mathematical Society, University of
Cambridge, Isaac Newton Institute, Newton Gateway
to Mathematics and Cantab Capital Institute for the
Mathematics of Information.

This workshop aimed at giving an insight to
theoretical questions arising in the deep learning
community and [amazing] speakers tried to answer
some of them throughout the week. The main
lectures were given by Professor Gitta Kutyniok
(Ludwig-Maximilians-Universität München) and four
accompanying lectures were given by Professor
Rebecca Willett (University of Chicago), Professor
Klaus-Robert Müller (Technische Universität Berlin),
Professor Peter Bartlett (University of California,
Berkeley) and Professor Weinan E (Princeton
University).

Mathematics for deep learning or deep learning
for mathematics? This is the question that
best summarises the whole week. The lectures
investigated how to open up the black box of
deep learning methods mathematically but also how
deep learning can be used to solve mathematical
problems. These two aspects are intertwined since
understanding the functioning of networks, their
training, stability and reliability, is crucial for the
resolution of inverse problems or partial di�erential
equations using them.

Deep learning methods are nowadays everywhere
and in aspects of everyday life. Have you ever
wondered how the facial unlocking feature of your
smartphone works? Or how can Google Maps predict
with very good accuracy the time needed to go
from one place to another, taking into account
the real-time tra�c conditions? We trust our
smartphones blindly. But would you trust a Neural
Network to decide whether a medical scan shows
any cancer cells or maybe a quali�ed doctor would
have been your �rst choice?

When using neural networks, the �rst choice one
has to make is about the structure of the network.
The architecture of the neural network inevitably
has an impact on its performance and must yield
good approximation results taking into account
expressivity and complexity. Another crucial aspect
is the training, usually performed with stochastic
gradient descent. Convergence of the algorithm
to a minimiser of the energy functional and the
shape of energy’s landscape (convexity, global and
local minima, saddle points) are objects of study.
Alongside training algorithms, the training dataset
is equally, if not more, important. A biased training
dataset might lead to wrong decisions. The creation
of unbiased dataset is a current topic of sociological
discussion. As far as robustness and stability are
concerned, it has been proved that deep learning
based techniques can fail under small perturbations,
i.e. adversarial examples in image classi�cation can
be easily constructed. How robust neural networks
can be is now under investigation.

Going back to inverse problems in imaging, we know
that they can be solved with the classical variational
approach (based on the knowledge of the model
and of the noise/data distribution) and in a pure
deep learning approach (training a network from a
dataset and ignoring completely extra information).
A third way is possible: hybrid methods combine
known information about the problem on the noise
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or on the model and use a variational approach with
a learned �delity or learned penalty, respectively.

Scienti�c discussions were happening during the
breakfast/co�ee/lunch breaks the whole week.
However, on Tuesday, between the lectures
of Professor Gitta Kutyniok, all the attendees
participated in a very interesting coordinated
discussion about the Challenges of Machine Learning.
Di�erent topics were addressed, mainly about the
ethics of machine/deep Learning, while also about
privacy and associated legal aspects. In addition,
the speakers, organisers and senior researchers
present in the room gave valuable advice to the
attendees about future career plans in academia,
about interesting conferences, books, as well as
reading groups to help them navigate through the
extremely wide literature of deep learning.

Another highlight of the week was the Wednesday
afternoon poster session, which sparked great
discussions among the online and in-presence
participants. The attendees were able to discuss
their projects, the challenges they are facing in their
own research related to deep Learning, as well as to
establish possible new collaborations. Finally, from
this great week we couldn’t forget Wednesday night’s
formal dinner at (the outstanding) Selwyn College.
It gave all the attendees, speakers and organisers
another chance to meet and discuss, as well as a
glimpse of college life.

Videos and presentations of the talks are available
at gateway.newton.ac.uk/event/tgm109/programme.

Marta Lazzaretti (I3S Laboratory, second year PhD
student at University of Genoa and University of

Cote d’Azur)
Vasiliki Stergiopoulou (I3S Laboratory, last year PhD

student at University of Cote d’Azur)

LMS Fellowship Report

In the autumn of 2019,
my PhD studies turned
a corner. After three
years of battling with
stochastic modelling and
trying to understand
T cell biology, my

supervisors and I stumbled upon a new concept
that would shape the following two years. We
hypothesized that the magnitude of the immune
response to a virus depended on the rate at which
information (in bits per second) is transferred from
a virus-infected cell to a T cell. But with less than a
year of PhD funding remaining, I felt that we would
need more time to do this idea justice.

After returning from the Christmas break in January
2020 I noticed that the LMS Early Career Fellowship
(ECF) applications had a deadline of February. All my
attention turned to putting together a convincing
research proposal, and getting my PhD supervisors
and proposed host at Oxford on board. Everyone
seemed keen, and I felt reinvigorated about my
research. But then came March 2020, and the world
changed. . .

Suddenly, my son’s bedroom became a day-time
o�ce. One day, I was working on my PhD, the next
day I was home-schooling. Fortunately, some light
then appeared at the end of that dark tunnel. The
LMS approved my ECF application, and I knew that
I had six months of funding lined up following the
submission of my thesis. It’s hard to overstate the
impact this had on reducing my anxiety levels. In
a world that appeared to have stopped hiring new
employees, I reminded myself daily that I was one of
the lucky ones.

In the end, it took a full year from being o�ered the
ECF to starting the proposed research in March 2021.
During this time, I was in regular contact with the LMS,
who were extremely accommodating in delaying my
start date due to pandemic related setbacks. Shortly
after starting, we received extensive feedback from
two peer-reviewers of a manuscript that we had
submitted 3 weeks earlier. I then received similar
feedback from my viva voce examiners. In both cases,
more convincing experimental evidence had been
requested to support our theoretical model.

Fortunately, my host in Oxford, Dr Omer Dushek, and
his team were not only able to advise on potential
historical datasets but were also able to o�er their
own novel datasets in support of the theory. This
led to a signi�cantly improved manuscript, jointly
authored with my PhD supervisors and my host team
in Oxford. A year on from starting the ECF, this paper
has now been published in the Journal of the Royal
Society Interface at tinyurl.com/mr3rhwz6.

https://gateway.newton.ac.uk/event/tgm109/programme
https://tinyurl.com/mr3rhwz6
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I’m currently in the process of preparing a follow-up
paper based on the new mathematical research that
was performed during the ECF. I also successfully
applied for a 3-year post-doc position midway
through the ECF which I’m now undertaking at
University College London. None of this would have
been possible without the LMS so I am extremely
grateful for all their support.

Joseph R. Egan
University College London

Report: Making Waves in Swansea

The Coastal Engineering Research Group in the
Faculty of Science and Engineering, Swansea
University, were very pleased to welcome Dr Ikha
Magdalena from the Mathematics Department of
Institut Teknologi Bandung, Indonesia for a 10 day
visit. The visit was funded through a LMS Scheme
5 Travel Grant. Dr Magdalena met members of the
Coastal Engineering Group as well as members of the
Department of Mathematics and Computer Science,
and gave a talk entitled An Integrated Study of Wave
Attenuation by Vegetation, delivered in person and
via Zoom. During her visit Dr Magdalena developed
some analytical solutions mimicking the Swansea
experiments, in which waves were generated by a

sudden vertical movement of a panel in the base
of a large wave tank. She also tested and improved
nonlinear, nonhydrostatic computational solutions.

Note: The Welsh covid-19 regulations governing
indoor meetings required that masks were worn.

l to r: Dr Jose Horrillo-Caraballo, Mr Xin Wang, Professor
Dominic Reeve, Dr Ikha Magdalena, Dr Ditra Matin.
Backdrop is a photograph of the laboratory experiment
undertaken at Swansea University that provided test
measurements for Dr Magdalena’s mathematical models
of tsunami generation and propagation

Dominic Reeve
Swansea University
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The LMS Women in Mathematics Committee
A History, 1995–2021

CAROLINE SERIES

Abstract. This is an account of the history and activities of the London Mathematical Society’s Women in
Mathematics Committee (LMS WiMC) and the British Women in Maths Days (BWM Days) which preceded it.

Introduction

The LMS WiMC has been very active and has led the
way to what has been a complete change of climate
for female mathematicians in the UK. Thus it seemed
worthwhile to compile an account of the history
before memories fade away. Similar accounts of
trans-European activity for women mathematicians,
in particular European Women in Mathematics, and
the European Mathematical Society’s Women in
Maths Committee, can be found in [6], while a history
of the more recent international activity around the
IMU’s Committee for Women in Mathematic appears
in [7].

Prehistory

In 1986, I took part in a panel discussion organised
by the US based Association for Women in
Mathematics (AWM) during the International Congress
of Mathematicians in Berkeley, 1986. In my report
in the AWM Newsletter of that year [1] I wrote:
“This spring I circulated a letter to women members
of the London Mathematical Society asking for their
ideas on the subject of the panel. I sent out about
70 letters, roughly half to institutional addresses. Of
the replies I received, the general impression was of
little change, with many problems stemming from the
primary school level. Lady Je�reys, the distinguished
applied mathematician and former Mistress of Girton
College, Cambridge, who is now 83, writes: “It is 65
years since I began my studies, and it is disappointing
that it is still considered rather odd for a woman to be
mathematical. Something has to be done in the home
(Your mother couldn’t do it either, dear) and in the
primary school, giving the girls con�dence, which the
little boys have. At all stages con�dence is important.”

I added: “One of the changes which I do see over
the last eight years is that there are now enough

women involved in serious mathematical research
that collaboration between women has become not
only possible but quite natural, without compromising
standards or �eld of research. I �nd this very exciting,
and consider myself truly fortunate to be part of what
is probably the �rst generation in history where this
has been possible."

As a result of the panel, European Women in
Mathematics (EWM) was set up in 1986 as a sister
organisation to the largely US based Association for
Women in Mathematics. Some British women took
part, and indeed the third meeting of EWM took place
in Warwick in 1988, see [6].

British Women in Maths Days

Despite this European activity, activities for women
mathematicians in the UK did not really take o�
nationally until a suggestion from Dusa McDu�1 who
wrote about her idea at some length in the 2nd
EWM Newsletter, January 1995 [2], on one of her
extended visits to the UK. I quote: “I have been
visiting the Newton Institute at Cambridge recently,
and the University too, and was saddened to �nd that
the situation for women in mathematics at Cambridge
seems little better than when I was a student there in
the late sixties. I have also travelled about a little... and
it seems that in many places in Britain there are so
few women mathematicians that they get very isolated.
Even if that doesn’t lead to discouragement, it can make
it very hard to interact fruitfully with colleagues. (I am
very aware of that problem since I su�ered from it for
many years.)

I think that the AWM (Association for Women in
Mathematics) has done a great deal to help improve the
lot of women mathematicians in the States and so I am
proposing that we start a similar kind of organisation
in the UK.

1Distinguished mathematician Dusa McDu� FRS was born and educated in the UK and moved to Stony Brook in 1978, but has always
maintained her close ties with the UK. An article about her experiences appears in this issue; see page 29.
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Things this organisation might do: (i) Organise meetings
. . . the speakers would be women at a variety of stages
. . . and we’d try to get as many women to come as
possible so that they could meet each other. I have
been told that the LMS would almost surely supply
some money to support such meetings . . . provided
that the lectures are open to everyone. . . ”

The idea took root and the �rst British Women in
Maths Day took place in Imperial College, London
in September, 1995, see photographs 1, 2. Nearly
50 women attended from all over the British Isles.
The main organisers were Ruth Williams (Cambridge)
and Lynda White (London). There were short talks
followed by a lively discussion about ‘what next’ with
numerous suggestions for further activities. It was
agreed that a similar meeting should be held the
following year [3].

Not only the following year but, in some form or
another ever since, BWM days have been an annual
event. From early on, the days were supported
by the LMS and for a number of years were
organised by Helen Robinson (Coventry University).
Once the LMS committee was established, it took
over the organisation with both �nancial and
administrative support from the LMS, which made an
enormous di�erence to the volunteer organisers. The
workshops are mathematical in content and open
to all, but all the speakers are female. In 1999, a
BWM workshop was held in Edinburgh, and in 2001
for the �rst time the event was held at the LMS
headquarters, De Morgan House, in London.

The LMS Women in Maths Committee: Early Days

Between its foundation in 1865 and 1998, the
LMS awarded in total only four prizes to women
mathematicians, and only one woman (Mary
Cartwright, see below) became its President. Whilst
in the early days of the Society this no doubt
re�ected the make-up of the profession, by 1998
this was certainly not the case. By then, around
38% of graduates and 18% of lecturers were female.
However, at the upper end only 2% of professors of
mathematics were female. Few women were invited
to showcase their work at the prestigious Society
meetings (3 speakers out of 21 were female in that
year) and there were very few women on the LMS
Council.

Dinner at the 1995 workshop at Imperial College

Dusa is centre back

Concerned at the under-representation of women
in the discipline, especially at the highest levels,
and also inspired by international comparisons
particularly of the kind documented by European
Women in Mathematics, the LMS Council discussed
what it could do to address the challenges the
profession had in recruiting and retaining talented
women mathematicians. The upshot was the creation
in 1999 of the Women in Mathematics Committee
of the Society. Cathy Hobbs (University of the West
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of England), who was on the LMS Council, chaired
the committee from 1999-2001 and the work to
develop initiatives continued under the leadership
of Helen Robinson and then Alice Rogers (King’s
College London). The committee was tasked with
undertaking activities with four aims:

• Raising the pro�le of women in mathematics,

• Supporting women in the mathematics profession,

• Improving practice in the mathematics community
as regards gender diversity,

• Collecting and disseminating data about women in
mathematics.

One of the committee’s �rst actions was to suggest
that each year the LMS should have an invited lecture
given by a prominent woman mathematician as part
of an LMS Society Meeting. The lecture, organised by
the committee, is called the Mary Cartwright Lecture
after the distinguished mathematician Dame Mary
Cartwright (1900-1998), student of G.H. Hardy and
the �rst female mathematician to be elected to the
Royal Society, as well as the �rst female President of
the LMS. These lectures have been given every year,
usually but not always in London, since 2000.

Gwyneth Stallard took over as the committee chair
in 2006 and continued with many new initiatives.
In terms of removing barriers, an issue for many
parents was that the additional costs incurred to
cover childcare while on short visits to collaborators
or attending a conference were not covered by any
existing mechanism. Grant-giving bodies did not
recognise these costs as being valid claims alongside
travel and subsistence, yet they are very real �nancial
barriers which tend to a�ect women more than men
— an example of indirect discrimination. The LMS
WiM Committee decided to take direct action on this
by using some of its budget to make small grants
of up to £200 to parents who needed money to
fund childcare during short visits. Applicants have to
make a case for the importance to their career of
attending the conference or making the visit and give
a breakdown of costs, but they can choose to use
the money in the way most e�ective for their own
circumstances, such as the extra cost incurred of
taking someone with them to look after the children,
or paying for extra childcare at home.

Another barrier to women is that they often �nd
themselves the ‘trailing partner’ to another academic.
Typically their partners are a few years older and

higher up the academic ladder, so when the partner
is o�ered a promotion elsewhere the couple make
the pragmatic decision to move. This can leave
a highly quali�ed and talented woman moving to
a new area with no commensurate job. The WiM
Committee bid for funds from the LMS to provide
fellowships for those who �nd themselves in such
a position (female or male). The Grace Chisholm
Young Fellowships recognise the holder’s academic
ability and gives them an o�cial position within the
host university, providing a small amount of funding
for travel and other expenses and a contribution
to the host university. They are named for the
mathematician Grace Chisholm Young (1868 – 1944)
who looked after the family home and children
while her husband, another mathematician, travelled
for work and (apparently by mutual agreement)
published many of their joint papers in his name
alone.

The LMS Women in Maths Committee: Expansion

Although the WiM Committee was very active right
from its beginning in 1999, the work of trying to
support women in mathematics was for many years
carried out by a relatively small number of people.
This changed dramatically following the International
Review of Mathematics in the UK in 2010 which
included as one of its main �ndings that “action
about gender diversity is not a su�ciently high
priority for the UK mathematical sciences research
community” and recommended that urgent action
was needed. The following year, Research Councils
UK began to talk about making research funding
conditional on action being taken on equality and
diversity. These two events caused a sea change
in the mathematical community with Heads of
Departments keen to know what they should do.

The WiM Committee developed a ‘Good Practice
Scheme’ [4] to support departments and, in 2012,
ran the �rst ever UK wide Benchmarking Survey
of practice in mathematical departments. This
provided data on the number of women at various
career stages and information on practices currently
adopted by university departments, with lots of
examples of what could be done. The report
was launched at the House of Commons – the
�rst ever LMS event to be held there, and the
work of the Committee was now mainstream.
This was particularly important in view of the
national Athena SWAN award scheme, a national
initiative to encourage women into science, see
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tinyurl.com/yckmkaax. The award, which has to be
applied for by individual university departments,
requires the collection of many statistics along with
the development of numerous actions and action
plans, and was found by many to be extremely
burdensome. The Benchmarking Survey provided
the kick start that many departments needed and,
between 2013 and 2016, the number of mathematics
departments with Athena SWAN awards increased
from 3 to 39. Good Practice Workshops continue to
be run at regular intervals.

The LMS also reviewed its own practices
to ensure that work to support women in
mathematics is embedded across its work, issuing
a Council Statement that has been used as
a model by many other similar societies, see
www.lms.ac.uk/womeninmaths. The LMS Programme
Committee (now renamed SLAM) which awards
grants for conferences has added new questions
to its application forms to ensure that conference
organisers include a good proportion of female
speakers and support those with childcare needs,
providing role models and ensuring that women are
given opportunities to speak about their work. After
an initial year or two when many conferences were
refused funding or asked to reapply because of the
low numbers of proposed women speakers, the
community is now taking this issue seriously.

In 2013, Anne Bennett, a senior and much valued
member of sta� at the LMS, died very suddenly.
She had always had an interest in women in
mathematics, and on the recommendation of the
WiM Committee, the LMS established the Anne
Bennett prizes in her memory. Awarded to both
junior and senior mathematicians in di�erent years,
the prizes recognise both work in and in�uence on
mathematics, and also having acted as an inspiration
for women mathematicians. In 2020, the senior AB
prize was awarded to Peter Clarkson who took over
as chair of the Good Practice Scheme Steering Group
from Cathy Hobbs. There have also been signi�cant
e�orts to encourage the nomination of women for
all the LMS prizes. Indeed in almost every year since
2000, at least one of the winners of the Whitehead
prizes (for mathematicians within 15 years of their
PhD) has been a woman, as have a signi�cant number
of winners of the more senior prizes.

The Present

From 2015-2021 the chair of the WiMC was
Eugenie Hunsicker (Loughborough). The committee
now includes representatives from the other
mathematical societies in the UK (IMA, EdMS, ORS)
and also from EWM. It is working to increase
the number of women and girls in mathematical
events supported by the Society as well as to
attract a broader range institutions and greater
geographical diversity within the UK. As well as
the Women in Maths days, it is now also possible
for schools to bid for LMS funding to help run
Girls in Maths Days. The committee is developing
online and print resources such as posters for
use in schools, showcasing a broad range of
individuals in mathematical careers and a broad
range of careers that involve mathematics. This
project, entitled Success Stories in Mathematics
was launched in the British Library in 2018 and
can be found at www.lms.ac.uk/success-stories.
The benchmarking survey has been recently
updated [5]. In 2020, thanks to a generous donation
from the Liber Stiftung, in 2020 the committee
awarded four special Emmy Noether Fellowships
to support career development of mid-career
women mathematicians with substantial caring
responsibilities. The Foundation was delighted with
the use made of its grant and repeated this donation
in 2021.

The committee is also broadening the range of
equality and diversity issues it addresses and has
recently changed its name to the LMS Women and
Diversity Committee, to recognise that now gender
diversity has become more mainstream it is time to
focus on wider diversity issues as well. It is looking
at ways to collaborate with other STEM groups
nationally and mathematical groups internationally
on issues related to ensuring equal access and
opportunity regardless of ethnicity, class, religion,
LGBT status or disability. In 2020 and again in 2021
the Society organised a hugely successful online
meeting Celebrating Black Heroes of Mathematics, in
partnership with the Institute of Mathematics and
its Applications, the British Society for the History
of Mathematics, and the International Centre of
Mathematical Sciences in Edinburgh.

In 2020, the Society amended its bye-laws to include
a named ‘Women and Diversity’ member-at-large on
Council. In 2021, Sara Lombardo (Loughborough) was
elected to this post and now chairs the WiMC.

https://www.ecu.ac.uk/equality-charters/athena-swan/
https://www.lms.ac.uk/womeninmaths
https://www.lms.ac.uk/success-stories
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Conclusion

One indication of the dramatic increase in
engagement of the community with the work of
the WiMC over the last few years is the number of
participants at the annual Women in Maths Days
which have been expanded to invite applications
from several institutions to host such an event each
year. This has grown from about 30 participants
in the early days to around 100 at triennial two
day events introduced in 2010. There were several
hundred participants (including undergraduates and
school girls for the �rst time) at a four day event
in Oxford in 2015, one of the highlights of the 150th
anniversary of the LMS. Overall well over 1000 women
have attended a WiM Day. The number of female
members of the Society has increased from 12% in
2010 to almost 20% in 2019. Cathy Hobbs is now one
of the two LMS Vice-Presidents, while the author was
the President 2017-19 and Ulrike Tillman is now in
o�ce 2021-23.

