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Course description:
In 1935, the Polish mathematician Stanislaw Mazur proposed the following game.

There are two players called Player 1 and Player 2. A subset A of the interval [0, 1] is fixed
beforehand, and the players alternately choose subintervals In ⊂ [0, 1] so that In+1 ⊆ In for
each n > 1. Player 1 wins if the intersection of all In intersects A, and Player 2 wins if he
can force this intersection to be disjoint from A.

Mazur observed that if A can be covered by a countable union of sets, each with a closure
which has empty interior (A is of first category), then the second player wins; while if the
complement of A is of first category then the first player wins. Later Banach proved that
these conditions are not only necessary for the existing winning strategies but are also
sufficient.

The game can be generalised to an arbitrary topological space X. Then in order to decide
whether a certain property describes a typical object of X it is enough to show that there is a
winning strategy for Player 2 with respect to the set of objects satisfying the given property.
Remarkably, one can show in this way that a ‘typical’ continuous function is differentiable
at no point!

Recommended texts:

1. Any introductory text on Zorn’s Lemma

2. B. Bolobas, Linear Analysis. Cambridge University Press, Cambridge, 1999.

3. J. Oxtoby, Measure and category. A survey of the analogies between topological and
measure spaces. Second edition. Graduate Texts in Mathematics, 2. Springer-Verlag,
New York-Berlin, 1980.
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The Baire category is a profound triviality which condenses the folk wisdom of a generation
of ingenious mathematicians into a single statement.

T.W. Körner, “Linear analysis” Sect.6, p.13.

§1 Baire Category Theorem

Ex. 1.1. (A) 1 Find out how every metric space is a topological space. More precisely, define
a topology induced in a natural way by the metric.

Ex. 1.2. (B) Let (X, τ) be a topological space and (Un)n>1 a collection of open subsets of X.
Is it necessarily true that

⋂
n>1Un ∈ τ (i.e. is an open set) too? Give a proof if yes,

and a counterexample if no.

Ex. 1.3. (A) Let (X, τ) be a topological space and E ⊆ X. Prove that F = Cl(E) is the smallest
closed set which contains E. In other words, prove that F is closed, F ⊇ E and for
any closed set V such that V ⊇ E we have V ⊇ F.

Ex. 1.4. (A) Prove the equivalence of two definitions of a dense subset of a topological space,
given in the lecture.

Ex. 1.5. (D) Let X be a topological space which satisfies the following property: for any
collection (Gn)n>1 of open dense subsets of X their intersection

⋂
n>1Gn is not

empty. Does X need to be a Baire space?

Ex. 1.6. (B) Let X be a topological space, and Ai ⊆ X, Bi,j ⊆ Ai be such that
⋃
iAi is dense

in X, and
⋃
j Bi,j is dense in Ai for each fixed i. Prove:

⋃
i,j Bi,j is dense in X. Here

i ∈ I, j ∈ J, where I and J are arbitrary sets of indices.

Ex. 1.7. (B) Let (X,d) be a complete metric space, and (Fn)n>1 a nested sequence of closed
subsets of X (i.e. Fn ⊇ Fn+1 for each n > 1) such that diam(Fn) → 0. Prove that⋂
n>1 Fn is not empty and is equal to a one-point set:

⋂
n>1 Fn = {x0} for some

x0 ∈ X.

Is it true that in any complete metric space the intersection of any sequence of
nested closed sets is not empty?

Ex. 1.8. (B) Starting with the closed interval [0, 1], the ternary Cantor set C1/3 is obtained
by removing middle thirds countably many times. More precisely, let

A1 =
[
0,

1
3
]
∪
[2
3

, 1
]
,A2 =

[
0,

1
9
]
∪
[2
9

,
1
3
]
∪
[2
3

,
7
9
]
∪
[8
9

, 1
]
, . . . ,

1The letters A,B,C,D refer to the level of difficulty with A being the easiest and D the hardest. This is however
very subjective so you might find some of the exercises marked C or D not difficult at all. However I hope that all
exercises marked A should be easy to complete.
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An+1 =
1
3
An ∪ (

1
3
An +

2
3
).

Then
C1/3 :=

⋂
n>1

An.

Show that C1/3 is closed and nowhere dense in R.

Ex. 1.9. (A) Show that a countable union of sets of first category is a set of first category.

Ex. 1.10. (B) Let X be a non-empty topological space. Is it possible that its subset D is both
dense and nowhere dense?