Moreover 8 out of 20 Council members have been
female for most years since 2013. In recent years the
various grant giving committees have always been
chaired by men who have been hugely supportive
of initiatives to insist on more female speakers. For
example, in 2015, 42 out of 106 speakers at LMS
events were women, and the Society’s Lectures and
Meetings Committee (SLAM) is for the �rst time
chaired by a woman.

All this work won a remarkable tribute in 2016 when
the committee was awarded the Royal Society’s
inaugural Athena Prize “in recognition of their work in
introducing a broad range of initiatives in the �eld of
mathematics resulting in a change of culture that has
happened nationwide, leading the way in increasing
the number of women in mathematics.” The prize is
awarded biennially to teams working in UK academic
and research communities, who have contributed
most to the advancement of diversity in science,
technology, engineering and mathematics (STEM)
within their communities. The recipients of the prize
receive a medal and a gift of £5,000. Gwyneth Stallard
was also recognised individually by the award of an
OBE in 2015 for her work in supporting women in
mathematics.

Among the many di�erent models of how best to
address the issues faced by female mathematicians,
the UK experience shows the great advantages to
be gained by working through an established body
with a budget and good administrative support and
structures. From the start, the committee greatly
bene�tted from very strong support from senior
male mathematicians, which was very important in
making progress. These included Sir Martin Taylor
(LMS President at the time the committee started),
Peter Clarkson mentioned above, Charles Goldie
and Malcolm McCallum. It was also crucial that it
has always worked alongside Heads of Mathematics
Departments (within the UK this is an organised
group called HoDoMS, of which both Cathy and
Peter have been members). Non-mathematicians
working to promote diversity have commented
how impressive the achievements have been with
a relatively small budget and operation. By 2017,
approaching 11% of professors of mathematics in the
UK were female – still small, but nearly triple the
percentage in 1998. This and much further data can
be found in the updated Benchmarking Survey [5].
The indirect e�ects of the work of the committee
have made a tremendous di�erence to mathematical
life in the UK.
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On Being a Woman in Mathematics, Then and Now

DUSA MCDUFF

Abstract. This article describes how the author made her way as an aspiring mathematician some sixty years
ago, with few guides and no senior women mathematicians to advise her. Indeed her election to the Royal
Society came almost �fty years after Dame Mary Cartwright’s, with no female mathematician in between.

Dusa McDu� FRS

Dusa McDu�
FRS is a British
mathematician
who has spent
the greater part
of her career in
the USA. Born in
1945 in London,
she did her
�rst degree in
Edinburgh and
then went to

Cambridge for her Ph. D. Subsequently she
spent seven months in Moscow with her
�rst husband, during which time she came
under the in�uence of the brilliant Russian
mathematician Israel Gel’fand. After another
brief period as a postdoc in Cambridge,
followed by a few years as a lecturer at York
and then Warwick Universities, she moved to
the U.S. to take up a position at SUNY, Stony
Brook. She is now Helen Lyttle Kimmel ’42
Professor of Mathematics at Barnard College,
Columbia University.
Dusa is especially known for her pioneering
contributions to the new �eld of symplectic
geometry and topology. Her work has
been recognised by many honours. In
1994, she became only the second female
mathematician (following Dame Mary
Cartwright) to be elected to the Royal Society.
She was elected an honorary member of
the LMS in 2007 and in 2018 became only
the second woman (also following Mary
Cartwright) to be awarded the Sylvester
medal of the Royal Society.

It is hard to remember now that people thought
this way, but when I was young I was once told

that it was unnatural for a woman to be good
at mathematics, the life sciences maybe, but not
something so abstract and austere as mathematics. I
imagine that no-one would say that out loud today —
though they might think it. At the time this reaction
was something I was used to; since my name is Dusa
(after Medusa) my schoolmates would often tease
me that my glance would turn them to stone.

As a young girl, I was very diligent, doing
what everyone expected of me. I always loved
mathematics because of its beauty and precision,
even when that just meant doing sums. I did well in
exams, and was very much encouraged, especially
by my mother, who was an architect with (unusually
for the time) a full-time job in the civil service.
But in my midteens I rebelled; I was devoted to an
unsuitable boyfriend (now a distinguished literary
translator), and outgrew my school. It was a girls’
school, the best my parents could �nd in Edinburgh,
but (despite its wonderful maths teacher) inferior
in what they o�ered in maths to the corresponding
boys’ school and inferior in English teaching to the
school my boyfriend went to. It was the early sixties.
My father, an eminent geneticist, brought home
brilliantly patterned paper dresses and wonderful jazz
records from New York. I essentially had two lives,
one as a poetry groupie and proto-hippy, and one
that I kept to myself as a student of mathematics;
playing music served as a shaky bridge.

It took me a long time to reconcile these two
strands in my life. I refused my scholarship to
Cambridge, remaining in Edinburgh, but made no
contact with other maths students there. When
I did get to Cambridge as a graduate student, I
married my boyfriend fairly soon after, and did
not �t into any accepted social framework. I never
went to Girton College (which I nominally belonged
to) because it was so far away, and there was
neither anything mathematical for me there nor
any provisions for married students; I was excluded
from the main colleges (where people had lunch and
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dinner) because I was female. I did talk to a few maths
students in my functional analysis group as well as to
my supervisor, so I wasn’t as isolated as before. I also
managed to write a thesis (on a problem suggested
by my supervisor) that was published in the Annals
of Mathematics — that success is probably the main
reason I managed to survive as a mathematician.
However, it was really only in Moscow (where I went
in 1969-70 so that my husband could work on his
dissertation) that the contradictions in my life started
to resolve. I had the unplanned good fortune to work
with Gel’fand; his world included music and poetry
as well as a vast realm of beautiful mathematics that
he opened up to me.

Figure 1. Dusa McDu� with Israel Gel’fand, 1971, Moscow

On my return from Moscow, I completely switched
�elds, so that during my two years as a postdoc
in Cambridge I was again very isolated, with only
tenuous mathematical contacts. However, in spring
1972 a chance encounter with Cassels (then Chair of
the Cambridge mathematics department) provided
the opportunity to attend a conference in Seattle,
where I met Graeme SegaI. I wrote what was
essentially a second Ph.D. under Graeme’s guidance,
and slowly began building a useful foundation of
mathematical knowledge in topology that led to my
later work in symplectic geometry. I am very glad
that I had time to develop my mathematics without
too many demands being put on me.

Although I had a more limited undergraduate
education at Edinburgh than I would have obtained
in Cambridge, it is not clear that I would have been
any better o� if I had taken the expected path. I am
sure there were other mathematically talented girls
who just didn’t make it. When I got to Cambridge,
there were three other female graduate students,
but after graduation they were planning either to
go back to their home country, or to get married

rather than pursue a career. I never knew them
really well. (Of course, at the time I was married —
but I didn’t see the contradiction since I expected
to be the one to support the family: mathematics
paid better than poetry.) I never met Dame Mary
Cartwright as a mathematician: my only meeting with
her was in my entrance interview, when as Mistress
of Girton she handed out delicate tea cups to the
group of potential students seated around her. I also
never met Sheila Edmonds, another considerable
mathematician, but who never had a University
lectureship and was immersed in college life. I did
talk to Helen Alderson, a somewhat older woman,
once a mathematical child prodigy in Moscow and
now trying to get back to research, after emigration,
marriage and having a family. People helped her �nd
fellowships, but she was very marginalized and had
a di�cult life. There were no other women in the
maths department then. That was the situation for
women in Cambridge for a long time because of
structural problems. The positions easily available to
women were in colleges rather than in the university,
and thus were essentially teaching positions which
did not ‘count’.

I was de�nitely happier, and began to �t in more,
when I got a job as a lecturer, �rst in York and then
Warwick, both ‘new universities’ with fewer traditions
and prejudices. In both places I was the �rst female
lecturer, but felt accepted by my colleagues. I didn’t
socialize much or have many friends — I didn’t have
time, what with teaching, doing mathematics, and
looking after my young daughter. I still knew hardly
anyone with the same kind of life and with whom I felt
free to talk. I heard of the women’s movement from
Graeme, who was surprised to �nd how little I knew
about it. I thought I was beyond all that: separated
from my husband by the time I got to Warwick, I was
already earning my own living, trying to bring up a
child and set on making my mark as a mathematician.
And anyway I knew of no like-minded women with
whom to form a consciousness-raising group.

I learnt later that the faculty wives in Warwick felt
sorry for me, I am not sure why; I loved my job,
though I was very busy, and my mathematics was
�nally reviving. I would have been happy to stay there
— but I fell in love with John Milnor and moved to
the U.S. to be closer to him, giving up a tenured
lectureship at Warwick for an untenured Assistant
Professorship at Stony Brook. When I left Warwick,
Caroline Series had just completed her Ph.D. at
Harvard and spent a year as a Research Fellow at
Newnham College, Cambridge. She was the �rst
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female British mathematician I met; I advised her to
apply for my soon-to-be vacated position in Warwick
— which she did. She enjoyed it, but for many years
was the only female faculty member. Things moved
very slowly in the U.K.

The situation in the U.S. was a little di�erent: the
women’s movement was more visible, and had been
making demands that universities reform themselves.
In the early 70s, the Ivy League was opening its
campuses to female students and getting rid of
nepotism rules, perhaps even thinking of o�ering
proper jobs to female faculty, though that was
controversial and in many cases came considerably
later. I �rst went to the U.S. as a Visiting Professor
at M.I.T. in 1974, invited out of the blue because they
were looking for a suitable woman to add to their
faculty. (My name must have come up via Isadore
Singer’s close connection with Gel’fand.) This was
a wonderful opportunity. I had a real mathematical
idea again, writing a paper with Graeme on the
group-completion theorem that is still cited today,
and I started to be more proactive in my career,
applying to visit the Institute for Advanced Study.
During my year at M.I.T., I met Ragni Piene from Oslo,
who was a graduate student there. She was the �rst
woman mathematician I had the chance to know. She
has been a life-long friend, as has Caroline.

I learned recently that at that time Harvard admitted
one or two female math graduate students every
year or so. Nancy Hingston, Linda Ness, and Caroline
Series are the mathematicians that I know from
that group. A few other universities and individual
mathematicians were also making similar e�orts
to seek out and train promising young women,
laying the foundations for a slowly growing cohort of
strong female mathematicians. The fact that some
universities (such as M.I.T. and, a little later, Stony
Brook) were actively seeking women to hire, was
a help. Also, a few women came from Europe and
�ourished, feeling liberated from the expectations of
their home societies and being blissfully unaware of
the corresponding societal strictures in the U.S. Over
the years I have enjoyed working with a variety of
female students, encouraging them to pursue their
interest in mathematics in whatever way suits them
best. But the progress in building a visible presence
of women in mathematics in the U.S. has been slow.

In many leading departments there are still too few
women faculty and graduate students.

I have participated in many e�orts to bring female
mathematicians together, mostly in the States, but
also via wonderful European Women in Mathematics
meetings, and the British Women in Mathematics
Days now sponsored by the LMS. Even today,
these programs have a purpose. Although there are
more female mathematicians, they are not evenly
distributed among the di�erent universities and
research groups, and still too many women feel
intimidated into silence, as I was for many years. I
help organize the Women and Mathematics program
at IAS, Princeton, started by Karen Uhlenbeck, a
one week program for (in non-covid days) about 60
participants. The students almost uniformly say how
refreshing and liberating it is to be in an all-female
environment for once. Some of them are surprised
by the di�erence it makes, not having realized the
extent to which they had felt intimidated.

Recently, the Association for Women in Mathematics
(AWM) has become much more active in promoting
research. Under the leadership of Kristin Lauter (who
worked at Microsoft for many years), it has recently
been organizing networks of women in di�erent
�elds, that every so often run workshops in which
groups, with participants ranging from graduate
students to senior faculty, come together to work
on speci�c problems. At �rst glance, this format
seems arti�cial and industry-inspired — but often
it works beautifully, leading to the development of
new ideas and unexpected collaborations, with new
talent coming to the fore.

I can’t of course talk about what it is like to be
a young female mathematician today. Women are
more visible, and the possibility of their having real
mathematical talent that is worth nurturing is much
more widely acknowledged. It is still very hard to
navigate the issues of two-career families, or how to
look after children (even more impossible in covid
times). However, there is much more awareness
and discussion of these questions and there also
has been some e�ective action. Both mathematical
societies AMS and LMS have recently had female
presidents, and in their di�erent ways are working
hard to bring about real change in the common
practises around the issues of diversity, equity and
inclusion.
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Extremal Kähler metrics and convex analysis

SIMON DONALDSON

The aim of this article is to give an impression of some contemporary developments in complex di�erential
geometry through the particular case of toric manifolds where the constructions can be expressed in elementary
terms.

A variational problem

Our starting point is a partial di�erential equation
for a function u of n real variables x1, . . . ,xn . We
require the function to be strictly convex, by which
we mean that the matrix of second derivatives

ui j =
m2u

mximx j

is positive de�nite at each point. Let (ui j ) be the
inverse matrix. The partial di�erential equation is∑

i j

m2ui j

mximx j
= −A, (1)

where A is a given function of x1, . . . xn . (We are
mainly interested in the cases when A is a constant,
or a linear function.) This equation was �rst written
down by Miguel Abreu in [1]. It is a nonlinear
fourth order PDE, the nonlinearity coming from the
nonlinear map which takes the matrix (ui j ) to its
inverse. (ui j ). The equation is closely related to
Monge-Ampère equations which arise in many parts
of pure and applied mathematics. These are second
order PDE which have the form

det(ui j ) = F,

where F is a given function of x ,u and the �rst
derivatives of u . For example, it is an exercise to
show that a solution of the Monge-Ampère equation
with F = 1 is a solution of (1) with A = 0.

We want to consider a function u on a convex
polytope P ⊂ Rn . So P is a bounded set de�ned
by a �nite number of inequalities _ j (x) < 0, for
a�ne-linear functions _ j . (By a�ne-linear we mean
a function of the form C + ∑

cixi .) We also �x a
measure df on the boundary of P . This is to be
just a multiple of the standard (n − 1)-dimensional
volume measure on each face of the boundary. It

is elementary that there is a unique a�ne-linear
function A such that for any a�ne-linear function f∫

P
f Ad` =

∫
mP
f df, (2)

where d` is the Lebesgue measure on Rn . Now, with
this function A, we want to solve the PDE (1) in P for
a function u satisfying certain boundary conditions.
These are, roughly speaking, that as we approach a
point p on a face on which the measure df is mU

times the volume measure the function u should
behave likemUD logD+u (p) whereD is the distance
to the boundary. The boundary conditions can be
built into a variational formulation of the problem.
For a function f on the closure P de�ne

LP ( f ) =
∫
mP
f df −

∫
P
f Ad`.

Now de�ne a functional on convex functions u on P ,
smooth in the interior, by

M(u) = −
∫
P
log det(ui j ) + LP (u). (3)

The function − log detH on positive symmetric
matrices H is convex, so the same is true of the
functional M and any critical point is a minimum.
A variational analysis shows that a minimiser is the
same as a solution of equation (1) satisfying the
boundary conditions. The relevance of the condition
(2) on A is clear from this variational point of view,
because if it did not hold the functional is obviously
not bounded below, since adding an a�ne-linear
function to u does not change log det(ui j ).

Toric geometry

To explain where the PDE (1) comes from, we begin
with the case of surfaces of revolution. Away from the
�xed points we can choose “equiareal” co-ordinates
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(x , \) in which the metric has the form hdx2+h−1d\2
where h is a function of x and the circle action rotates
the \ co-ordinate. (Equiareal means that the area
form of the metric is the standard form dxd\ in
these co-ordinates.) The Gauss curvature is given by
the formula

K = −1
2
d 2 h−1

dx2
. (4)

If we integrate twice to write h = d 2u
dx2 for a convex

function u (x) this gives the expression on the left
hand side of (1) up to a factor −1/2, so the equation (1)
is prescribing the Gauss curvature as a given function
A(x). Take, for example, the case of the standard
round 2-sphere in R3 rotating about an axis. Then,
by a result of Archimedes, the equiareal co-ordinate
x is the projection onto this axis and the metric is

(1 − x2)−1dx2 + (1 − x2)d\2

so h (x) = (1 − x2)−1 and

u (x) = 1
2

(
(1 − x) log(1 − x) + (1 + x) log(1 + x)

)
on the interval (−1,1), which is our polytope P in
this case.

µ

u(x)

−1 x 1

The round 2-sphere and its symplectic potential function

1

The round 2-sphere and its symplectic potential function

The introduction of u may seem arti�cial in this
1-dimensional case but becomes essential in higher
dimensions. The general setting is a Kähler metric
on a manifold of dimension 2n, with an isometric
action of a n-dimensional torus T n . Thus, on the
subset where the action is free, we have n angular
co-ordinates \1, . . . , \n and it can be shown that
that there are additional co-ordinates x1, . . . ,xn and
a “symplectic potential” function u (x1, . . . ,xn) such
that the metric has the form∑

ui jdxidx j + ui jd\id\ j , (5)

where ui j and ui j are de�ned as before. The
expression on the left hand side of (1) gives minus

the scalar curvature of this metric. Solutions of
the equation (1) with a constant A give constant
scalar curvature Kähler (CSCK) metrics. When A is
an a�ne-linear function they give extremal Kähler
metrics, a notion introduced by Calabi. For the
purposes of this article the reader does need to
know this di�erential geometric background: the
point is that CSCK and extremal metrics are natural
higher dimensional generalisations of constant Gauss
curvature surfaces. On the 2-sphere there are two
points where the \ co-ordinate is not de�ned, the
�xed points of the rotation action. We have a map
` : S 2 → [−1,1] mapping these two points to the
endpoints of the interval and the description above
is valid over the interior (−1,1). The general story for
a compact 2n-dimensional Kähler manifold X with
T n action is that there is a map ` : X → Rn with
image a closed convex polytope P . Over the interior
P of P the �bres of ` are free T n-orbits but over
boundary points the �bres are lower dimensional
tori. The polytopes that arise in this way form a
special class called Delzant polytopes. The de�nition
involves an integrality condition: there must be
n faces meeting at each vertex and these must
be equivalent, under the action of GL(n,Z) and
translations, to the standard co-ordinate hyperplanes.
The integral structure de�nes a measure on each
face of the boundary of P , for the face is contained
in a hyperplane H + p and we have a lattice H ∩Zn
in H which �xes a measure.

Kähler geometry is the intersection of symplectic
geometry and complex geometry and the discussion
above is the symplectic picture. We could go on to
write down a complex structure on X in which the
action of the torus T n extends to a holomorphic
action ofT n

C = (C
∗)n , with an open dense orbit—just

as for C∗ ⊂ S 2. But to keep things short let us move
on to an algebro-geometric point of view.

Any convex set Π ⊂ Rn de�nes a graded algebra
R = RΠ. First take the cone on Π, the set

C (Π) = {(x ,h) ∈ Rn ×R : h ≥ 0,x ∈ hΠ},

and let ΣΠ be the intersection of C (Π) with the
integer lattice Zn × Z. The algebra RΠ has an
additive basis sa corresponding to points a ∈ ΣΠ and
multiplication de�ned by s_ sa = s_+a . The grading is
provided by the Z component of a. Similarly, there is
an obvious action of T n

C on R. For a general convex
set Π this algebra will not be �nitely generated but
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in the case of a closed polytope P which is the
convex hull of a �nite number of points in the integer
lattice Zn ⊂ Rn it will be. In that case, by general
foundational results in algebraic geometry (the “Proj”
construction), RP is the coordinate ring of a “toric
variety” X ⊂ CPN with a T n

C action on X induced
by that on RP . If the polytope P also satis�es the
Delzant condition, X will be a complex projective
manifold. We will call such polytopes integral Delzant
polytopes.

For an example, let P be the interval [−1,1] in
R. Then the ring RP is generated by the three
elementsU ,V,W corresponding to the lattice points
(−1,1), (0,1), (1,1) with a single relation V 2 = UW .
This is the co-ordinate ring of the conic curve in
CP2 de�ned by the same equation in homogeneous
co-ordinates.

The di�erential geometric and algebro-geometric
discussions are compatible, so for an integral Delzant
polytope P the T n-invariant Kähler metrics on
the complex projective manifold X we de�ned
algebraically above correspond to convex functions
u on P satisfying our boundary conditions. (More
precisely, the correspondence is with Kähler metrics
in the cohomology class determined by the projective
embedding.)

With this background we have reached the main
point. An important question in complex di�erential
geometry is: when does a projective manifold admit
an extremal metric? This includes (for the special
class of manifolds with vanishing �rst Chern class) the
question of the existence of Calabi-Yau metrics with
zero Ricci curvature, which was famously answered
by Yau in 1978. But in general the extremal condition
is the right one to consider. By what we have
said, in the case of toric manifolds X this question
comes down to the solubility of our PDE (1). (The
Calabi-Yau condition, in the toric case, becomes a
Monge-Ampère equation.)

The existence theorem

Fix a base point p0 in the interior of our polytope
P and call a convex function u normalised if u ≥ 0
and u (p0) = 0. By adding a�ne-linear functions
we can restrict attention to normalised functions
u . Contemplating the formula (3) one sees that
the minimisation problem involves two competing

e�ects. To make the integral of − log det(ui j ) small
we should make det(ui j ) large, so we should make
the second derivatives of u large in at least some
directions, but that will make the function u large on
the boundary so the term in (3) involving the integral
of u over the boundary will be large. The question
is whether a balance between these two e�ects can
be achieved. An answer to this question is known,
at least for Delzant polytopes.

Theorem 1. Let P ⊂ Rn be a Delzant polytope
and LP ,MP be the corresponding functionals. There
is a minimiser of the functional MP on normalised
functions u if and only if LP ( f ) > 0 for all non-zero
normalised convex functions f on P . This minimiser
is unique.

This statement combines work of many people, the
�nal step being achieved in the recent preprint [6].
Earlier work of the author [4], [5] and B. Chen, Li,
Sheng [3] dealt with the case n = 2. For higher
dimensions, the breakthrough comes from work of
X. Chen and Cheng [2], in the larger setting we
discuss in the next section. The entire proof involves
a mountain of analysis and we only attempt to make
the statement plausible.

The convexity of the functional M gives the
uniqueness part of Theorem 1. Another simple fact
is that if there is a smooth convex function f with
LP ( f ) < 0 then M is not bounded below. For
if we take any convex function u satisfying the
boundary conditions and set u (s ) = u + s f then for
s ≥ 0 the function u (s ) is convex and also satis�es
the boundary conditions. We have M(u (s ) ) ≤
M(u0)+sLP ( f ) since det(u (s ) )i j ) ≥ det(ui j ), hence
M(u (s ) ) → −∞ as s →∞. Turning to the existence
question, consider a �nite-dimensional analogue of
our in�nite dimensional situation, with a function F
on a Euclidean space RN . The lack of compactness
of RN means that, even if F is bounded below,
there may be no minimum: for example the function
F (x) = e x on R. But a “coercive inequality” of the
form F (x) ≥ n ‖x ‖ −C for some n > 0 implies that
a minimiser must exist. In our problem, suppose we
know that there is a bound, for some _ > 0 and all
normalised convex functions f on P :

LP ( f ) ≥ _ ‖ f ‖L1 (P ) . (6)

Then it is not hard to show, using the slow growth
of the logarithm function, that this implies that the
nonlinear functional Fsatis�es a coercive inequality,
for normalised u :

M(u) ≥ n ‖u ‖L1 (P ) −C , (7)
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for some n > 0. One of the main results of Chen and
Cheng is that such an inequality implies the existence
of a minimiser—the in�nite-dimensional problem
behaves like the �nite-dimensional analogue. The
recent work of Li, Zian and Shen [6] establishes a
convex analysis result, that the positivity hypothesis
in the statement of Theorem 1 is equivalent to a
“uniform” inequality (6), which is an a priori stronger
condition.

Stability of complex projective manifolds

The theorem of the previous section gives, in a sense,
a complete answer to the question of the existence
of extremal Kähler metrics on toric manifolds. It �ts
into a larger picture, for general projective manifolds,
where the �nal answer is not yet known.

Recall that any convex set in Rn de�nes a graded
ring. Let f be a convex function on our polytope P
and de�ne a convex subset Q of Rn+1 = Rn ×R by

Q = {(x ,h) ∈ P ×R : h ≥ f (x)},

so we get a ring RQ . The translation (x ,h) ↦→ (x ,h +
1) induces the structure on RQ of an algebra over
the polynomial ring C[t ]. We can also obtain RQ as
the Rees algebra of a �ltration of the graded RP . In
general, let R be an algebra over C with a �ltration
by vector subspaces

0 = F−1 ⊂ F0 ⊂ F1 ⊂ F2 ⊂ . . . ,

such that
Fa .Fb ⊂ Fa+b . (8)

The Rees algebra is the algebra over C[t ]

Rees(R,F∗) =
⊕
a

Fata ⊂ R [t ] .

In the case at hand, let Σa be the set of lattice points

Σa = {(x ,k ) ∈ Zn×Z : k ≥ 0,x ∈ kP , f (x/k ) ≤ a/k }.

This is a subset of the set of lattice points de�ning
RP and we de�ne Fa to be the subspace spanned
by these basis elements. The convexity of f implies
that Σa + Σb ⊂ Σa+b and this gives the multiplicative
property (8). From the de�nitions, the Rees algebra
of this �ltration of RP is canonically identi�ed with
RQ .

Degeneration of a conic

UW = tV 2

CP2

−1 1x

f(x)

1

Degeneration of a conic

Suppose that P is an integral Delzant polytope and
that f is a piecewise linear convex function of the
form

f (x) = max(`1 (x), . . . , `r (x)) (9)

where `i are a�ne-linear functions with integral
coe�cients. Then the Rees algebra RQ has
an algebro-geometric interpretation. It is �nitely
generated over C[t ] and the Proj construction over
C[t ] de�nes a variety X ⊂ CPN × C. Projection
to the second factor gives a map c : X→ C with
the property that for t ≠ 0 the �bre c−1 (t ) is a
copy of our complex manifold X but the central
�bre c−1(0) is a di�erent variety: a degeneration
of X . For example, if P is the interval [−1,1] in
R—so X is the Riemann sphere embedded as a
conic curve in CP2—and f is the function f (x) =
max(x ,−x) the degeneration has central �bre a pair
of lines in the plane; a singular conic. In general a
function of the form (9) de�nes a decomposition of
P into a union of convex pieces on each of which f
is a�ne-linear, and the central �bre is a reducible
variety with components corresponding to these
pieces. From the more algebraic point of view, for any
�ltered algebra R one considers Rees(R,F∗) ⊗C[t ]C,
where C[t ] acts on C by evaluating t at some g ∈ C.
If g ≠ 0 this tensor product is isomorphic to R but
for g = 0 it is the associated graded ring⊕

a

Fa/Fa−1.

The di�erential-geometric and algebro-geometric
constructions we have encountered all extend
beyond the toric case. For any complex projective
manifold X there is a Mabuchi functional on the
space of Kähler metrics and the problem of �nding
an extremal metric is the problem of minimising
this functional. The work of Chen and Cheng shows
that the existence of a minimiser is equivalent
to a coercive inequality like (7) but a complete
algebro-geometric criterion for this is not yet known.
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Whatever the �nal answer may be it must be
bound up with algebro-geometric notions of “stability”
which stretch back to Mumford’s Geometric Invariant
Theory from the 1960’s and, further, to Hilbert. In
place of the positivity criterion on convex functions
we expect to see a criterion involving �ltrations
of the co-ordinate ring R (X ). Filtrations which
satisfy a �nite-generation condition correspond to
degenerations of X and there is a numerical invariant
of these—the Futaki invariant—which reduces in the
toric case to L( f ). The manifold X is called K-stable
if the Futaki invariant is positive for all non-trivial
degenerations. In the toric case this corresponds
to the positivity of L( f ) for all functions f of the
form (9) where the `i have rational co-e�cients.
(Multiplying P by a scale factor one can then reduce
to the case of integral co-e�cients.) The extension
to more general �ltrations was made by Székelyhidi
in [7] (whose treatment we have followed above). This
leads to a strengthening of the notion of K -stability
to K̂ -stability, which corresponds in the toric case
to the positivity criterion in our Theorem. In another
direction, there is a notion of uniform K-stability which
corresponds in the toric case to the existence of an
inequality (6). In the toric case, K̂ -stability, uniform
K -stability and the existence of an extremal metric
are all equivalent, and perhaps the same will turn out
to be true in general. For some classes of manifolds,
such as Fano manifolds, the condition of K -stability
is also equivalent but this is not expected to be true
in general.

In any case there is much current activity in this
area and much to be done, both in proving abstract
existence theorems and in understanding more
deeply these interactions between algebraic and
di�erential geometry.
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The Enduring Appeal of Szemerédi’s Theorem

TIMOTHY GOWERS

Szemerédi’s theorem on arithmetic progressions is a centerpiece of additive combinatorics and continues
to stimulate developments in the area. In this article I try to give some idea of why it has had so many
rami�cations and of what some of them are.

What does the theorem say?

With the exception of Ramsey’s theorem itself, the
best known result of Ramsey theory is the following
very appealing theorem of van der Waerden from
1927.

Theorem 1. For every pair of positive integers r and
k there exists a positive integer n such that however
the integers from 1 to n are coloured with r colours,
there is necessarily an arithmetic progression of length
k consisting of numbers of the same colour.

The proof of the theorem is a clever double induction,
which yields a bound for n that has an Ackermann
dependence on k . It is of course tempting to ask
whether such a huge bound was necessary — a
question I shall return to later.

In 1936, Erdó́s and Turán conjectured that a
signi�cantly stronger statement was true. Their
conjecture was the following statement, which
remained open until 1975 but is now a famous
theorem of Szemerédi.

Theorem 2. For every X > 0 and every positive
integer k there exists a positive integer n such that
every set A ⊂ {1,2, . . . ,n} of size at least Xn contains
an arithmetic progression of length k .

To see that this implies van der Waerden’s theorem,
one simply sets X = 1/r and observes that at least
one of the colour classes must be a set of size at
least 1/r . Szemerédi’s theorem is often referred to
as the density version of van der Waerden’s theorem.

There seems to be no way of modifying the
double-induction argument to yield the density
version, which raised the hope (and this was part of
the reason Erdó́s and Turán asked the question) that
a proof of the conjecture would lead to better bounds
for van der Waerden’s theorem. Initially, however,
this hope was not ful�lled: in fact, Szemerédi used
van der Waerden’s theorem as a lemma in his proof.

A further conjecture, possibly the most famous of
all of Erdó́s’s problems, was the following.

Conjecture 1. Let A ⊂ ℕ be a set such that∑
a∈A a

−1 = ∞. Then for every k , A contains an
arithmetic progression of length k .

This is a striking statement, and, as Erdó́s observed,
since the sum of the reciprocals of the primes
diverges, it would imply that the primes contained
arbitrarily long arithmetic progressions. However,
it is roughly equivalent to a more mundane
statement that is a bit more transparent. For each
k , Szemerédi’s theorem guarantees the existence
of a function Xk : ℕ → ℝ that tends to zero such
that if A ⊂ {1, . . . ,n} has density at least Xk (n) (this
means simply that n−1 |A | ≥ Xk (n)), then A contains
an arithmetic progression of length k . We can think
of Xk (n) as the density required to guarantee a
progression of length k . Erdó́s’s conjecture is more
or less the same as the statement that for each k , Xk
tends to zero at least as fast as 1/logn, which, given
the prime number theorem (or even just Chebyshev’s
theorem) explains why it has consequences for the
primes. However, there is no particular reason to
believe that 1/log n is an important threshold for
Szemerédi’s theorem — this again is a question to
which I shall return.

What makes Szemerédi’s theorem so
interesting?

If a theorem is described as a centerpiece for an
entire branch of mathematics, one might expect it
to have a large number of applications. However,
although it does occasionally happen that one is
presented with a dense set of integers and can
exploit the fact that the set contains a long arithmetic
progression, that is not a very common situation,
and there are other results in combinatorics that are
used far more often. So why is it that Szemerédi’s
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theorem has captured the imagination of so many
people? There are two main reasons.

The �rst is what one might call indirect applications.
There is something about the contrast between the
simplicity of the statement and the di�culty of
proving it that has stimulated the discovery of a
number of di�erent proofs. Each of these proofs has
led to the development of tools that themselves have
had many applications. Thus, one can con�dently say
that in the unlikely event that nobody had formulated
the Erdó́s-Turán conjecture, combinatorics would be
a much less rich subject than it is today.

The second is that Szemerédi’s theorem has been
generalized and strengthened in several di�erent
directions. It is now just one of a large number of
density theorems, some of them very surprising.

I shall talk about these two aspects of the theorem
in turn.

Proofs of Szemerédi’s theorem

The �rst proof of a non-trivial special case of
Szemerédi’s theorem was due to Roth in 1953. He
used the circle method from analytic number theory
to prove the theorem for progressions of length
3, though his argument is now normally presented
as an application of discrete Fourier analysis. Very
roughly, the idea is to take the characteristic function
of a set A ⊂ {1, . . . ,n}, regard it as a function
de�ned on the cyclic group ℤ/nℤ, and look at the
discrete Fourier transform of that function. If there
are no unexpectedly large Fourier coe�cients, then
A behaves rather like a random set, and therefore
contains many arithmetic progressions of length 3. If
not, then one can show that A is “biased”, meaning
that there is a long arithmetic progression P such
that |A ∩P |/|P | is noticeably larger than |A |/n. One
can then restrict to P and start again. This leads to
an iteration that has to terminate, since the density
cannot increase beyond 1, so at some point one
obtains a progression of length 3.

Unfortunately, Roth’s proof did not generalize to
longer progressions. The di�culty was that it is
possible for A to have only very small Fourier
coe�cients (except a trivial one at zero) and yet
to behave very unlike a random set from the point
of view of containing progressions of length 4. An
example of a problematic set of this kind is the
subset A of ℤ/pℤ (where p is a large prime) that

consists of all x such that x2 ∈ [−\p , \p] mod p ,
where \ is some reasonably small constant. The
identity x2 − 3(x + d )2 + 3(x + 2d )2 − (x + 3d )2 = 0
implies that if x ,x + d , and x + 2d all belong to this
set, then x + 3d has an unexpectedly good chance of
belonging to the set as well — much greater than the
probability 2\ one would expect if A was a random
set.

In 1969, Szemerédi found a very di�erent proof of
Roth’s theorem, and this was to be the starting
point for the purely combinatorial argument that he
went on to obtain. Interestingly, the notion of sets
“behaving as though they are random” played an
important role in this argument as well. A key lemma
in the proof was a graph-theoretic statement that
says, very roughly, that the vertex set of any dense
graph can be partitioned into a bounded number of
pieces in such a way that almost all the bipartite
graphs one obtains from two of those pieces “look
like random graphs”. (One can also insist that the
pieces are not too large, so as to rule out trivialities
such as taking the entire vertex set as a single piece.)
This lemma was later developed into Szemerédi’s
regularity lemma, one of the most useful tools in
extremal graph theory, which has had innumerable
applications.

In 1977, a couple of years after Szemerédi’s theorem
was proved, Hillel Furstenberg found a second proof,
and in so doing created a new subdiscipline of
mathematics, now often called ergodic Ramsey
theory. His starting point was to show that
Szemerédi’s theorem is equivalent to a statement
about dynamical systems. A measure-preserving
system is a set X with a probability measure ` on
it, and a map T : X → X with the property that
`(T −1A) = `(A) for every measurable subset A ⊂
X . Furstenberg proved that for each k , Szemerédi’s
theorem for progressions of length k is equivalent
to the following statement.

Theorem 3. Let (X , `,T ) be a measure-preserving
system and let A ⊂ X be a set of positive measure.
Then for any positive integer k there exists n such that
`(A ∩T −nA ∩ · · · ∩T −(k−1)nA) > 0.

The proof of this equivalence, which is known as
Furstenberg’s correspondence principle, turns out
not to be too di�cult. What is considerably less
obvious is how to prove this ergodic reformulation
of Szemerédi’s theorem. Furstenberg did it by a
two-step argument: either the system is “weak
mixing”, which roughly speaking means that all sets
get spread about under repeated applications of
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T −1, or it has a non-trivial “compact factor”, which
roughly speaking means that it can be decomposed
as a kind of product, one term of which is highly
structured. Thus, even though the proof is quite
di�erent from Szemerédi’s proof, and also from
Roth’s proof for progressions of length 3, it is still
based on a contrast between random-like behaviour
and structured behaviour: random-like systems
behave nicely, and systems that are not random-like
have some kind of correlation with structured sets,
which can be exploited in an iteration.

As I mentioned earlier, Szemerédi used van der
Waerden’s theorem as a lemma, which resulted in
a bound that was even worse than the Ackermann
function — as far as I am aware nobody has worked
out what it was. As for Furstenberg’s argument,
the correspondence principle was proved via a
non-constructive limiting argument, so it did not lead
to quantitative bounds even in principle. (Much later
Terence Tao managed to �nd a quantitative argument
that was strongly inspired by Furstenberg’s proof, but
the bound from this argument was still at least of
Ackermann type.)

At this point, the only reasonable quantitative bounds
were for the case k = 3: Roth’s argument shows
that X3 (n) is at most C (log logn)−1 for an absolute
constant C , and Szemerédi’s proof for this case also
gives a sensible bound. In the late 1990s I managed
to �nd a way of developing Roth’s approach to give a
proof �rst for progressions of length 4 and later for
progressions of all lengths. The example presented
earlier gives a small hint about the ideas that were
involved: discrete Fourier analysis involves functions
of the form x ↦→ e 2ciUx , but proves to be inadequate
for dealing with progressions of length 4 owing to
the existence of “quadratic examples”. To deal with
these, one needs to introduce functions of the form
x ↦→ e 2ci (Ux

2+Vx) and to develop a kind of “quadratic
Fourier analysis". However, it turns out that these
functions, which are known as pure quadratic phase
functions, are not enough, and one needs to consider
“generalized quadratic phase functions” as well. To
give an example of such a function, let n = m2 and
for each x ∈ {0,1, . . . ,n − 1} write it in base m —
that is, choose y ,z ∈ {0,1, . . . ,m − 1} such that
y +mz = x . Then de�ne q(x) to be e 2ci (Uy

2+Vyz+Wz 2) .
The exponent resembles a quadratic form in two
dimensions, and gives a �avour of the kinds of
functions that arise in the proof.

The broad strategy of the proof was again to show
that either the dense set A was random-like or it had

some structure that could be exploited. In the case
of progressions of length 4, that structure was closely
related to the generalized quadratic phase functions
just mentioned— in fact, by a later theorem of Green
and Tao, one can show that if A is not quasirandom
in the relevant sense, then its characteristic function
must correlate in a non-trivial way with such a
function. I proved a weaker statement that was still
su�cient to deduce that A has increased density
inside some long progression.

This approach led to the �rst quantitative bounds
for the general case of Szemerédi’s theorem: the
smallest density Xk (n) needed to guarantee a
progression of length k in a subset of {1,2, . . . ,n} is
at most (log logn)−1/Ck , where Ck = 22

k+9
.

A few years earlier, Shelah had found a new
combinatorial proof of van der Waerden’s theorem
that improved the bound from an Ackermann
bound to the �rst known primitive recursive
bound. Where addition is obtained by repeatedly
taking the successor function, multiplication is
repeated addition, and exponentiation is repeated
multiplication, the tower function is obtained by
repeated exponentiation: for example, one can de�ne
T (n) inductively by setting T1 = 1 and T (n) =
2T (n−1) . Shelah’s bound for van der Waerden’s
theorem was the next level up in the hierarchy: that
is, it was of so-called “wowzer” type, which one gets
by settingW (1) = 1 andW (n) = T (W (n − 1)). My
proof of Szemerédi’s theorem improved that to a
six-fold exponential.

It is not obvious how to obtain multidimensional
structure from the assumption that the set A is not
quasirandom (in an appropriate sense that I shall
not discuss here, though it was very important to
the argument). However, it turned out to be possible
to use a remarkable result of Gregory Freiman, or
more precisely some equally remarkable ideas from a
proof of Freiman’s theorem due to Imre Ruzsa. There
is not space to explain how to use the result, but I
can at least state it, and demonstrate in that way
that results that yielded multidimensional structure
existed already.

If A is a set of integers, the sumset A + A is de�ned
to be the set {x + y : x ,y ∈ A}. It is a simple exercise
to show that if |A | = n, then |A + A | ≥ 2n − 1, with
equality if and only if A is an arithmetic progression.
In the other direction, A + A clearly cannot have
size greater than n (n + 1)/2. Freiman’s theorem
concerns what can be said about A if |A + A | ≤
C |A |, where one thinks of C as a �xed constant
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and A as being large. As just remarked, arithmetic
progressions give examples of such sets, but so do
slightly more general sets called multidimensional
arithmetic progressions. Here is a precise de�nition.

De�nition 1. Let k be a positive integer. A
k-dimensional arithmetic progression is a set of the
form {x0 +

∑k
i=1 xidi : 0 ≤ xi ≤ mi } for some

d1, . . . ,dk .

For example, the set {1,2,3,11,12,13,21,22,23,31,
32,33} is a 2-dimensional arithmetic progression,
as, slightly less obviously, is the set
{3,8,10,13,15,17,20,22,27}. (It is not required by
the de�nition that all the numbers x0 +

∑k
i=1 xidi

should be distinct: when they are, we say that the
progression is proper.)

It can be shown that if A is a k-dimensional
arithmetic progression, then |A + A | ≤ 2k |A | (this
is easy when the progression is proper). Freiman’s
theorem tells us that these are essentially the only
examples.

Theorem 4. For every C there exist constants k and
K such that if A ⊂ ℤ is any set with |A + A | ≤ C |A |,
then there is a multidimensional arithmetic progression
P of dimension at most k such that A ⊂ P and |P | ≤
K |A |.

Yet another approach to Szemerédi’s theorem arose
out of the following deceptively simple result of
Ruzsa and Szemerédi, which is known as the triangle
removal lemma.

Theorem 5. For every n > 0 there exists X > 0 such
that every graph G with n vertices that contains at
most Xn3 triangles contains a set H of at most nn2

edges such that G \H is triangle free.

Like Szemerédi’s theorem, this is a result that one
would expect to be either false or fairly easy to prove.
An indication that that is not the case is that there
is a huge gap between the best known upper and
lower bounds for X: it is known that the smallest
possible value of X−1 is at least log(n−1)2 and at
most T (C log(n−1)), where T is the tower function
mentioned earlier. (The lower bound follows from a
1946 construction of Behrend and the upper bound
is due to Jacob Fox.)