Is it possible for a subset E of X to be both dense and of first category?

Ex. 1.11. (B) Let X be a non-empty Baire space. Prove that it is of second category (consid-
ered as a subset of itself).

Ex. 1.12. (B) Let X be a non-empty Baire space, and (Gn)n>1 a sequence of open dense sets.
If A ⊂ X \

⋂
n>1Gn, then show that A is of first category.

Is it true that for each D ⊆ X dense, X \D is of first category?

Ex. 1.13. (B) Consider X = R with the usual metric. Find a subset D ⊆ R of first category
which is of second category when considered a metric space itself (with respect to
the induced metric).

Ex. 1.14. (B) Assume (X, τ) is a Baire space and G ⊆ X is a non-empty open subset of X.
Show that (G, τG) is a Baire space too.

Give an example of a non-complete metric space which is Baire.

Ex. 1.15. (D) Show that Sorgenfrey Line RS is a Baire space but it is not metrisable:

X = R, Bτ =
{
[a,b),a < b and a,b ∈ R

}
is the base for topology on X = RS.

Ex. 1.16. (D) Let f : R → R be a continuous function, such that f(nx) →
n→∞ 0 for each fixed

x > 0. Prove that f(x) →
x→∞ 0.

Hint: Use Baire category theorem here, for a fixed ε > 0 consider sets

Fn = {x > 0 : |f(kx)| 6 ε for all k > n}.

Ex. 1.17. (D) Let an infinitely differentiable function f : [0, 1]→ R be such that for each fixed
x ∈ R there exists a natural index n > 1 (depending on x) such that f(n)(x) = 0.
Prove that there is a non-empty open interval (a,b) ⊆ [0, 1] such that f|(a,b) is a
polynomial.

Hint: Use Baire category theorem here, consider sets Fn = {x ∈ R : f(n)(x) = 0}.
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§2 The Banach-Mazur Game

Ex. 2.1. (A) Let A be a finite subset of [0, 1]. Describe a winning strategy for Player 2 in the
Banach-Mazur game with target A.

Ex. 2.2. (B) Let A = Q ∩ [0, 1]. Describe a winning strategy for Player 2 in the Banach-
Mazur game with target A.

Ex. 2.3. (C) Let A ⊆ [0, 1] be any set of first category. Describe a winning strategy for
Player 2 in the Banach-Mazur game with target A.

Ex. 2.4. (C) Prove Statement 2 from the proof of Theorem 2.1.

Ex. 2.5. (B) Prove that if in the Banach-Mazur game with target set A Player 2 has a win-
ning strategy, it is possible to modify this strategy in such a way that the strategy
remains a winning strategy but in addition the intersection of all intervals is equal
to a one-point set {x0} which does not coincide with any of the endpoints of intervals
chosen by Player 2.

Ex. 2.6. (B) Prove that if in the definition of the game, instead of choosing closed intervals
of positive length, we say that Players 1 and 2 always choose non-empty open
intervals, we get an equivalent game. That is, if A ⊆ [0, 1] is the target set, then
Player n has a winning strategy in the “closed intervals” game if and only if Player
n has a winning strategy in the “open intervals” game.

Ex. 2.7. (B) Prove that if in the definition of the game, instead of choosing non-empty open
intervals, we say that each player chooses a non-empty open subset of the set
chosen by their opponent, we get an equivalent game.

Ex. 2.8. (B) Explain why the conclusion of Theorem 2.1 remains true if we replace the game
within [0, 1] by the same game on subsets of R.

Ex. 2.9. (B) Consider a generalised Banach-Mazur game on a topological space X. Prove
that if A is of first category, then Player 2 has a winning strategy.

Ex. 2.10. (C) Let (X, τ) be a topological space and f : τ \ {∅} → τ \ {∅} a mapping such that
f(U) ⊆ U for each non-empty U ∈ τ.

Consider a family F of collections Aα ⊆ τ \ {∅}2 such that for every two distinct
elements U1,U2 ∈ Aα we have f(U1) ∩ f(U2) = ∅.

Verify that (F,⊆) satisfies the conditions of the Zorn’s lemma. Let further V be a
maximal element of F. Verify that

⋃
U∈V

f(U) is dense in X and f(U1) ∩ f(U2) = ∅ for

any U1,U2 ∈ V, U1 6= U2.

2That is, each Aα is a collection of non-empty open subsets of X.