The connection with Szemerédi’s theorem is that
the triangle removal lemma implies Roth’s theorem.
If A ⊂ {1,2, . . . ,n} is a set with no arithmetic
progression of length 3, one can construct a tripartite

graph with vertex sets X ,Y and Z , each of which is
a copy of {1,2, . . . ,2n}. We join x ∈ X to y ∈ Y if
y − x ∈ A, y ∈Y to z ∈ Z if z − y ∈ A, and x ∈ X to
z ∈ Z if (z − x)/2 ∈ A. A triangle in this graph gives
us a triple (x ,y ,z ) such that y −x ,z −y , and (z −x)/2
all belong to A. But (y − x) + (z − y) = 2(z − x)/2,
so we obtain an arithmetic progression, which is
non-degenerate unless y − x = z − y . It is not hard
to check that the number of triangles is O (n2), that
there are at least |A |n triangles that correspond to
degenerate arithmetic progressions, and that those
triangles are edge disjoint. If A is dense and n is
su�ciently large, this contradicts the triangle removal
lemma, since it yields a graph with very few triangles
with the property that in order to destroy all triangles
one must remove a large number of edges.

It was natural to try to generalize this proof to longer
progressions, but that turned out to be surprisingly
di�cult. The relatively easy part is to come up with an
appropriate analogue of the triangle removal lemma.
A k-uniform hypergraph is a collection of subsets of
size k of a set X (so a 2-uniform hypergraph is just a
graph). The elements of X are called vertices and the
subsets are called edges, or sometimes hyperedges.
A simplex in a k-uniform hypergraph is a set of
k + 1 vertices such that any k of them form an edge.
And now the simplex removal lemma is the obvious
generalization of the triangle removal lemma.

Theorem 6. For every n > 0 and every positive
integer k ≥ 2 there exists X > 0 such that if H is any
k -uniform hypergraph with n vertices that contains at
most Xnk+1 simplices, then there is a set J of at most
nnk edges of H such that H \ J is simplex free.

The statement for a given k implies Szemerédi’s
theorem for progressions of length k + 1. In fact,
as observed by József Solymosi, it implies the
case for that k of the following multidimensional
statement, which itself implies Szemerédi’s theorem
for progressions of length k +1. (The �rst implication
is not trivial but it is not hard either. The second
is a simple exercise.) Let us write e1, . . . ,ek for the
standard basis vectors of ℝk .

Theorem 7. For every X > 0 and every positive integer
k there exists n such every subset A of {1,2, . . . ,n}k
of size at least Xnk has a subset of the form {x ,x +
de1, . . . ,x + dek } for some x and some non-zero d .

Con�gurations of the form {x + de1, . . . ,x + dek } are
known as corners, so this result says that dense sets
must contain corners.
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The di�cult part of the hypergraph approach is
to prove the simplex removal lemma. This turns
out to require generalizing Szemerédi’s regularity
lemma appropriately to hypergraphs. The word
“appropriately” is important here, since it is not
possible in general to split a hypergraph up into a
bounded number of pieces that look like random
hypergraphs. Instead one has to allow for slightly
more complicated pieces: a typical example is to
take three disjoint sets X ,Y,Z of vertices, to take
random-like bipartite graphs, possibly of di�erent
densities, joining X to Y , Y to Z , and X to Z ,
and to pick a random-like subset of the set of
all triples xyz that form triangles in the resulting
tripartite graph. The simplex removal lemma was
proved independently by Nagle, Rödl, Schacht and
Skokan, and by me.

A �fth proof of Szemerédi’s theorem is actually a
proof of a much more general result known as the
density Hales-Jewett theorem. I shall discuss it in the
next section. And �nally there is a sixth proof due to
Elek and Szegedy that builds on the theory of graph
limits developed by Lovász and Szegedy. They de�ne
a notion of a “hypergraphon” that allows them to
prove the simplex removal lemma in a clean in�nitary
way that avoids having to keep careful control of
multiple parameters.

Generalizations and strengthenings of
Szemerédi’s theorem

We now come to a selection of remarkable results
that go beyond Szemerédi’s theorem.

To begin with, the theorem about k-dimensional
corners mentioned in the previous section is a special
case of the following multidimensional version of the
theorem.

Theorem 8. For every X > 0, every positive integer
k , and every �nite subset K ⊂ ℤk there exists n such
that every subset A ⊂ {1,2, . . . ,n}k of size at least
Xnk has a subset of the form x + dK with d ≠ 0.

The corners theorem is the case where K =

{0,e1, . . . ,ek }. It turns out that the corners theorem
implies the multidimensional Szemerédi theorem, so
the two are in fact equivalent. (This is a fairly simple
exercise to show — one exploits the fact that there
is an a�ne map from a ( |K |−1)-dimensional simplex
to K .)

The multidimensional Szemerédi theorem can itself
be generalized a lot further. To explain how, let
us brie�y return to van der Waerden’s theorem. If
one examines the original proof of the theorem,
one �nds that essentially the same argument
establishes a result about what one might call
multidimensional noughts and crosses. This is played
on an n-dimensional grid of width k in each direction.
That is, the board is the set {1,2, . . . ,k }n . A line
in the geometric sense is a set of k points in this
set that lie in a straight line. One can check that if
x1, . . . ,xk is such a line, with xi = (xi1, . . . ,xin), then
for each coordinate j , either the xi j are all equal, or
xi j = i for all i , or xi = k +1− i for all i . For instance,
in a 3 × 3 grid, the points (1,3,2), (2,2,2), (3,1,2)
form a line. A line is called a combinatorial line if
the third possibility is disallowed: that is, for each
coordinate j either the xi j are all equal or xi j = i
for all i .

The following theorem is called the Hales-Jewett
theorem.

Theorem 9. For every k and every r there exists n
such that if the points of {1,2, . . . ,k }n are coloured
with r colours, then there is a combinatorial line with
all its points of the same colour.

It is straightforward to see that this implies van
der Waerden’s theorem: it is more convenient to
colour the points of {0,1, . . . ,k − 1} instead, and
then one can regard them as base-k expansions of
the numbers 0,1, . . . ,kn − 1. If one does this, then
combinatorial lines map to arithmetic progressions
of length k . With only a very slightly harder argument
one can also deduce the multidimensional van der
Waerden theorem.

Thus, van der Waerden’s theorem can be generalized
in two directions. One direction gives us Szemerédi’s
theorem, its density version, while the other gives us
the Hales-Jewett theorem. It is natural to ask whether
both generalizations can be carried out at the same
time. This was an open problem for quite a while until
it was solved by Furstenberg and Katznelson, in one
of the triumphs of the ergodic-theoretic approach.

Theorem 10 (Density Hales-Jewett theorem). For
every X > 0 and every k there exists n such that every
subset of {1,2, . . . ,k }n of size at least Xkn contains
a combinatorial line.

The ergodic approach gave no bounds, so it remained
a challenge to �nd a combinatorial proof. This was
eventually achieved in 2009 as a result of the �rst
Polymath project — an open collaboration carried
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out online. Just as van der Waerden’s theorem is
an easy consequence of the Hales-Jewett theorem,
Szemerédi’s theorem is an easy consequence of the
density Hales-Jewett theorem. Rather unexpectedly,
the Polymath proof of the density Hales-Jewett
theorem was not signi�cantly harder for progressions
of arbitrary length than it was for progressions of
length 3, which made it the �rst proof with this
property.

We have just seen two orthogonal directions in
which van der Waerden’s theorem can be generalized.
Remarkably, there is a third direction as well, a story
that begins with the following theorem that was
proved independently by Sárközy and Furstenberg.

Theorem 11. For every X > 0 there exists n such that
for every subset A ⊂ {1,2, . . . ,n} of size at least Xn
there exist a and d ≠ 0 such that a and a + d 2 both
belong to A.

This is of course a density statement, but it implies
a corresponding colouring statement: if {1,2, . . . ,n}
is coloured with a bounded number of colours then
we can �nd a and d ≠ 0 such that a and a + d 2 have
the same colour.

How far can this statement be generalized? Can we
replace d 2 by other polynomial functions of d , for
instance? A moment’s thought shows that we have
to be slightly careful, since for example we cannot
hope to �nd a and d such that a and a +d 2 + 1 have
the same colour: we can colour numbers with three
colours according to their value mod 3. However,
the strongest imaginable result that takes this kind
of simple restriction into account turns out to be
true. The following result, which was a conjecture for
several years, was proved by Bergelson and Leibman.

Theorem 12. For every X > 0 and every �nite set
{P1, . . . ,Pk } of polynomials with integer coe�cients
and no constant term there exists n such that every
subset A of {1,2, . . . ,n} of size at least Xn has a
subset of the form {a,a + P1 (d ), . . . ,a + Pk (d )} with
d ≠ 0.

Interestingly, before they proved the above theorem,
Bergelson and Leibman were able to use the ergodic
machinery to establish that it would follow from
the corresponding colouring version, which is often
referred to as the polynomial van der Waerden
theorem. (Given that Szemerédi’s theorem was
proved long after van der Waerden’s theorem, this
was a far from trivial observation.) But obtaining the
polynomial van der Waerden theorem remained a

di�cult challenge. To meet it, they used methods
of topological dynamics. Later, Mark Walters found
a very appealing purely combinatorial proof (which
used some of the ideas from Bergelson and
Leibman’s argument).

It is now di�cult not to ask whether there is
a simultaneous generalization of the Hales-Jewett
theorem and the polynomial van der Waerden
theorem. And indeed there is. Since it takes a bit
of e�ort to state, I shall content myself here with
a special case, which gives a good �avour of the
general result. As is customary in combinatorics, let
us write [n] for the set {1,2, . . . ,n}. Note that the
set [k ] [n ]2 consists of functions from [n]2 to [k ],
which we can think of as n × n matrices with entries
in [k ].

Theorem 13. For every k and every r there exists n
such that if the points of [k ] [n ]2 are coloured with r
colours, then there exists a ∈ [k ] [n ]2 and a non-empty
set X ⊂ [n] such that all points b ∈ [k ] [n ]2 that agree
with a outside X 2 and are constant inside X 2 have
the same colour.

Note that this is saying that there is a combinatorial
line with the property that the variable coordinates
form a set of the form X 2 — that is, a square in the
Cartesian-product sense.

If we consider sums of the form
∑
i ,j `i ` jbi j for

appropriately chosen integer coe�cients `i , we see
that adding 1 to every bi j with i , j ∈ X adds
(∑i ∈X `i )2 to the sum. Exploiting this, one can show
that the above theorem implies the special case of
the polynomial van der Waerden theorem where the
polynomials are x2,2x2, . . . , (k − 1)x2, which yields
an arithmetic progression of length k with square
common di�erence.

Again, Bergelson and Leibman proved the polynomial
Hales-Jewett theorem using topological dynamics,
and again Mark Walters found a purely combinatorial
proof.

We now have three directions of generalization for
van der Waerden’s theorem — the density direction,
the Hales-Jewett direction, and the polynomial
direction. Moreover, any two of these directions
can be simultaneously generalized. Can all three be
generalized? It is not hard to formulate an appropriate
statement — one simply takes the obvious density
version of the polynomial Hales-Jewett theorem. But
whether or not the statement is true is an open
problem. Indeed, even the simplest non-trivial cases
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of the polynomial Hales-Jewett theorem are (very
interesting) unsolved problems.

The alert reader will be remembering that earlier
in this article I mentioned yet another direction in
which Szemerédi’s theorem could be generalized,
which was the hypergraph direction. Szemerédi’s
theorem follows straightforwardly from the simplex
removal lemma, but when one examines the
simplex removal lemma one realizes that it is a
considerably more general statement that has several
other consequences besides Szemerédi’s theorem.
However, there does not seem to be an obvious
way of integrating this direction of generalization
into the picture just described: I know of no serious
attempt to �nd a simultaneous generalization of this
direction with either the polynomial direction or the
Hales-Jewett direction. It would be fascinating if even
a sensible conjecture could be formulated, but it may
be that these are simply incompatible generalizations
in some sense.

No account of generalizations of Szemerédi’s
theorem would be complete without a mention of
a famous generalization of a very di�erent kind,
which is perhaps better described as a strengthening
than a generalization. At the beginning of this article
I mentioned that a su�ciently good bound for
Szemerédi’s theorem would imply that the primes
contain arbitrarily long arithmetic progressions.
Thanks to Ben Green and Terence Tao, we now know
that this consequence is indeed true.

Theorem 14. For every positive integer k there is
an arithmetic progression of length k that consists of
prime numbers.

Green and Tao did not prove this by beating the
1/logn barrier in Szemerédi’s theorem — that
is still an open problem. Rather, they exploited
known results about the distribution of the prime
numbers. Very roughly (I shall oversimplify here) the
scheme of their proof was to prove that the prime
numbers “sit densely inside a pseudorandom set”.
They then showed that results about dense subsets
of {1,2, . . . ,n} can be converted in a systematic way
into results about dense subsets of pseudorandom
subsets of {1,2, . . . ,n}. Thus, they ended up using
Szemerédi’s theorem as a black box, though in order
to do so they made use of insights from several of the
di�erent proofs of the theorem — which provides
another answer to the question of why it was worth
�nding so many di�erent proofs of one result.

The Green-Tao theorem does not itself strengthen
Szemerédi’s theorem, but their proof applies just
as well to dense subsets of the primes. Since a
dense set will on average densely intersect a random
translate of the primes, it is therefore straightforward
to deduce Szemerédi’s theorem from their result.
(However, this does not give an alternative proof
of Szemerédi’s theorem given that they used the
theorem.)

Their proof did not give an asymptotic for the number
of progressions of length k in the �rst n primes.
That turned out to be a signi�cantly harder challenge,
which took several years of further research and
led to the discovery of a number of deep results,
of which the highlight, proved with Tamar Ziegler, is
their “inverse theorem for the U k norms”, which
gives a complete description of the sets that fail
to be quasirandom in the Fourier-analytic proof of
Szemerédi’s theorem described earlier.

The Green-Tao theorem has also been combined with
other directions of generalization. For example, Tao
proved a 2-dimensional version for Gaussian primes,
and Tao and Ziegler have proved a polynomial version
(that is, with the conclusion of the Bergelson-Leibman
theorem but for dense sets of primes).

A word about bounds

With the exception of the Bergelson-Leibman
theorem, all the results mentioned above have been
proved with quantitative bounds. However, in no case
do the best known upper and lower bounds match. A
particularly striking open problem that has attracted
a great deal of attention is to determine the right
form of the bound for Roth’s theorem. As mentioned
earlier, Roth’s proof shows that to guarantee a
progression of size 3 in a subset of {1,2, . . . ,n} it
is su�cient for the subset to have density at least
C /log logn. In the other direction, the construction
of Behrend mentioned earlier (in connection with
the triangle removal lemma) shows that a density of
exp(−C

√
log n) does not su�ce. Between those two

bounds there is a huge gap, which has been closed
somewhat, but remains huge. The lower bound has
remained virtually stationary, but the upper bound
has been reduced in a long sequence of papers by
Szemerédi, Heath-Brown, Bourgain, Sanders, Bloom,
and Bloom and Sisask, each of which introduced very
interesting and in�uential new ideas. The last paper in
this sequence, by Thomas Bloom and Olof Sisask, is
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particularly notable because it breaks the logarithmic
barrier, and hence has as a consequence the �rst
non-trivial case of Erdó́s’s famous conjecture. That
is, we now know that if A is a set of integers such
that

∑
a∈A a

−1 = ∞, then A contains an arithmetic
progression of length 3.

Another problem that has been resolved but only
fairly recently concerns the following variant of
Roth’s theorem. We write F3 for the �eld with three
elements.

Theorem 15. For every X > 0 there exists n such that
every subset of Fn3 of density at least X contains an
a�ne line.

As was �rst shown by Roy Meshulam, this can be
proved by a modi�cation of Roth’s proof for subsets
of {1,2, . . . ,n}. In fact, the technical details are
simpler and cleaner for this problem, and one can
obtain a bound of C /n for the density required. (This
should be regarded as logarithmic, since Fn3 has size
3n .)

In the opposite direction, the best known lower
bound for the density was of the form cn for a
constant c < 1. (A simple lower bound of (2/3)n is
given by the set {0,1}n , but the constant 2/3 can be
improved by taking a Cartesian product of a more
complicated small example of a set with no a�ne
line in some small Fk3 .)

This again was a tantalizingly large gap. It was
narrowed very slightly by Michael Bateman and Nets
Katz, who improved the upper bound for the density
to bound to a bound of the form C /n1+n for a �xed
(but very small) n > 0, thus decisively breaking the
logarithmic barrier for this problem. However, in a
very surprising development a few years later, Jordan
Ellenberg and Dion Gijswijt, building on an argument
of Ernie Croot, Seva Lev, and Peter Pach that used
the so-called polynomial method, obtained an upper
bound of the form Un with U < 1, thus matching
at least the form of the lower bound. Moreover, the
proof was very short and easy to understand. This
work has led to further very interesting questions:
the method works spectacularly well for some
problems, but when it fails, it seems to fail completely.
For example, nobody has found a way of extending it
to prove results about progressions of length greater
than 3, or about corners. It is not clear whether that
is because it cannot be extended in those directions
or whether we are just missing the right idea for how
to do so.

Interestingly, in order to obtain their breakthrough
on Roth’s theorem, Bloom and Sisask returned to the
methods of Bateman and Katz, so that proof, though
superseded by a much simpler argument that gave
a much stronger bound, turned out nevertheless to
have introduced very important ideas.

I mentioned above that there is no quantitative proof
of the Bergelson-Leibman theorem. However, a great
deal of work has been done on special cases. Another
very interesting open problem concerns what the
right bound is for the Furstenberg-Sárközy theorem.
The current best known upper bound for the density
needed to guarantee that a subset of {1,2, . . . ,n}
contains two integers that di�er by a perfect square
is (log n)−c log log log n , which is due to Thomas Bloom
and James Maynard. However, the best known lower
bound is of the form n−U where U is a positive
constant. The question is whether there is an upper
bound of this form.

Sarah Peluse and Sean Prendiville have obtained
several remarkable results (though to explain
why they are remarkable I would have to go
into more detail about proofs than I can in
this article) concerning quantitative bounds for
more complicated cases of the Bergelson-Leibman
theorem. For example, they have shown that there is
a constant c > 0 such that a density of (log logn)−c
is su�cient to guarantee a con�guration of the form
{a,a + d ,a + d 2}: this was the �rst quantitative
bound for a special case that involved polynomials of
di�erent degrees, which causes all sorts of serious
di�culties that they managed to circumvent with
great ingenuity.

The bound obtained by Polymath for the density
Hales-Jewett theorem was of Ackermann type.
Another open question is whether one can somehow
�nd an alternative proof that relates to that argument
as Shelah’s proof of the Hales-Jewett theorem relates
to the original proof. Of course, any proof that gave
a primitive recursive bound would be interesting.

Timothy Gowers
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The Noether Theorems and their Application to
Variational Problems on a Hyperbolic Surface

KAREN K. UHLENBECK

Noether’s theorem is a theorem in the classical calculus of variations which equates conservation laws with
symmetries of the integrand. This article contains a brief history, and some unexpected applications to integrals
whose domain is a symmetric space, in particular a hyperbolic surface.

The fundamental theorem of Emmy Noether in the
calculus of variations has been important historically.
She came to work in Göttingen in 1915 at the invitation
of Hilbert and Klein. In the years 1915–1918 there
was a healthy competition, particularly between
Einstein and Hilbert, as the outlines of general
relativity took shape. General relativity is correctly
attributed to Einstein, but Hilbert made substantial
contributions, particularly in his development of
the variational principle [H]. One topic puzzled a
number of mathematicians and physicists, Hilbert
in particular. Why was there no conserved quantity
corresponding to energy in general relativity? Noether
was already known for her work on invariants, and
was recruited by Hilbert and Klein to work on this
problem. Noether surprisingly quickly produced a
paper [N] settling the question so thoroughly that
there is even today very little to be added. At the
time, there was some debate about the importance
of the variational approach, and the breadth of
the applicability was not at all recognized. However,
in the last 50 years her theorem has morphed
into a widely recognized principle embedded in the
philosophy of mathematics and physics: symmetries
are associated with conservation laws. But it is still
useful to look at the theorem itself. An excellent and
complete reference containing both the history and
the mathematics can be found in [K-S].

Her original theorem is strictly a theorem in the
calculus of variations and has two distinct parts
which are not always di�erentiated.

Part I: If an integral J in the calculus of variations is
invariant under a [group] Gd (of dimension d), there
are d linearly independent combinations among the
Lagrangian expressions and their derivatives which
become divergence free, and conversely . . . .

Part II: If an integral J in the calculus of variations
is invariant under a [group] G (∞,d) depending on d

arbitrary functions and their derivatives up to order f,

then then there are d linearly independent identities
among the Lagrangian expressions and their derivatives
up to order f, and conversely . . . .

In Part I of the theorem each symmetry produces,
for every solution of the Euler-Lagrange equations, a
local vector �eld V with divV = 0 in any Euclidean
coordinates one might choose to write the integral
and functions, provided the symmetry is properly
expressed in those coordinates.

Noether was nothing if not a generalist. The integrals
under consideration depend on m dependent
functions yk = f k (x) and their derivatives ykU =

mU f k (x) through order s ≥ 1, de�ned on a domain
of x = (x1, · · · ,xn) in ℝn . The integrals are multiple
integrals with an integrand, known as a Lagrangian
density, of the form

L
(
x , f (x), {mU f (x)}

)
(dx)n .

The importance of the integrals lies in the system of
Euler-Lagrange equations 1 ≤ k ≤ m for a function
u = (u1, · · · uk , · · · ,um) where the variation of J
vanishes. In particular, it could be a function at which
J takes on a minimum, but most often only the
variation of J vanishes:∑

V

(−1) |V |mV [L (yk
V
) (x ,u , · · · , {mUu})] = 0.

The Lagrangian expressions are the partial
derivatives of L in the various directions yk

V
, but

evaluated at the solution f = u of the Euler-Lagrange
equations.

The equations of general relativity require the
number of derivatives s = 2. The functions on
which the Einstein-Hilbert functional is de�ned are
components of a metric tensor g and the Lagrangian
density is the scalar curvature times the volume
form induced by the metric.
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We are not generalists and for the purposes of this
note, we will restrict to s = 1 and consider only one
derivative. Thus the Lagrangian densities depend
only on functions and their �rst derivatives, which
simpli�es any discussion. For Noether, a symmetry
is an in�nitesimal symmetry which leaves the
Lagrangian density L

(
x , f (x),mf (x)

)
(dx)n invariant

(or invariant up to a divergence). It is not necessarily
a symmetry preserving the integral.

It is important to realize in the recipe that the
symmetries need only be local. For a problem
in the calculus of variations based on t in [0,1]
that does not contain t explicitly (like J ( f ) =∫ 1
0 L( f (t ), f

′(t )) dt , translation in t does not
preserve [0,1] but it is still a local symmetry and
Noether’s theorem applies. How it works can be seen
in her proof. Insert in the integral as the �rst variation
the in�nitesimal symmetry (the Lie algebra) acting
on the solution to the Euler-Lagrange equations but
multiplied by an arbitrary function q which has local
support. This vanishes because we are at a solution
of the Euler-Lagrange equations. Because of the
symmetry, only terms mq (and higher derivatives in
the case the integral depends on more than one
derivative) are in the expression. There is no term
with just q. In the case of many derivatives, we freely
integrate by parts until an expression like the one
present for only one derivative

0 =
∫ ∑

j

V jdx j q (dx)n

for all q with support in a ball pops out. Because q

is arbitrary, what used to be called the fundamental
theorem of the calculus of variations gives divV = 0.

The importance of the divergence free vector �elds
associated with the solution of the Euler-Lagrange
equations is the divergence theorem: if Ω ⊂ ℝn ,
mΩ = S, then

∫
S
(a,V ) =

∫
Ω
divV , where a is the

outward unit normal.

Our modern language interprets this in terms of
forms and, since Noether’s arguments are entirely
local, the theorem easily extends to manifolds. The
Lagrangian density is an n-form, the vector �eldV is
transformed into an (n − 1)-form via \ =V y (dx)n ,
and the divergence free vector �elds V become
closed (n − 1)-forms \. In turn, \ = db locally for an
n − 2-form b . Later we will be particularly interested
in n = 2, where b is a function.

Conservation laws for energy and momentum were
well-known for many geometry and physics problems,

in particular those of special relativity. A simple
example is an integral in dimension n = 1 with the
Lagrangian density L( f (t ), f ′(t ))dt . As mentioned
before, translation in time is a local symmetry. At
a solution of the Euler-Lagrange equation u , the
quantity

E (u) =
∑
k

L (yk1 )
(u (t ),u ′(t )) u ′k (t ) − L(u (t ),u ′(t ))

is constant (in t ). In higher dimensions, Lagrangian
densities which do not depend on x yield for
every solution of the Euler-Lagrange equations an
energy-momentum tensor S : an n × n symmetric
matrix with divergence free rows and columns.
Noether’s contribution was to show that the
existence of this energy-momentum tensor is due to
translation invariance in time for energy and in space
for momentum (to say nothing of the additional
interpretation of generalized momenta coming from
symmetries in the target) and �ts into a larger
picture of symmetry and conservation laws. It is not
clear how well this was understood in the physics
community before the revival of interest in her work
in the 60’s.

The second part of Noether’s theorem answers the
question on why there are no conserved quantities in
general relativity. The usual sources of conservation
laws such as space and time translation are all
embedded in the larger group of di�eomorphisms.
So according to Part II of Noether’s theorem, the
resulting ‘conservation laws’ are identities, and hold
whether or not one is at a critical point of the
integral. Later Schouten and Struik [S-S] identi�ed
her identities as applied to general relativity as
equivalent to the Bianchi identities (which were
already known at the time of her article). This settles
the question of conservation laws in general relativity
(and for that matter, in gauge theory), although this
has taken some time to be recognized. See the article
by Rowe [Ro] for a more detailed discussion.

The question of gauge theory is surely an interesting
one. A search of the web for Noether, gauge theory
found an active discussion among physicists. No
mathematicians. While some of the references are to
the ‘Noether identities’ of Part II, it is di�cult to see
how, as these identities hold for all �elds, information
about speci�c structures can be derived from these
identities. Whatever is happening at the quantum
level is a result of the representations and most
likely the philosophy arising from the theorem, not
the theorem itself. For those curious, the classical
identity that arises from applying her theorem to
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the Yang-Mills functional is either D ∗ D ∗ F = 0
or trace trace[F,F ] = 0, both of which are self
evident even to beginners in the subject. Here and
elsewhere D denotes the covariant derivative form
of the exterior derivative d on forms and ∗ denotes
the operation which takes k-forms to (n − k )-forms.

My current interest in the subject arose in
my collaboration with George Daskalopoulos in
approximating ‘best Lipschitz’ maps between
hyperbolic surfaces f : M → N studied by Thurston.
To obtain approximations to the maps minimizing the
Lipschitz constant of f , or equivalently the maximum
of partial derivatives of f , we study integrals in
variational problems which depend on a Shatten-von
Neumann norm. Messing around in a �xed coordinate
system on the image N , we found closed 1-forms.
These were the derivatives of functions we were
seeking. At some point we realized that these closed
1-forms in two dimensions were exactly the duals
of the divergence free vector �elds promised by
Noether from the local symmetric space structure
of N . A complete set of three closed 1-forms, one
for each symmetry, popped out and we were o� to
the races. This article will appear shortly [D-U-2].

Here is a simple example. Let f : M → S 1 and
Jp ( f ) =

∫
M |df |

p ∗ 1, the critical points of which are
called p-harmonic functions, be the integral under
consideration. The symmetries in question are the
rotations of the circle. With even a small amount of
knowledge of the calculus of variations, it is not too
hard to see that the Euler-Lagrange equations are

d ∗ |du |p−2du = 0.

One does not even have to refer to Noether’s recipe
to see that the closed (n − 1)-form corresponding
to rotations of the circle is

\ = db = ∗|du |p−2du

where b is a (dimM − 2)-form. It is easy to use
this without crediting Noether (as we all do), but the
case of N instead of S 1 is not so transparent. We
are to make good use of these n − 1 = 1-forms
in two dimensions, but understanding the higher
dimensional cases is wide open.

At some point, Daskalopoulos and I idly asked, well,
what about the symmetries of the domain M ? Now,
these are not uncharted waters. For M = Ω ⊂
ℝn , the translations are all local symmetries and
Noether’s theorem applies to give what physicists
know as conservation of linear momentum (or

energy if there is a direction representing time).
Without crediting Noether, geometers for the last
few decades have used these as the basis for
monotonicity theorems, especially for harmonic
maps and solutions of the Yang-Mills equations. They
apply only approximately on curved manifolds, but
that is su�cient for the estimates they are used for.
Also, the proof is di�erent from Noether’s as there
is often insu�cient regularity for hers. A discussion
of this background can be found in the paper by
Bernard [B], which also presents another application
in geometry of Noether’s �rst theorem.

We can go back to the integral, now on Ω in ℝn ,

Jp ( f ) =
∫
Ω

|df |p (dx)n .

There are more modern proofs, but we give the
classical argument. The recipe for �nding the
conservation law corresponding to translation in the
x j direction turns out in this case to be the inner
product of the Euler-Lagrange equations with the
partial derivative of f = u in the direction x j which
we write dx j u . We get

( |du |p−2 du ,d (dx j u)) = ( |du |p−2 du ,dx j du)
= 1/p dx j |du |p .

This expression is also the same as

d ∗ (|du |p−2 du ,dx j u) − (d ∗ (|du |p−2 du),dx j u)
= d ∗ (|du |p−2 du ,dx j u)

because we assume the Euler-Lagrange equations.
So the divergence free (momentum) vector for the
j -th direction is

S (i ,j ) = |du |p−2 (dx iu ,dx j u) −
1
p
X (i ,j ) |du |p .

It is a bit sticky taking the dual to obtain a closed (n−
1)-form and to keep the symmetry, and dimensions
greater than 2 are more di�cult.

In dimension 2, we can take the dual (star) of both
indices to obtain S ∗(1,1) = S (2,2) , S

∗
(2,2) = S

∗
(1,1) and

S ∗(2,1) = S
∗
(1,2) = −S (2,1) = −S (1,2) . Then elementary

but somewhat tedious calculations based only on
the local calculus fact that in ℝ2, d\ = 0 if and only
if \ = db , results in the following:

Proposition 1. If Ω ⊂ ℝn and J is an integral on
f : Ω→ N well de�ned on some Lp1 space and which
is invariant under translation, then to every solution
of the Euler-Lagrange equations there is an energy
momentum tensor S with d ∗ S = 0. If n = 2, then
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S ∗ calculated above satis�es dS ∗ = 0. Moreover any
symmetric tensor S ∗ is closed (with respect to either
index) if and only if there exists E such that S ∗(i ,j ) =
did jE . The function E is unique up to addition by a
term ax1 + bx2 + c .

This theorem is quite general and examples besides
the one we give abound. Every solution of the
Euler-Lagrange from an integral invariant under
translation has an energy-momentum tensor, often
even when the solution has minimal regularity.

So what about when the domain is a hyperbolic
surface M ?

The calculation we did above is well-known to
geometers on an arbitrary manifold, symmetric or
not, and can be show to yield an equation on
an energy-momentum tensor S for many integrals
with the domain a Riemannian manifold M . Such
calculations are basic steps in studying harmonic
maps and Yang-Mills equations, and they come from
variations of the parameterization. (In general, S is a
symmetric tensor with values in T ∗ (M ) s T ∗ (M ),
and may only be in L1. The equations are interpreted
distributionally.) However, the equation is now

D∗S = 0.

To see the connection with Noether, let l be an
in�nitestimal local isometry (Killing vector �eld). Note
that (S ,l) is now a 1-form, and ∗ (S ,l) is an (n −
1)-form. The following is an easy calculation.

Proposition 2. If the domain is a symmetric space
then D∗S = 0 if and only if d ∗ (S ,l) = 0 for local
Killing �elds l.

An extension of this to conformally invariant integrals
and conformal Killing �elds appears in a number of
places (without reference to Noether) [B-L], [P].

On a surface, if we construct the symmetric tensor
S ∗ from S as above, this becomes

DS ∗ = 0.

The covariant derivative form of the exterior
di�erentiation of course spoils the above calculations.
On a hyperbolic surface, we have three linearly
independent vector �elds lU corresponding to the
local symmetries.

The three 1-forms promised by Noether are ∗ (S ,lU).
It should be noted, however, that there is a linear

relation among these three forms. They are NOT
linearly independent. Noether’s theorem predates an
understanding of Lie algebras. In another elementary
but tedious calculation similar to the one in ℝ2 in
coordinates in the upper half plane we �nd the
following:

Theorem 16. On a hyperbolic surfaceM , the equation
D∗S = 0 is valid if and only if locally S ∗ = ∇dE +RgE
where ∇ is the covariant derivative, R is the constant
curvature and g is the metric tensor. Moreover, the
kernel K of the operator ∇d + Rg corresponds to
functions E which are the Hamiltonians for the action
of the symmetry group SO(2,1) with respect to the
natural symplectic form on M .

Note that non-constant curvature would completely
spoil the ‘if’ part, which is easily checked once the
operator is found.

We add a brief description of this kernel K in
coordinates (x1,x2) = (x ,y) of the upper half space
H 2. Three linearly independent Killing vector �elds
on H 2 are

l0 = xdx + ydy
l1 = dy

l2 = (x2 − y2) dx + 2xy dy .

The kernel K of the operator ∇d +Rg is generated
by the three functions

k0 = x/y
k1 = 1/y
k2 = (x2 + y2)/y .

To see that k j is the Hamiltonian for −l j we compute
in coordinates. The computation for k0 goes like this:

∗dk0 = 1/y ∗ dx − x/y2 ∗ dy
= −x/y2 dx − 1/y dy → −xdx − ydy .

The last step identifying a 1-form with a tangent
vector uses the fact that the metric is conformal to
the Euclidean metric with conformal factor 1/y . The
computation is similar for k1 and k2.

The kernel K is a 3-dimensional space of functions
on M̃ = H 2 whose elements are

∑
j a jk j . If W is a

closed curve in M , we lift to W : [0,1] → H 2. Solve
S ∗ = ∇dE + RgE as a solution in the cover. We
can check that E (WX ) is also a solution, so a(X ) =
E (WX ) − E (X ) is in K . This and the homotopy
invariance give us a theorem that can be used to
construct an a�ne bundle.
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Corollary 1. Let M be a hyperbolic surface. To every
S ∗ in T ∗ (M ) s T ∗ (M ) which is closed with respect
to either index, a : c1 (M ) → K is well-de�ned on
c1 (M )and satis�es

a(W1W2) = a(W1) + a(W2).

We are speci�cally interested in the case where S ∗

is a measure with support on a lamination [D-U-1].
Applications to this case as well as detailed proofs
of the results outlined here can be found in a
forthcoming paper.

The references include an article on Noether’s
role in the relativity revolution [Ro] and the
references on applications of Noether’s theorem
[B-G-G, O]. I particularly recommend the reference
by Kosmann-Schwarzbach for historical background
and an extensive description of related articles in
both physics and mathematics [K-S].

We have no idea of either the use or real meaning
of any of these observations. Or an exact statement
of Theorem 2 in higher dimensions. Or what
applications they may have,

Sometimes, however, the pursuit of useless
knowledge pays o�.
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The Combinatorics of Hopping Particles and
Positivity in Markov Chains

LAUREN K. WILLIAMS

The asymmetric simple exclusion process (ASEP) is a model for translation in protein synthesis and tra�c �ow;
it can be de�ned as a Markov chain describing particles hopping on a one-dimensional lattice. In this article
I explain how the stationary distribution of the ASEP has beautiful connections to combinatorics (tableaux
and multiline queues) and special functions (Askey-Wilson polynomials, Macdonald polynomials, and Schubert
polynomials). I also make some general observations about positivity in Markov chains.

Introduction

The goal of this article is to illustrate some of
the elegant connections between combinatorics and
probability that arise when one studies Markov
chains. We will focus in particular on several
variations of the asymmetric simple exclusion process,
illustrating combinatorial formulas for its stationary
distribution and connections to special functions.
The last section of this article makes some general
observations about positivity in Markov chains, in
the context of the Markov Chain Tree Theorem.

The asymmetric simple exclusion process (ASEP) is
a model for particles hopping on a one-dimensional
lattice (e.g. a line or a ring) such that each site
contains at most one particle. The ASEP was
introduced independently in biology [MGP68] and in
mathematics [Spi70] around 1970, see also [Lig85].
It exhibits boundary-induced phase transitions, and
has been cited as a model for translation in protein
synthesis, sequence alignment, the nuclear pore
complex, and tra�c �ow.

Though we will not discuss them here, the ASEP
has remarkable connections to a number of topics,
including the XXZ model [San94*], vertex models
[BP18*, BW18*], the Tracy-Widom distribution [Joh00*,
TW09*], and the KPZ equation [BG97*, CST18*, CS18*,
CK21*]. The ASEP is often viewed as a prototypical
example of a random growth model from the KPZ
universality class in (1 + 1)-dimensions, see [KPZ86*,
Cor12*, Qua12*].

U
y x

q
y
1
y
V

Figure 1. The (three-parameter) open boundary ASEP.

The ASEP with open boundaries, staircase
tableaux, and Askey-Wilson polynomials

In the ASEP with open boundaries (see Figure 1), we
have a one-dimensional lattice of n sites such that
each site is either empty or occupied by a particle.
At most one particle may occupy a given site. During
each in�nitesimal time interval dt, each particle at a
site 1 ≤ i ≤ n − 1 has a probability dt of jumping to
the next site on its right, provided it is empty, and
each particle at a site 2 ≤ i ≤ n has a probability
qdt of jumping to the next site on its left, provided
it is empty. Furthermore, a particle is added at site
i = 1 with probability Udt if site 1 is empty and a
particle is removed from site n with probability Vdt if
this site is occupied. This model can be equivalently
formulated as a discrete-time Markov chain.

The ASEP with open boundaries

Let U, V , and q be constants between 0 and 1.
Let Bn be the set of all 2n words of length n in
{◦,•}. The open boundary ASEP is the Markov
chain on Bn with transition probabilities:

• If g = A•◦B and f = A◦•B (where A and
B are words in {◦,•}), then we have that
Pr(g → f) = 1

n+1 and Pr(f → g) = q
n+1

(particle hops right or left).

• If g = ◦B and f = •B then Pr(g → f) =
U
n+1 (particle enters the lattice from left).

• If g = B• and f = B◦ then Pr(g → f) =
V

n+1 (particle exits the lattice to the right).

• Otherwise Pr(g → f) = 0 for f ≠ g and
Pr(g → g) = 1 −∑

f≠g Pr(g → f).
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•◦

◦◦ ••

◦•

V

3
U
3

U
3

V

3

1
3

q
3

Figure 2. The state diagram of the open-boundary ASEP
on a lattice of 2 sites.

In the long time limit, the system reaches a steady
state where all the probabilities c(g) of �nding the
system in con�guration g are stationary, i.e. satisfy
d
dt c(g) = 0. Moreover, the stationary distribution is
unique. We can compute it by solving for the left
eigenvector of the transition matrix with eigenvalue
1, or equivalently, by solving the global balance
equations: for all states g ∈ Bn , we have

c(g)
∑
f≠g

Pr(g → f) =
∑
f≠g

c(f) Pr(f → g),

where both sums are over all states f ≠ g.

The steady state probabilities are rational
expressions in U, V and q . For convenience, we clear
denominators, obtaining “unnormalized probabilities”
Ψ(g) which are equal to the c(g) up to a constant:
that is, c(g) = Ψ(g)

Zn
, where Zn = Zn (U, V ,q ) is the

partition function
∑

g∈Bn Ψ(g).

State g Unnormalized probability Ψ(g)
•• U2

•◦ UV (U + V + q )
◦• UV

◦◦ V 2

Example 1. Figure 2 shows the state diagram of
the open-boundary ASEP when n = 2, and the
table above gives the corresponding unnormalized
probabilities. Therefore we have c(••) = U2

Z2
, c(•◦) =

UV (U+V+q )
Z2

, c(◦•) = UV

Z2
, and c(◦◦) = V2

Z2
, where Z2 =

U2 + UV (U + V + q ) + UV + V 2.

For n = 3, if we again write each probability
c(g) = Ψ(g)

Z3
, we �nd that Z3 (U, V ,q ) is a polynomial

which is manifestly positive – that it, it has only
positive coe�cients. Also, Z3 has 24 terms (counted
with multiplicity): Z3 (1,1,1) = 24. Computing more
examples quickly leads to the conjecture that the
partition function Zn = Zn (U, V ,q ) is a (manifestly)
positive polynomial with (n − 1)! terms.

In algebraic combinatorics, if a quantity of interest
is known or believed to be a positive integer or a
polynomial with positive coe�cients, then one seeks
an interpretation of this quantity as counting some
combinatorial objects. For example, one seeks to
express such a polynomial as a generating function
for certain tableaux or graphs or permutations,
etc. A prototypical example is the Schur polynomial
s_ (x1, . . . ,xn) [Sta99]: there are several formulas
for it, including the bialternant formula and the
Jacobi-Trudi formula, but neither makes it obvious
that the Schur polynomial has positive coe�cients.
However, one can express the Schur polynomial as
the generating function for semistandard tableaux
of shape _ , and this formula makes manifest the
positivity of coe�cients [Sta99].

Given the above, and our observations on the
positivity of the partition function Zn (U, V ,q ), the
natural question is: can we express each probability
as a (manifestly positive) sum over some set of
combinatorial objects? We will explain how to answer
this question using (a special case of) the staircase
tableaux of [CW11].

In what follows, we will depict Young diagrams in
Russian notation (with the corner at the bottom).

An UV -staircase tableau T of size n is a Young
diagram of shape (n,n − 1, . . . ,2,1) (drawn in
Russian notation) such that each box is either
empty or contains an U or V , such that:

(1) no box in the top row is empty

(2) each box southeast of a V and in the same
diagonal as that V is empty.

(3) each box southwest of an U and in the
same diagonal as that U is empty.

See Figure 3. We encourage the reader to check that
there are (n + 1)! UV -staircase tableaux of size n.

◦ • ◦ • • ◦ •
V U V U

U

U
V
V U V U

q
V U

U

U

q
V
V U

Figure 3. At left: an UV -staircase tableau T of type
(◦ • ◦ • • ◦ •). At right: T with a q in each unrestricted
box. We have wt(T ) = U5V4q 2.
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De�nition 2. Some boxes in a tableau are forced
to be empty because of conditions (2) or (3) above;
we refer to all other empty boxes as unrestricted.
(The unrestricted boxes are precisely those whose
nearest neighbors on the diagonals to the northwest
and northeast, respectively, are an U and V .)

After placing a q in each unrestricted box, we de�ne
the weight wt(T ) of T to be Ui V j q k where i , j and
k are the numbers of U’s, V ’s, and q ’s in T .

The type of T is the word obtained by reading the
letters in the top row of T and replacing each U by
• and V by ◦, see Figure 3.

The following result [CW07b, CW07a, CW11] gives
a combinatorial formula for the steady state
probabilities of the ASEP. (Note that [CW07b, CW07a]
used permutation tableaux, which are in bijection with
staircase tableaux, and are closely connected to the
positive Grassmannian.) The q = 0 case was previously
studied in [DS05].

Theorem 17. Consider the ASEP with open boundaries
on a lattice of n sites. Let g = (g1, . . . , gn) ∈ {•,◦}n be
a state. Then the unnormalized steady state probability
Ψ(g) is equal to ∑

T wt(T ), where the sum is over the
UV -staircase tableaux of type g.

Equivalently, if we let Tn be the set of UV -staircase
tableaux of size n, and Zn :=

∑
T ∈Tn wt(T ) be the

weight generating function for these tableaux, then the
steady state probability c(g) is

∑
T wt(T )
Zn

, where the
sum is over the UV -staircase tableaux of type g.

In the case n = 2, there are six tableaux of size 2,
shown in Figure 4 and arranged by type. Computing
the weights of the tableaux of the various types
reproduces the results from Example 1.

• •
U U

• ◦
U
U
V

• ◦
U
V
V

• ◦
U
q
V

◦ •
V U

◦ ◦
V V

Figure 4. The six UV -staircase tableau T of size 2.

How can we prove such a formula? One option is
to realize the ASEP as a lumping (or projection) of a
Markov chain on tableaux [CW07a]. (See also [DS05]
for the case q = 0.) Recall that we have a surjection
f : Tn → Bn , which maps an UV-staircase tableau
to its type. We’d like to construct a Markov chain on
tableaux whose projection via f recovers the ASEP.
If we can do so, and moreover show that the steady
state probability c(T ) is proportional to wt(T ), then
we will have proved Theorem 17.

Markov chain lumpings [KS60*, Section 6]

Let {Xt } be a Markov chain on state spaceΩX
with transition matrix P , and let f : ΩX →
ΩY be a surjective map. Suppose there is an
|ΩY | × |ΩY | matrix Q such that for all y0,y1 ∈
ΩY , if f (x0) = y0, then∑

x :f (x)=y1

P (x0,x) = Q (y0,y1). (1)

Then { f (Xt )} is a Markov chain on ΩY with
transition matrix Q . We say that { f (Xt )} is a
(strong) lumping of {Xt } and {Xt } is a (strong)
lift of { f (Xt )}.

Suppose c is a stationary distribution for
{Xt }, and let cf be the measure on ΩY
de�ned by cf (y) =

∑
x :f (x)=y c(x). Then cf

is a stationary distribution for { f (Xt )}.

See [KS60*, Pan19*] for more details on lumping.

The ASEP can be lifted to a Markov chain on
UV -staircase tableaux [CW07a], see Figure 5. In each
diagram, the grey boxes represent boxes that must
be empty. Note that the remaining empty boxes on
the left and right side of a “↦→” are in bijection with
each other; they must be �lled the same way. The
lifted chain has the nice property that the left hand
side of (1) always has at most one nonzero term.

◦ • • • ◦y

V U U U V

· · ·

U↦→

• • • • ◦
U U U U

V
V

· · ·

· · · • ◦ ◦ ◦ •y
U V V V U

V
↦→

· · · • ◦ ◦ ◦ ◦
U
U
V V V V

· · · x◦ • · · ·
V U

q↦→

· · · • ◦ · · ·
U
q
V

Figure 5a. “Particle enters from the left; particle exits to
the right; particle hops left.”
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• ◦ y• ◦ · · ·
U V U

U
V

1↦→

• ◦ ◦ • · · ·
U
U
V V U

· · · y• ◦ • ◦
U
V
V U V

1↦→

· · · ◦ • • ◦
V U U

V
V

· · · y• ◦ · · ·
U
q
V

1↦→

· · · ◦ • · · ·
V U

Figure 5b. “Particle hops right” (three cases).

If we identify U’s and V ’s with particles and holes,
then the chain on tableaux reveals a circulation of
particles and holes in the second row of the tableaux;
this is similar to a phenomenon observed in [DS05].

Another way to prove Theorem 17 is to use the Matrix
Ansatz of Derrida–Evans–Hakim–Pasquier [DEHP93].1

The Matrix Ansatz

Theorem 18 (Derrida-Evans-Hakim-Pasquier).
Consider the ASEP with open boundaries on a
lattice of n sites. Suppose that D and E are
matrices, |V 〉 is a column vector, 〈W | is a row
vector, and c is a constant, such that:

DE − qED = c (D + E) (2)
VD |V 〉 = c |V 〉 (3)
U〈W |E = c 〈W | (4)

If we identify g = (g1, . . . , gn) ∈ {0,1}n with
a state (by mapping 1 and 0 to • and ◦,
respectively), then the steady state probability
c(g) is equal to

c(g) =
〈W | (∏n

i=1 (giD + (1 − gi )E)) |V 〉
〈W | (D + E)n |V 〉 .

For example, the steady state probability of state
◦ • ◦ • • ◦ • is 〈W |EDEDDED |V 〉〈W | (D+E)7 |V 〉 .

We note that Theorem 18 does not imply that a
solution D ,E , |V 〉, 〈W | exists nor that it is unique.
Indeed there are multiple solutions, which in general
involve in�nite-dimensional matrices.

To prove Theorem 17 using the Matrix Ansatz, we let
D1 = (di j ) be the (in�nite) upper-triangular matrix
with rows and columns indexed by ℤ+, de�ned by
di ,i+1 = U and di j = 0 for j ≠ i + 1. That is, D1 is

©«

0 U 0 0 . . .

0 0 U 0 . . .

0 0 0 U . . .

0 0 0 0 . . .
...

...
...

...

ª®®®®®®¬
.

Let E1 = (ei j ) be the (in�nite) lower-triangular matrix
de�ned by ei j = 0 for j > i and

ei j = V i− j+1 (q j−1
(
i − 1
j − 1

)
+ U

j−2∑
r=0

(
i − j + r

r

)
q r )

for j ≤ i . That is, E1 is the matrix

©«

V 0 0 . . .

V 2 V (U + q ) 0 . . .

V 3 V 2 (U + 2q ) V (U + Uq + q 2) . . .

V 4 V 3 (U + 3q ) V 2 (U + 2Uq + 3q 2) . . .
...

...
...

ª®®®®®®¬
.

We also de�ne the (in�nite) row and column vectors
〈W1 | = (1,0,0, . . . ) and |V1〉 = (1,1,1, . . . )t .
Then one can check that D1,E1, 〈W1 |, |V1〉 satisfy
(2), (3), and (4), with c = UV . One can also
show D1 and E1 are transfer matrices whose
products enumerate UV-staircase tableaux. For
example, 〈W1 |E1D1E1D1D1E1D1 |V1〉 enumerates
the staircase tableaux of type ◦ • ◦ • • ◦ •. Now
Theorem 18 implies Theorem 17.

The �ve-parameter open boundary ASEP

More generally, we would like to understand a
generalized ASEP in which particles can both enter
and exit the lattice at the left (at rates U, W), and
exit and enter the lattice at the right (at rates V ,
X). There is a version of the Matrix Ansatz for this
setting [DEHP93], as well as suitable tableaux �lled
with U, V ,W and X’s [CW11].

1[DEHP93] stated this result with c = 1.
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U

W

y

y x
q
y
1
y

y

V

X

Figure 6. The (�ve-parameter) open boundary ASEP.

A staircase tableau T of size n is a Young
diagram of shape (n,n − 1, . . . ,2,1) such that
each box is either empty or contains an U, V ,
W, or X such that:

(1) no box in the top row is empty

(2) each box southeast of a V or X and in the
same diagonal as that V or X is empty.

(3) each box southwest of an U or W and in
the same diagonal as that U or W is empty.

◦ • ◦ • • ◦ •
W U V

W

X

X

U V

U

X W U

q
q

q

V

W

X q
q
q

X q

U
q
V

U

X

Figure 7. At left: a staircase tableau T of type
(◦ • ◦ • • ◦ •). At right: T with a q in the appropriate
boxes. We have wt(T ) = U3V2W2X3q 8.

See Figure 7 for an example. There are exactly 4nn!
staircase tableaux of size n.

De�nition 3. We call an empty box of a staircase
tableau T distinguished if either:
• its nearest neighbor on the diagonal to the
northwest is a X, or
• its nearest neighbor on the diagonal to the
northwest is an U or W, and its nearest neighbor on
the diagonal to the northeast is a V or W.

After placing a q in each distinguished box, we de�ne
the weight wt(T ) ofT to be the product of all letters
in the boxes of T .

The type of T is the word obtained by reading the
letters in the top row of T and replacing each U or
X by •, and each V or W by ◦, see Figure 7.

The following result from [CW11] subsumes
Theorem 17. It can be proved using a suitable
generalization of the Matrix Ansatz.

Theorem 19. Consider the ASEP with open boundaries
on a lattice of n sites as in Figure 6. Let g ∈ {•,◦}n be
a state. Then the unnormalized steady state probability
Ψ(g) is equal to ∑

T wt(T ), where the sum is over the
staircase tableaux of type g.

Remarkably, there is another solution to the Matrix
Ansatz which involves orthogonal polynomials. More
speci�cally, one can �nd a solution where D and
E are tridiagonal matrices, such that the rows of
D + E encode the three-term recurrence relation
characterizing the Askey-Wilson polynomials [USW04];
these are a family of polynomials pn (x ; a,b ,c ,d |q )
at the top of the hierarchy of classical one-variable
orthogonal polynomials (including the others as
special or limiting cases) [AW85*].

The connection of Askey-Wilson polynomials with the
ASEP [USW04] leads to applications on both sides.
On the one hand, it facilitates the computation of
physical quantities in the ASEP such as the phase
diagram [USW04]; it also leads to a relation between
the ASEP and the Askey-Wilson stochastic process
[BWo17*]. On the other hand, this connection has
applications to the combinatorics of Askey-Wilson
moments. Since the 1980’s there has been a great
deal of work on the combinatorics of orthogonal
polynomials (e.g. Hermite, Charlier, Laguerre) [Vie85*,
ISV87*, CKS16*]; the connection of staircase
tableaux to ASEP, and of ASEP to Askey-Wilson
polynomials, led to the �rst combinatorial formula
for Askey-Wilson moments [CW11], [CSSW*].

Even more generally, one can an ASEP with open
boundaries with di�erent species of particles.
This version is closely connected [Can17*, CW18*,
CGdGW16*] to Koornwinder polynomials [Koo92*], a
family of multivariate orthogonal polynomials which
generalize Askey-Wilson polynomials.

The (multispecies) ASEP on a ring

It is also natural to consider the ASEP on a lattice
of sites arranged in a ring, of which some sites
are occupied by a particle. Each particle in the
system can jump to the next site either clockwise
or counterclockwise, provided that this site is empty.
In this model, the resulting stationary distribution
is always the uniform distribution. This motivates
considering a multispecies generalization of the ASEP,
in which particles come with di�erent weights, which
in turn in�uence the hopping rates.
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The multispecies ASEP, multiline queues, and
Macdonald polynomials
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Figure 8. The mASEP on a ring with _ = (6,5,4,3,2,1),
and a multiline queue of type (1,4,6,2,3,5).

In the multispecies ASEP (mASEP) on a ring, two
neighboring particles exchange places at rates 1
or t , depending on whether the heavier particle is
clockwise or counterclockwise from the lighter one.

The multispecies ASEP on a ring

Let t be a constant such that 0 ≤ t ≤ 1, and
let _ = _1 ≥ _2 ≥ · · · ≥ _n ≥ 0 be a partition.
We think of the parts of _ as representing
various types of particles of di�erent weights.
Let Bn (_ ) be the set of all words of length
n obtained by permuting the parts of _ . The
multispecies ASEP on a ring is the Markov chain
on Bn (_ ) with transition probabilities:

• If ` = (`1, . . . , `n) and a are in Bn (_ ), and
a is obtained from ` by swapping `i and
`i+1 for some i (indices considered modulo
n), then Pr(` → a) = t

n if `i > `i+1 and
Pr(`→ a) = 1

n if `i < `i+1.

• Otherwise Pr(` → a) = 0 for a ≠ ` and
Pr(`→ `) = 1 −∑

a≠` Pr(`→ a).

As before, one would like to �nd an expression for
each steady state probability as a manifestly positive
sum over some combinatorial objects. One may give
such a formula in terms of Ferrari-Martin’s multiline
queues shown in Figure 8, see [Mar20, CMW22].

One fascinating aspect of the multispecies ASEP
on a ring is its close relation [CdGW15] to
Macdonald polynomials P_ (x1, . . . ,xn ; q ,t ) [Mac95],
a remarkable family of polynomials that generalize
Schur polynomials, Hall-Littlewood polynomials, and
Jack polynomials. The next result follows from
[CdGW15] and [CMW22].

Theorem 20. Let ` ∈ Bn (_ ) be a state of the mASEP
on a ring. Then the steady state probability c(`) is

c(`) = Ψ(`)
Z_

,

where Ψ(`) is obtained from a permuted basement
Macdonald polynomial and Z_ is obtained from the
Macdonald polynomial P_ by specializing q = 1 and
x1 = x2 = · · · = xn = 1.

The following table shows the probabilities of the
mASEP when _ = (4,3,2,1). Note that because of the
circular symmetry in the mASEP, e.g. c(1,2,3,4) =
c(2,3,4,1) = c(3,4,1,2) = c(4,1,2,3), it su�ces to
list the probabilities for the states w with w1 = 1.

State w Unnormalized probability Ψ(w)
1234 9t3 + 7t2 + 7t + 1
1243 3(t3 + 3t2 + 3t + 1)
1324 3t3 + 11t2 + 5t + 5
1342 3(t3 + 3t2 + 3t + 1)
1423 5t3 + 5t2 + 11t + 3
1432 t3 + 7t2 + 7t + 9

In light of Theorem 20 and the connection to multiline
queues, it is natural to ask if one can give a formula
for Macdonald polynomials in terms of multiline
queues. This is indeed possible, see [CMW22].

We remark that there is a family of Macdonald
polynomials associated to any a�ne root system;
the “ordinary” Macdonald polynomials discussed in
this section are those of type Ã. It is interesting
that they are related to particles hopping on a
ring (which resembles a Dynkin diagram of type
Ã). Meanwhile, the Koornwinder polynomials from
the previous section are the Macdonald polynomials
attached to the non-reduced a�ne root system of
type C̃ ∨n . It is interesting that they are related to
particles hopping on a line with open boundaries
(which resembles a Dynkin diagram of type C̃ ∨n ).

We note that there are other connections between
probability and Macdonald polynomials, including
Macdonald processes [BC14*], and a Markov chain
on partitions whose eigenfunctions are coe�cients
of Macdonald polynomials [DR12*]. There is also
a variation of the exclusion process called the
multispecies zero range process, whose stationary
distribution is related to modi�ed Macdonald
polynomials [AMM20*].
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The inhomogeneous TASEP, multiline queues,
and Schubert polynomials

Another multispecies generalization of the exclusion
process on a ring is the inhomogeneous totally
asymmetric exclusion process (TASEP). In this model,
two adjacent particles with weights i and j with
i < j can swap places only if the heavier one
is clockwise of the lighter one, and in this case,
they exchange places at rate xi − y j , see Figure 9.

x1 − y4

x3 − y5

x2 − y3

x4 − y641

5

3 2

6

Figure 9. The inhomogeneous multispecies TASEP on a
ring, with _ = (6,5,4,3,2,1).

Inhomogeneous TASEP on a ring

Let x1, . . . ,xn and y1, . . . ,yn be constants
such that 0 < xi − y j ≤ 1 for all i , j , and let
_ = _1 ≥ _2 ≥ · · · ≥ _n ≥ 0 be a partition.
Let Bn (_ ) be the set of all words of length
n obtained by permuting the parts of _ . The
inhomogeneous TASEP on a ring is the Markov
chain on Bn (_ ) with transition probabilities:

• If ` = (`1, . . . , `n) and a are in Bn (_ ), and
a is obtained from ` by swapping `i and
`i+1 for some i (indices considered mod n),
then Pr(`→ a) = x`i −y`i+1

n if `i < `i+1.

• Otherwise Pr(` → a) = 0 for a ≠ ` and
Pr(`→ `) = 1 −∑

a≠` Pr(`→ a).

When yi = 0 for all i , there is a formula for the
stationary distribution of the inhomogeneous TASEP
in terms of multiline queues; this can be proved using
a version of the Matrix Ansatz [AM13].

Recall that the mASEP on a ring is closely connected
to Macdonald polynomials. Curiously, when yi = 0
the inhomogeneous TASEP on a ring is related to
Schubert polynomials, a family of polynomials which
give polynomial representatives for the Schubert

classes in the cohomology ring of the �ag variety.
For example, many steady state probabilities are
proportional to products of Schubert polynomials
[Can16, KW21], and all of them are conjecturally
positive sums of Schubert polynomials [LW12*].

Given w = (w1, . . . ,wn) a permutation in the
symmetric group Sn and p = (p1, . . . ,pm) ∈ Sm
with m < n, we say that w contains p if w has
a subsequence of length m whose letters are in
the same relative order as those of p . For example,
the permutation (3,2,6,5,1,4) contains the pattern
(2,4,1,3) because its letters 3,6,1,4 have the same
relative order as those of (2,4,1,3). If w does not
contain p we say that w avoids p . We say that
w ∈ Sn is evil-avoiding if w avoids the patterns
(2,4,1,3), (4,1,3,2), (4,2,1,3) and (3,2,1,4).2

We have the following result, see [KW21] for details.

Theorem 21. Let _ = (n,n − 1, . . . ,1) so that the
inhomogeneous TASEP can be viewed as a Markov
chain on the n! permutations of the set {1,2, . . . ,n}.
Let w ∈ Sn be a permutation with w1 = 1 which is
evil-avoiding, and let k be the number of descents of
w−1. Then the steady state probability c(w) equals

c(w) = Ψ(w)
Zn

,

where Ψ(w) is a monomial in x1, . . . ,xn−1 times
a product of k Schubert polynomials, and Zn =∏n
i=1 hn−i (x1,x2, . . . ,xi−1,xi ,xi ) with hi the complete

homogeneous symmetric polynomial.

The following table shows the probabilities of the
inhomogeneous TASEP when _ = (4,3,2,1).

State w Unnormalized probability Ψ(w)
1234 x31x2
1243 x21 (x1x2 + x1x3 + x2x3) = x

2
1 Sym1342

1324 x1 (x21x2 + x1x
2
2 + x

2
1x3 + x1x2x3 + x

2
2x3) = x1 Sym1432

1342 x1x2 (x21 + x1x2 + x
2
2 ) = x1x2 Sym1423

1423 x21x2 (x1 + x2 + x3) = x
2
1x2 Sym1243

1432 (x21 + x1x2 + x
2
2 ) (x1x2 + x1x3 + x2x3) = Sym1423 Sym1342

For general yi , there is a version of Theorem 21
involving double Schubert polynomials [KW21].

Very often, beautiful combinatorial properties go
hand-in-hand with integrability of a model. While
this topic goes beyond the scope of this article, the
reader can learn about integrability and the exclusion
process from [Can16], [CRV14*], or more generally
about integrable probability from [BG16*].

2We call these permutations evil-avoiding because if one replaces i by 1, e by 2, l by 3, and v by 4, then evil and its anagrams vile, veil
and leiv become the four patterns 2413,4132,4213 and 3214. (Leiv is a name of Norwegian origin meaning “heir.”)
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Positivity in Markov chains

The reader may at this point wonder how general
is the phenomenon of positivity in Markov chains?
That is, how often can one express the steady
state probabilities of a Markov chain in terms of
polynomials with all coe�cients positive (ideally as a
sum over combinatorial objects)?

In some sense, the answer to this question is all the
time: the Markov Chain Tree Theorem gives a formula
for the stationary distribution of a �nite-state
irreducible Markov chain as a positive sum indexed
by rooted trees of the state diagram. However, the
number of terms of this formula grows fast very
quickly! (By Cayley’s formula, the complete graph on
n vertices has nn−2 spanning trees.) Moreover, for
many Markov chains, there is a common factor which
can be removed from the above formula for the
stationary distribution, resulting in a more compact
formula. Sometimes the more compact formula
involves polynomials with negative coe�cients.

LetG be the state diagram of a �nite-state irreducible
Markov chain whose set of states isV . That is,G is a
weighted directed graph with verticesV , with an edge
e from i and j weighted Pr(e ) := Pr(i , j ) whenever
the probability Pr(i , j ) of going from state i to j is
positive. We call a connected subgraph T a spanning
tree rooted at r if T includes every vertex of V , T
has no cycle, and all edges of T point towards the
root r . (Irreducibility of the Markov chain implies that
for each vertex r , there is a spanning tree rooted at
r .) Given a spanning tree T , we de�ne its weight as
wt(T ) := ∏

e ∈T Pr(e ).

Theorem 22 (Markov Chain Tree Theorem). The
stationary distribution of a �nite-state irreducible
Markov chain is proportional to the measure that
assigns the state g the “unnormalized probability”

Ψ(g) :=
∑

root(T )=g
wt(T ).

That is, the steady state probability c(g) equals c(g) =
Ψ(g)
Z , where Z =

∑
g Ψ(g).

Theorem 22 �rst appeared in [Hil66*] and was proved
for general Markov chains in [LR83]. It has many
proofs, one of which involves lifting the Markov chain
to a chain on the trees themselves; the result then
follows from Kirchho�’s Matrix Tree Theorem. See
[AT90*, LP16*] and [PT18], plus references therein.

Example 2. Consider the Markov chain with �ve
states 1, . . . ,5, whose transition matrix is as follows:

2−q
3 0 1

3
q
3 0

0 2
3 0 0 1

3
q
3

1
3

1−q
3 0 1

3
1
3

q
3 0 2−2q

3
q
3

0 0 q
3

1
3

2−q
3


(5)

The state diagram of the Markov chain is shown
in Figure 10. Note that we have omitted the factor
of 1

3 from each transition probability (this does not
a�ect the eigenvector of the transition matrix). For
simplicity, we also omitted the loops at each state.

1

4

5

2

3

1

q

1

1
q

1
q1 q

1

q

1

4

5

2

3

1

q

q

q

Figure 10. The state diagram from Example 2, plus a
spanning tree rooted at 1 with weight q 3.

If one applies Theorem 22, one �nds e.g. that there
are six spanning trees rooted at state 1, with weights
q 3,q 3,q 2,q ,1, and 1. Adding up these contributions
gives Ψ(1) = 2q 3+q 2+q +2. Computing the spanning
trees rooted at the other states gives rise to the
following unnormalized probabilities Ψ(g) for the
stationary distribution.

State g Unnormalized probability Ψ(g)
1 2q 3 + q 2 + q + 2
2 q 4 + 3q 3 + 4q 2 + 3q + 1
3 2q 3 + 2q 2 + q + 1
4 q 3 + q 2 + 2q + 2
5 2q 3 + 4q 2 + 4q + 2

Note that all of the above unnormalized probabilities
share a common factor of (q + 1). Dividing by this
common factor gives the following (more compact)
unnormalized probabilities Ψ(g).

State g Unnormalized probability Ψ(g)
1 2q 2 − q + 2
2 q 3 + 2q 2 + 2q + 1
3 2q 2 + 1
4 q 2 + 2
5 2q 2 + 2q + 2
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We see that when we write the stationary distribution
in “lowest terms,” we obtain a vector of polynomials
which do not have only nonnegative coe�cients.

This example motivates the following de�nitions.

De�nition 4. Consider an unnormalized measure
(Ψ1, . . . ,Ψn) on the set {1,2, . . . ,n} in which
each component Ψi (q1, . . . ,qN ) is a polynomial in
ℤ[q1, . . . ,qN ]. We say that (Ψ1, . . . ,Ψn) is manifestly
positive if the coe�cients of Ψi are positive for all
i . We say that (Ψ1, . . . ,Ψn) is compact if there is no
polynomial q(q1, . . . ,qN ) ≠ 1 which divides all the
components Ψi .

Theorem 22 shows that every �nite-state Markov
chain has a manifestly positive formula for the
stationary distribution. Meanwhile, Example 2 shows
that in general this formula is not compact, and that
there are Markov chains whose compact formula for
the stationary distribution is not manifestly positive.

In light of Theorem 22, it is interesting to revisit e.g.
the stationary distribution of the open boundary
ASEP with parameters U, V , and q . One can use
Theorem 17 to express the components Ψtab (g) of
the stationary measure as a sum over the tableaux of
type g. On the other hand, one can use Theorem 22
to express the componentsΨtree(g) of the stationary
measure as a sum over spanning trees rooted at
g of the state diagram. Both Ψtab (g) and Ψtree(g)
are polynomials in U, V ,q with positive coe�cients;
however, the former is compact, and has many
fewer terms than the latter. Because the stationary
measure is unique (up to an overall scalar), for each n
there is a polynomial Qn (U, V ,q ) such that Ψtree (g)

Ψtab (g) =
Qn (U, V ,q ) for all g ∈ {0,1}n . The number of terms
in Qn appears in the table below.

n Qn (1,1,1)
2 1
3 4
4 840
5 2285015040
6 11335132600511975880768000

It would be interesting to reprove e.g. Theorem 17
using the Markov Chain Tree Theorem.

We note that the analysis of the ASEP and its
variants would be easier if these Markov chains were
reversible; in general they are not (except for special
cases of the parameters). Nevertheless there has

been progress on the mixing time of the ASEP, see
[GNS21*] and references therein.

Besides the ASEP, there are other interesting
Markov chains arising in statistical mechanics
whose stationary distributions admit manifestly
positive formulas as sums over combinatorial objects
(which are often compact). These include the
Razumov-Stroganov correspondence [DF04*, dGR04*,
CS14*], the Tsetlin library [Tse63*, Hen72*], and many
other models of interacting particles [AM10*, AN21*],
see also [Ayy22*].
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Notes of a Numerical Analyst

A picture worth 2000 words

NICK TREFETHEN FRS

When I saw this image at Dave Hewett’s home page
at UCL, it brought an instant smile to my face. It’s
just one picture, but it illustrates two famous and
important phenomena.

Figure 1. Electromagnetic waves around cages of
slightly di�erent radii.

Clearly it’s an image of 2D wave scattering (computed
by Hewett’s coauthor Ian Hewitt). The PDE is the
Helmholtz equation

Δu + k2u = 0 (1)

for a wave number k , and the solution u (z )
represents the spatial dependence of a wave at a
�xed time-frequency. The context is electromagnetic
radiation, with u representing the out-of-plane
component of the electric �eld. Following a standard
mathematical simpli�cation, we take advantage of
linearity to let u be complex, and the plot shows its
oscillatory real part. The wave is driven by a point
source on the left, a Hankel function H0 (k |z − z0 |),
and the Sommerfeld radiation condition is imposed
at in�nity.

The action is in the two cages on the right, which have
radii that di�er by 10% and very di�erent behaviours.

Each black dot is a disk of �nite radius, and the
boundary condition is u = 0 on all the disks. We
can think of these as cross-sections of parallel wires
in the third dimension, which are all connected and
thus at the same �xed potential.

The story in the upper cage is Faraday shielding.
Obviously the wave has not penetrated much inside,
and this e�ect has been exploited since Faraday’s
discovery to shield people and instruments from
electrostatic and electromagnetic �elds. We all have a
Faraday cage in our kitchens, namely the microwave
oven, whose front door has a metal screen with holes
big enough to let light out but small enough to keep
microwaves in. As the holes get smaller, or the wires
get closer together in our 2D model, the shielding
only improves algebraically, not exponentially as has
often been supposed [2].

The story in the lower cage is resonance, and we
can think of this as a model of an AM radio. These
thick wires exclude most wave energy, but if the
radius is tuned just right, so that k corresponds
to an eigenmode of a disk of this radius, then the
response can be very great. As the wires get thicker
and closer together, the tuning gets ever sharper and
the potential ampli�cation ever greater. In the limit
where the wires touch, we have perfect shielding and
perfect tuning—with in�nite ampli�cation, if only it
could be excited.

FURTHER READING

[1] D. P. Hewett and I. J. Hewitt, Homogenized
boundary conditions and resonance e�ects in
Faraday cages, Proc. Roy. Soc. London A, 472 (2016):
20160062.
[2] L. N. Trefethen, Surprises of the Faraday cage,
SIAM News 49 (2016).

Nick Trefethen
Trefethen is Professor of Numerical
Analysis and head of the Numerical
Analysis Group at the University of
Oxford.
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Mathematics News Flash

Jonathan Fraser reports on some recent breakthroughs in mathematics.

Attaining the exponent 5/4 for the sum-product
problem in �nite �elds

AUTHORS: Ali Mohammadi and Sophie Stevens
ACCESS: https://arxiv.org/abs/2103.08252

For a �nite set A ⊆ ℕ to have a small sumset, that is,
for the cardinality of A + A to be ‘not much bigger’
than the cardinality of A itself, A should possess a
lot of arithmetic structure. However, if A possesses
a lot of arithmetic structure, then the product set
A · A should have cardinality much larger than that
of A. Quantifying such heuristics is often known
as a ‘sum-product problem’. This paper, appearing
on arXiv last year, makes novel contributions to
sum-product problems in �nite �elds. It is shown
that if A ⊆ Fp has cardinality |A | � p1/2, then

max{|A + A |, |A · A |} & |A |5/4.

This is stated using Vinogradov notation to suppress
constants and logarithmic terms. The exponent
5/4 improves upon 11/9 obtained previously by
Rudnev-Shakan-Shkredov. It is conjectured that the
exponent can be made arbitrarily close to 2.

Squaring the circle

AUTHORS: András Máthé, Jonathan A. Noel and Oleg
Pikhurko
ACCESS: https://arxiv.org/abs/2202.01412

Tarski posed the following question in 1925: is it
possible to partition a circle and reassemble the
pieces (via isometry) to form a partition of a square
of the same area. This is not to be confused with
the Banach-Tarski paradox which seeks to increase
volume by rearranging a sphere in 3-dimensions
into two spheres identical to the original. Such
Banach-Tarski rearrangements are not possible in
the plane since the group E (2) is amenable, but that
is another story.

Laczkovich answered Tarski’s question in the
a�rmative in 1990 via a complicated argument
relying on the axiom of choice. As a result, it was
not possible to say anything about the regularity of

the pieces. Subsequently, several papers have shown
that one can answer Tarski’s question using pieces
with increasing regularity. For example, the pieces
can be Borel by a result of Marks and Unger. Note
that the Banach-Tarski paradox necessarily involves
non-Borel pieces!

This paper, appearing on arXiv in February 2022,
proved that the pieces can simultaneously have
positive Lebesgue measure, be Jordan measurable,
and be Boolean combinations of Ff sets.

Integral Factorial Ratios

AUTHORS: Kannan Soundararajan
ACCESS: https://arxiv.org/abs/1901.05133

Can we classify tuples of natural numbers
(a1, . . . ,aK ) and (b1, . . . ,bL) with

∑
i ai =

∑
i bi such

that
(a1n)!(a2n)! · · · (aKn)!
(b1n)!(b2n)! · · · (bLn)!

is an integer for all n ∈ ℕ? This problem sounds
�endishly di�cult – and it is – but there is a precise
classi�cation due to Bober in the case L − K =

1. Reducing to primitive examples, there are three
(simple to express) in�nite families together with
52 sporadic examples! This problem goes back to
Chebyshev’s work on counting primes up to a given
N where he made use of the fact that the pair (30,1)
and (15,10,6) are an (imprimitive) example. Bober’s
argument builds on work of Rodriguez-Villegas, which
established that a given pair of tuples satisfying the
above is equivalent to an associated hypergeometric
function being algebraic.

This paper, published in Duke Mathematical Journal in
2022, provides a new and simpler proof of Bober’s
result. The method also sheds light on related
problems, in particular, the case when L − K > 1.

Jonathan Fraser is
a Professor at the
University of St Andrews
and an Editor of this
Newsletter. He likes
fractals and is pictured
here with Reuben.

https://arxiv.org/abs/2103.08252
https://arxiv.org/abs/2202.01412
https://arxiv.org/abs/1901.05133
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Bounded gaps between primes

by Kevin Broughan, Cambridge University Press, 2021, £40,

ISBN 978-1108799201

Review by Sam Chow

Prime numbers, the
building blocks of the
integers. We know so
much but yet so little
about them. By the
prime number theorem,
the average gap between
consecutive primes up
to x is roughly log x . This
motivates the Cramér
random model, that a
positive integer n has an

independent probability 1/(log n) of being prime.
Based on this, one might guess that

#{p1,p2 ≤ x primes : p1 − p2 = 2} ≈ x
(log x)2

.

Hardy and Littlewood re�ned this heuristic by
considering divisibility by small primes, and empirical
data support their conjecture that

#{p1,p2 ≤ x primes : p1 − p2 = 2} ∼ 2C2
x

(log x)2
,

where

C2 =
∏

p≠2 prime

(
1 − 1
(p − 1)2

)
≈ 0.66

is the twin prime constant. Even before that, de
Polignac had predicted that there are in�nitely
many twin primes, that is, pairs of primes di�ering
by two—the twin prime conjecture. The twin
prime conjecture is one of Landau’s four problems
presented at the 1912 International Congress of
Mathematicians, and is one of the most coveted open
problems in number theory.

I �rst encountered James Maynard at a graduate
student conference in Bristol, in May 2013. In his
presentation, he described his attempts to prove
bounded gaps between primes, i.e., that

lim inf
n→∞

(pn+1 − pn) < ∞,

where p1 < p2 < . . . are the primes. As we were
aware, the media had reported just days earlier that

unheralded mathematician Yitang Zhang had proved
this [4], speci�cally that

lim inf
n→∞

(pn+1 − pn) ≤ 70 000 000.

Maynard was not discouraged, however, and later
that year released proofs [2] that

lim inf
n→∞

(pn+1 − pn) ≤ 600

and

lim inf
n→∞

(pn+m − pn) < ∞ (m ∈ ℕ).

The mathematical community was naturally curious
as to the extent to which these bounds could
be sharpened using essentially the same methods.
The Polymath8 project, led by Terence Tao, was
set up for this purpose, with a second goal of
understanding and clarifying Zhang’s argument.
Polymath8a reduced Zhang’s bound to 4 680.
Polymath8b improved Maynard’s bound from 600 to
246, where it remains to this date [3].

Kevin Broughan is an Emeritus Professor at the
University of Waikito, who has researched in analytic
number theory and is the author of the two-volume
work Equivalents of the Riemann Hypothesis. In the
extensive book under review, he chronicles the
full story behind these developments. After an
introduction and some background on sieve theory,
the book presents early work, the groundbreaking
method of Goldston, Pintz and Yildirim [1] upon
which subsequent papers build, the aforementioned
breakthroughs of Zhang and Maynard, and the
meticulous re�nements of Polymath8. Computational
inputs are also discussed at length, as are related
topics.

As well as supplying the mathematical details,
Broughan embraces the human aspects of the
saga. It is, after all, a wonderful tale of how two
lesser-known mathematicians worked extremely hard
to solve an intriguing, long-standing open problem
that so many leading experts could not. The author
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draws from many sources, and writes with unbridled
passion. He has an unusual but nonetheless e�ective
way of writing proofs, breaking the arguments up
into numbered steps, each of which is fairly short.
I must caution that the book itself is very long, so
the reader would not necessarily want to read every
chapter or every proof.

The material is presented at a serious level and is
not intended for the general public. Bounded Gaps
Between Primes is suitable for graduate students in
analytic number theory, but others may also �nd it
interesting and informative.

FURTHER READING

[1] D. A. Goldston, J. Pintz and C. Y. Yildirim, Primes
in tuples I, Ann. of Math. (2) 170 (2009), 819–862.

[2] J. Maynard, Small gaps between primes, Ann.
of Math. (2) 181 (2015), 383–413.
[3] D. J. H. Polymath, The “Bounded Gaps between
Primes" Polymath Project: A Retrospective Analysis,
EMS Newsletter, December 2014, 13–23.
[4] Y. Zhang, Bounded gaps between primes, Ann.
of Math. (2) 179 (2014), 1121–1174.

Sam Chow

Sam Chow is a lecturer
of mathematics at the
University of Warwick.
He is a number theorist
working on diophantine
approximation and
diophantine equations.
He enjoys playing chess
and other games.

The Book of Wonders:
The Many Lives of Euclid’s Elements

by Benjamin Wardhaugh, William Collins, 2020, £25, ISBN: 978-0008299903

Review by Vicky Neale

There aren’t many books
in history that merit
a biography, but then
there aren’t many books
in history that have
the longevity, reach
and impact of Euclid’s
Elements. I think that
‘biography’ really is the
best description of
Benjamin Wardhaugh’s
new book. It tells the

story of the Elements through around 2300 years
of history, and back and forth across the world. A
book like this might seem daunting (especially to a
mathematician, rather than historian of mathematics,
like me): it’s hardback, and quite thick, and scholarly.
But in reality it is not daunting at all: it is readable,
digestible, and enjoyable. The chapters are quite
short, and each feels like a self-contained satisfying
read in itself, while part of the sweeping narrative,
and that makes it easy to read in sections.

The book starts by taking us from Euclid himself
through to the 17th century. It turns out that this
is the �rst of four sections, but because I wasn’t
concentrating when I read the contents page, I was
disconcerted to �nd that section two jumps right
back to Plato (before Euclid), before heading forwards
through time again. I’m not sure that I can clearly
articulate the di�erence between these two sections;
I’m sure there is one, but both felt to me like
tracking the book through time. I was less surprised
when section three arrived, and I think this one was
more about the practical uses to which the ideas
of the Elements have been put. The �nal, fourth,
section, addresses the limitations of the Elements,
and the ways in which societies have fallen out of love
with Euclid. My slight confusion about the di�erent
sections didn’t detract from my engagement with the
book, but did leave me wondering whether it might
be helpful to have a timeline (or to have created my
own) showing the sequence of events addressed in
overlapping chronologies.
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I enjoyed the broad sweep through time and between
cultures. But I also, at least as much, enjoyed the
individual chapters, each feeling like a snapshot of
a moment in time and space. There were many
new insights and historical details here for me. I
was intrigued by the characterisation that “Greek
geometry was essentially a performance, consisting
of drawing a diagram and talking about it, to oneself
or to an audience”. The pandemic-imposed need
to move to lecture videos in recent months has
prompted me to reconsider many aspects of my own
teaching practice, including the ‘performance’ angle,
which feels to me di�erent but just as important
at my kitchen table as at a whiteboard in a lecture
theatre. Probably my absolute favourite nugget in
the book was about the �rst attempts to typeset
the Elements for printing, in the late 15th century.
Remember that this was a world of physical blocks
for characters, which had to be arrayed on a frame
before being inked for printing. Geometrical diagrams,
with disproportionately many references to points A,
B , C , D , meant that compositors would literally run
out of certain characters!

Alongside the relatively mainstream narrative about
the Elements, I enjoyed the cameo appearances by
numerous people I’m sorry to say I hadn’t heard of
before, or where I was unaware of their interest in
Euclid. No doubt many readers of the LMS Newsletter
will know of the work of Hroswitha of Gandersheim,
but I didn’t. She was a Benedictine canoness in
Saxony in the late 10th century, very well educated,
and an author of numerous works, including a play
called Wisdom, which included some number theory.
Another example: Anne Lister’s extraordinary life was
recently brought to public attention when her diaries
inspired the BBC television drama series Gentleman
Jack. As Wardhaugh tells us, Lister chose in her
twenties to resume her study of the Elements, and
got further “frankly, than most university graduates”.

Wardhaugh understandably places much emphasis
on tracing the progress of the Elements as it moves
between cultures and indeed between languages,
with each new editor/author/translator giving their
own new take on it. In a chapter named after Xu
Guangqi, he explores the di�culties of translating
words such as ‘de�nition’, ‘proof’ and ‘axiom’ into
Chinese in a way that would capture their signi�cance
in the Greek tradition. I found this thought-provoking:
having been raised in a certain tradition, seeing
another culture’s viewpoint can prompt us to
reassess the meaning of ideas we otherwise take as
self-evident.

This biography explores the impact of Euclid’s great
work on mathematics, of course, but also on other
areas. The chapter on Piero della Francesco describes
the in�uence of the Elements on the style of his
pioneering writing on the theory of perspective. An
earlier chapter on Muhammad Abu al-Wafa al-Buzjani
has a fascinating discussion of the creation of a
certain number of squares from the dissection and
rearrangement of smaller squares — a question
with interesting geometrical signi�cance, but also a
practical one for artisans creating mosaic designs.
A chapter late in the book is named after two
�ctional characters, Maggie and Tom Tulliver, from
George Eliot’s The Mill on the Floss. Marian Evans
(the real name of Eliot) elected to study geometry
in later life, but her creation Tom Tulliver was no
fan of Euclid after his bad experiences at school,
and Wardhaugh uses this to exemplify “the failure
of Euclidean education in the nineteenth century:
or at least of the failure of that education once it
had become detached from humanity, and indeed
from common sense about the needs of di�erent
students and their di�erences from one another”. A
sobering reminder for us all.

I could keep going with tasty morsels from the book,
but frankly Wardhaugh tells the stories better than I
do. So instead, let me consider: who will want to read
this book? I am sure that historians of mathematics
will �nd much of value in this book, helped by the
extensive notes and references at the end. But it
deserves to have a wider readership too, amongst
mathematicians and aspiring mathematicians, who
will enjoy and learn from dipping in or indeed
reading from cover to cover, and getting another
glimpse into the development of our subject, and the
understanding and insight to be gained through the
exchange, re�nement and revision of ideas as they
pass between cultures. A book of wonders indeed.

Vicky Neale

Vicky Neale is the
Whitehead Lecturer
at the Mathematical
Institute and Balliol
College, University of
Oxford. Her job is
to be enthusiastic
about maths with

undergraduates, school students and the wider
public. She enjoys mathematical knitting and crochet,
with the ‘help’ of her two cats.
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Making up Numbers: A History of Invention in
Mathematics

by Ekkehard Kopp, Open Book Publishers, 2020, ISBN 978-1-80064-097-9

Review by Adrian Rice

God created the natural
numbers, all else is
the work of man. —
attributed to Leopold
Kronecker.

Is mathematics invented
or discovered? Do
mathematical concepts
spring into existence
only when �rst imagined
by a human mind or
are they eternal? The

famous quotation above makes Kronecker’s opinion
on the matter crystal clear, encapsulating his
constructivist philosophy that, aside from the
positive integers, the entirety of mathematics is
a human invention. In its strongest form, this
view maintains that nothing in mathematics can
really be said to exist unless a human has seen
it, thought of it, or written it down. This has
always seemed to me to be a little extreme: for
example, even if no one else in the history of
humanity has had any reason to write down the
complex number 57.49544982368932873252537 +
0.00027265238742335340712662i before me, my
claim to have invented it is somewhat dubious. On
the other hand, the case for invention in mathematics
is still strong: for instance, nothing like the concept
of a Galois group can be said to have existed in
any form before the 19th century—it is purely a
creation of the human mind. In fact, as the history
of mathematics reveals, the subject’s development
has been a combination of both invention and
discovery: concepts and techniques are invented to
solve certain problems, the solution of which often
leads to the discovery of new ideas, that themselves
pose new questions, often requiring the creation
of new concepts and techniques, and the process
continues.

Making up Numbers is written from the standpoint of
mathematics as a human invention. More speci�cally,
since the notion of number has been essential

to human civilization for millennia, as well as
possibly the oldest concept in mathematics, this
book presents a broadly chronological treatment
of the history of the use of numbers in pure
mathematics from antiquity to the 20th century.
From Mesopotamia and the ancient Greek world to
more recent developments, the author presents an
engaging account of how the concept of number was
gradually extended to include negatives, irrationals
and complex numbers. The �rst four chapters
concentrate on these extensions and the motivations
behind them, from the Pythagorean obsession with
positive integers to Gauss’s proof of the fundamental
theorem of algebra. We then come to a two-chapter
interlude on issues arising from the concepts of
in�nity and in�nitesimals, obviously concerning the
creation of calculus and analysis. This leads inevitably
to questions concerning continuity, with the �nal
four chapters concerning the rigorisation of the real
number system, the growth of axiomatization in the
19th century, Cantor’s trans�nite numbers, and the
infamous paradoxes of the early 20th century. In this
way, readers are guided through a variety of themes,
from solving the earliest known equations to the role
of axioms in the foundations of mathematics.

It’s a well-known story and one that is told very
well here. Those for whom this book is their �rst
encounter with the history of mathematics will �nd
it a reliable and informative introduction. But the
prospective reader should perhaps also be aware that
this book is fundamentally a history of real numbers.
This is by no means a criticism—and perhaps says
more about the contrasting mathematical tastes
of author and reviewer—but it might be helpful to
brie�y highlight what this book does not contain.
While there is certainly plenty on complex numbers,
the discussion of further extensions in this direction
is halted with just a passing reference to Hamilton’s
creation of quaternions. This is a pity, not only
because the birth of quaternions and subsequent
systems of hypercomplex numbers revolutionized
the whole notion of what a ‘number’ could be, but
also because the introduction of new imaginary
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quantities such that i2 = j 2 = k2 = i j k = −1 is
one of the most remarkable instances of invention
in the history of mathematics. (Even the �rst LMS
President, Augustus De Morgan, was taken aback by
the idea of ‘imagining imaginaries’, as he put it.)

There is a good discussion of primes up to
the fundamental theorem of arithmetic, and an
introduction to algebraic numbers later on; but there
are no allusions to further possibilities, such as
Gaussian primes, or other generalizations of the
idea of a prime number. Staying within the real
domain, mention could have been made of Mersenne
primes, along with their intriguing connection to
perfect numbers (another concept not mentioned).
A reference to Germain primes might also have
given the author a chance to highlight the work
of a female mathematician — di�cult to do in a
work of this kind. Another �gure not mentioned, but
whose results alone would be sure to astonish any
reader, is Ramanujan, who produced some stunning
rational approximations of irrational numbers, and of
whom Littlewood famously remarked ‘every positive
integer was one of his personal friends’. Perhaps also
surprising is that, although the �nal chapter deals
with a host of foundational issues and contributors,
including Cantor, Hilbert, Russell, Brouwer and Gödel,
one contribution is not included, namely that of Alan
Turing, whose monumental LMS paper of 1936, as
well as answering Hilbert’s Entscheidungsproblem via
the introduction of Turing machines, also invented a
new theoretical concept of relevance to a history of
real numbers: the computable number.

None of this should, however, detract from the
book’s signi�cant strengths. While not so much

concerned with algebra and number theory, it is
nevertheless crammed with some very interesting
mathematics, particularly in the realms of analysis
and set theory. It does not profess to be a learned
volume on the history of mathematics, since its
intended audience is A-level and undergraduate
students and their teachers; but it was clearly
written by someone with great knowledge and
appreciation of the discipline. More importantly, the
author clearly conveys a deep love and understanding
of the mathematics he discusses, combining lively
readable prose with a clear presentation of the
material to give just enough technical detail without
overwhelming the relative beginner. The lay reader
will de�nitely come away with an idea of what
it is to do mathematics and above all, with the
knowledge that mathematics is far from being a static
discipline, but an ever-evolving creative process. In
short, the author seeks to convince the reader that
mathematics is fundamentally a human endeavour
— and in that, this book succeeds admirably.

Adrian Rice

Adrian Rice is the
Dorothy and Muscoe
Garnett Professor
of Mathematics at
Randolph-Macon College
in Virginia, USA, where
his research focuses
on 19th- and early

20th-century British mathematics. He is nostalgic
for the days when his photograph made him look
younger than he is.
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Obituaries of Members

Bruce D. Craven: 1931 – 2022
Dr Bruce D. Craven,
who was elected a
member of the London
Mathematical Society on
16 January 1964, died on
26 January 2022, aged
90.

Barney Glover writes:
Bruce Desmond Craven

was born in Melbourne in 1931 and educated at the
University of Melbourne, completing a BSc in 1951,
MSc in 1953 (both with honours) and BA (Honours)
in 1959. He was awarded his DSc degree in 1973 for
published and unpublished works across a variety of
�elds including optimisation, mathematical analysis,
linear algebra and number theory, re�ecting his
broad interest in pure and applied mathematics.

Bruce’s working life began in the UK with General
Electric, working on early analog computers in
1954. He then returned to Australia and worked
for a period at Australian Paper Manufacturers
as a Senior Research Physicist again focusing on
applications of computers and the emerging �eld of
operations research and linear programming. He was
appointed as a Senior Lecturer in the Department
of Mathematics at the University of Melbourne in
1962 eventually retiring as a Reader in 1997 and then
continuing as a Principal Research Fellow.

Bruce was a gifted mathematician with broad and
deep interests in pure and applied mathematics,
publishing extensively across operations research,
mathematical programming, optimisation theory,
generalised and abstract convexity, as well as
nonsmooth and classical mathematical analysis.
Bruce published over 200 research articles and seven
books during a career spanning almost 50 years.
His contributions were characterised by extensive
collaborations with researchers in Europe, Asia and
North America. Bruce enjoyed travel throughout his
career, visiting colleagues and attending conferences.

Bruce’s books included monographs on
mathematical programming, Lebesgue measure and

integration, control theory, functions of several
variables and fractional programming. His �rst
book, Mathematical Programming and Control Theory,
published by Chapman and Hall in the late 1970s,
was a signi�cant contribution to graduate programs
in optimisation theory and applications. It provided
a uni�ed approach to nonlinear optimisation and
control theory using abstract cone-constrained
mathematical programming as the underlying
structure. Bruce developed the general constraint
quali�cation of local solvability and extended the
notion of invariant convexity to establish necessary
and su�cient optimality and duality conditions for
a range of mathematical programming problems
including in multicriteria optimization. This theme
continued through much of his published work until
ill health restricted his collaboration in recent years.

Bruce was awarded the Ren Potts Medal by the
Australian Society of Operations Research in 1997
for his contribution to and excellence in Operations
Research.

Throughout his life Bruce enjoyed a passion for
the Apple Macintosh computer and for many years
provided a regular column, amounting to over 150
articles, to the Apple Users’ Society of Melbourne
(AUSOM).

Bruce was a larger than life man, truly compassionate
and friendly to everyone he met. He enjoyed
travelling, learning languages, playing the church
organ, supporting many charities and living a simple
life immersed in mathematics and computing. He
was frustrated at times by the challenges of what
appeared to be a never ending administrative burden
on academics, something which led him to pen
a satirical poem at the time of his retirement in
1997. He will be dearly missed by all who knew him,
experienced his wonderful lectures and struggled
with his somewhat eccentric humour.

Death Notices
We regret to announce the following death:

• Roger W. Carter, formerly of the University of
Warwick, who was elected a member of the London
Mathematical Society on 18 June 1959, died on 21
February 2022, aged 87.
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Noncommutative Algebra and
its Applications

Location: Online
Date: 9–12 May 2022
Website: icnca.modares.ac.ir

The work of the conference concerns, on one hand,
classical aspects of ring and module theory and, on
the other, some applications of this theory, focusing
on coding theory and cryptography in which rings
and modules play a substantial role. The conference
will present new results and future challenges, in
a series of virtual keynote lectures and virtual
contributed short talks. The invited speakers will
present their recent works and many participants will
contribute to enriching further the themes addressed
by the conference. To register by 7 May, email
moussavi.a@modares.ac.ir.

Colloquia in Combinatorics 2022

Location: Queen Mary and LSE
Date: 11–12 May 2022
Website: tiny.cc/2dayCC

This is the 15th edition of the Colloquia in
Combinatorics. The talks will be of interest to all
those working in combinatorics and related �elds.
Con�rmed speakers are F. Frick (Berlin), A. Heckel
(Uppsala), A. Holroyd (Bristol), M. Paterson (Birkbeck),
J. Saharasbude (Cambridge), L. Sanità (Eindhoven), M.
Bouvel (LORIA), A. Coja-Oghla (Dortmund), M. Kwan
(IST), A. Steger (Zurich) and V. Traub (Zurich). Visit
the website for more details. Research students
are invited to present their research in a poster
session. The meeting is supported by an LMS Scheme
1 Conference grant.

Wales Mathematics Colloquium 2022

Location: Gregynog Hall, Tregynon
Date: 23–25 May 2022
Website: https://gregynogwmc.github.io

The Colloquium is a forum for the promotion and
discussion of current research in Mathematics in
Wales. The invited speakers are Chris Breward
(University of Oxford), Brita Nucinkis (Royal Holloway,
London) and Stefan Weigert (University of York).
Attendance and contributed talks in any area of
mathematics are very welcome. Supported by an
LMS Conference grant.

Inference for Expensive Systems in
Mathematical Biology

Location: Oxford University
Date: 23–24 May 2022
Website: tinyurl.com/nh9n7j5j

The purpose of this conference is to bring together
mathematical biologists and statisticians to share
ideas about best practices for computationally
expensive inference problems encountered in
biological applications. The conference is open to
participants from all career stages. Invited speakers
include Professor Ruth Baker (University of Oxford)
and Professor Heikke Haario (Lappeenranta-Lahti
University of Technology, Finland). The meeting is
supported by an LMS Scheme 1 Conference grant.

Integrability and Nonlinear Waves
at Northumbria

Location: Northumbria University, Newcastle
Date: 27–28 May 2022
Website: tinyurl.com/4ajvr4v6

This workshop aims at exploring the interconnections
between integrable systems and nonlinear waves,
and to foster new links between these two
research communities. Talks will be given by
Costanza Benassi (Northumbria University), Thibault
Congy (Northumbria University), Jenya Ferapontov
(Loughborough University), Claire Gilson (University
of Glasgow) and Noel Smyth (University of Edinburgh).
The workshop is funded by two LMS Scheme 9
awards and supported by Northumbria University.

BMC73

Location: King’s College, London
Date: 6–9 June 2022
Website: bmc2022.co.uk

This year’s British Mathematical Colloquium (BMC73),
which is supported by the LMS, will take place
on 6–9 June 2022, and will be hosted by King’s
College London. The LMS Lecture will take place on
7 June. The colloquium will provide an invaluable
opportunity for mathematicians across the spectrum
of pure and applicable mathematics to meet, hear
about new developments from international and
national experts in both proximate and more distant
areas, and to discuss their work with each other.
Registration deadline: 31 May.

https://icnca.modares.ac.ir
mailto:moussavi.a@modares.ac.ir
https://tinyurl.com/nh9n7j5j
https://tinyurl.com/4ajvr4v6
https://www.bmc2022.co.uk/
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Finite Groups

Location: Cambridge/Hybrid
Date: 10 June 2022
Website: tinyurl.com/2ej55h2e

This meeting will build on the LMS online lecture
on the theory of crowns in �nite groups, delivered
by Gareth Tracey in 2020. It will take place
in hybrid format at the Isaac Newton Institute
during the programme Groups, Representations and
Applications: New Perspectives and is devoted to
some original techniques pertaining to the study of
�nite groups. Speakers: Lucia Morotti, Alice Niemeyer,
Gareth Tracey. The meeting forms part of the
Functor Categories for Groups Joint Research Group
supported by an LMS Scheme 3 Grant.

Oxford’s Sedleian Professors of Natural
Philosophy: The first 400 Years

Location: Weston Library, Oxford
Date: 18 June 2022
Website: tinyurl.com/yckj5fvb

The Sedleian Professorship of Natural Philosophy,
founded in 1619, is one of Oxford’s oldest
Chairs. Although it is now a post devoted to
applied mathematics, in previous centuries it was
held variously by physicians, theologians, and
an astronomer. At this one-day meeting, the
contributors to a forthcoming multidisciplinary
volume on the history of the professorship will
give short talks on the subjects of their chapters.
The meeting is supported by an LMS Scheme 1
Conference grant.

Defects and Symmetry

Location: King’s College London
Date: 23–24 June 2022
Website: tinyurl.com/2p8uhucn

There is a deep connection between the topological
defects that arise in diverse models of mathematical
physics and recent generalisations of symmetry.
In this short meeting we want to bring together
researchers working with higher categorical
structures and those whose research involves
defects and generalised symmetries in quantum �eld
theories or lattice models, in order to present new
results and explore new connections. This meeting
is supported by an LMS Conference grant.

ICM 2022

Location: Online
Date: 6–14 July 2022
Website: mathunion.org/icm/virtual-icm-2022

The International Congress of Mathematicians 2022
(ICM 2022) will this year take place as a fully virtual
event. Lectures are scheduled to take place between
9:00 and 19:00 CEST every day. There are also e�orts
within the mathematical community to organise
in-person and online events to complement the
virtual ICM. Participation is free of charge, but
registration will be required. Prior to ICM 2022, the
IMU will host its 19th General Assembly in Helsinki,
Finland, on 3–4 July 2022. The IMU Award Ceremony
will also be held as a live event in Helsinki on 5 July;
the event will be streamed.

Operator Algebras: Subfactors, K-theory,
Conformal Field Theory

Location: Gregynog Hall, Wales
Date: 27 July – 2 August 2022
Website: oa-gregynog-2021.weebly.com

This conference, held in honour of David Evans’ 70th
birthday, aims to bring together international experts
and young researchers in operator algebras to
discuss problems in subfactor theory, K-theory and
their application in conformal quantum �eld theory.
Full cost (including accommodation at Gregynog Hall,
meals and conference dinner) is £680, which must
be paid in advance. To book, and for details of the
cancellation policy, please visit the webpage.

Groups St Andrews 2022 in Newcastle

Location: Newcastle University
Date: 30 July – 7 August 2022
Website: tinyurl.com/2p9czjzk

This conference covers all aspects of group theory.
The programme will include minicourses given by
each of the four principal speakers: Michel Brion
(Institut Fourier, Université Grenoble Alpes), Fanny
Kassel (Institut des Hautes Études Scienti�ques),
Denis Osin (Vanderbilt University) Clay Lecturer,
Pham Huu Tiep (Rutgers University) Clay Lecturer,
and 1-hour talks by a further �ve invited speakers.
All delegates will be able to o�er a short talk.
This meeting is supported by an LMS Scheme 1
Conference grant.

https://tinyurl.com/2ej55h2e
https://tinyurl.com/yckj5fvb
https://tinyurl.com/2p8uhucn
https://www.mathunion.org/icm/virtual-icm-2022
https://oa-gregynog-2021.weebly.com/
https://tinyurl.com/2p9czjzk
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Society Meetings and Events

May 2022

6 Society Meeting and Hirst Lecture, De
Morgan House, London

10 IMA/LMS David Crighton Lectures, Royal
Society, London

25 LMS/Gresham Lecture: The Maths of
Gyroscopes and Boomerangs: Museum
of London and online

24 Northern Regional Meeting, Leeds

June 2022

7 Society Meeting at the BMC–BAMC

July 2022

1 Society Meeting and Aitken Lecture, BMA
House, London

18-22 LMS–INI–Bath Symposium: K-Theory and
Representation Theory, University of
Bath

18-22 LMS Invited Lectures, Equations in
Groups and Complexity, Newcastle
University

Calendar of Events
This calendar lists Society meetings and other mathematical events. Further information may be obtained
from the appropriate LMS Newsletter whose number is given in brackets. A fuller list is given on the Society’s
website (www.lms.ac.uk/content/calendar). Please send updates and corrections to calendar@lms.ac.uk.

May 2022

2-6 Adaptive Methods and Model Reduction for
PDEs Research School, Nottingham (496)

9-12 Noncommutative Algebra and
its Applications, Tarbiat Modares
University/hybrid (500)

11-12 Colloquia in Combinatorics 2022, Queen
Mary and LSE (500)

23-25 Inference for Expensive Systems in
Mathematical Biology, Oxford University

18-20 Mathematics in Signal Processing, Aston,
Birmingham (495)

23-24 Inference for Expensive Systems in
Mathematical Biology, Oxford University
(500)

23-25 Wales Mathematics Colloquium 2022,
Gregynog Hall, Tregynon (500)

27-28 Integrability and Nonlinear Waves at
Northumbria, Northumbria University,
Newcastle (500)

June 2022

6-9 BMC73, King’s College London (500)
8-10 Mathematics of Finance and Climate Risk

Conference, Holiday Inn, Liverpool (498)

10 Finite Groups, Cambridge/Hybrid (500)
18 Oxford’s Sedleian Professors of Natural

Philosophy: The �rst 400 Years, Weston
Library, Oxford (500)

20-24 Fast Solvers for Frequency-Domain
Wave-Scattering Problems and
Applications, University of Strathclyde
(500)

23-24 Defects and Symmetry, King’s College
London (500)

27-1 Jul Point Con�gurations: Deformations
and Rigidity Graduate Research School,
University College London (498)

29-1 Jul 7th IMA Conference on Numerical Linear
Algebra and Optimization (498)

July 2022

6-14 ICM 2022, online (500)
11-15 British Combinatorial Conference,

Lancaster University (499)
13-15 Maths in Music Conference, Royal College

of Music, London (498)
18-22 New Challenges in Operator Semigroups,

St John’s College, Oxford (498)
18-22 Rigidity, Flexibility and Applications LMS

Research School, Lancaster (497)
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20-22 Microlocal Analysis and PDEs, University
College London (498)

24-26 7th IMA Conference on Numerical Linear
Algebra and Optimization, Birmingham
(487)

27-2 Aug Operator Algebras: Subfactors, K-theory,
Conformal Field Theory, Gregynog Hall,
Wales (500)

25-29 New Trends in Moduli Spaces and Vector
Bundles, University of Warwick (499)

30-7 Aug Groups St Andrews 2022 in Newcastle
(500)

August 2022

22-26 Unlikely Intersections in Diophantine
Geometry, University of Oxford (500)

September 2022

1-2 Applied Mathematical Challenges and
Recent Advances in the Micro-Mechanics
of Matter 2022, University of Bristol (500)

5-9 COMB in CAMB: Combinatorial Methods
in Algebraic Geometry in Cambridge
(500)

19-20 Mathematical Challenges of Big Data IMA
Conference, University of Oxford/Hybrid
(500)
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Guest edit a theme issue
All Philosophical Transactions A theme issues 
are guest edited by leading researchers in their 
respective fi elds. Each issue provides an original 
and authoritative synthesis, highlighting the latest 
research, ideas and opinions, creating a foundation 
for future research.

We are looking for Guest Editors for future issues 
in all areas of mathematics. If you are interested 
in the idea of guest editing for the journal, please 
consider proposing a theme issue topic. We would 
be delighted to discuss any proposal ideas with you.

Recent theme issues include:
Topics in mathematical design of complex materials
by Xian Chen, Miha Ravnik, Valeriy Slastikov and 
Arghir Zarnescu.
bit.ly/TransA-2201

Topological degree and fi xed-point theories in 
di� erential and di� erence equations
by Maria Patrizia Pera and Marco Spadini.
bit.ly/TransA-2191 

Image: An ice templated biomass derived carbon electrode with a cellulose binder for Na-ion batteries. 
Credit: Dr Maria Crespo Ribadeneyra, Imperial College London.

PHILOSOPHICAL
TRANSACTIONS A

To learn more about guest editing, visit
royalsociety.org/TA-guest-edit


