Extremal Graph Theory and Flag Algebra Exercises

- 1. Prove that a graph G is bipartite if and only if it contains no odd length cycles.
- 2. Show that if G is a graph with $\chi(G) = k$ then G has at least $\binom{k}{2}$ edges.
- 3. Prove that for any graph F the Turán density,

$$\pi(F) = \lim_{n \to \infty} \frac{\operatorname{ex}(n, F)}{\binom{n}{2}},$$

is well-defined.

- 4. Calculate the Turán density of the Petersen graph.
- 5. If $\mathcal{F} = \{K_6, C_{11}, K_{20,3}\}$ what is $\pi(\mathcal{F})$?
- 6. Let G = (V, E) be triangle-free with *n* vertices and suppose $\forall v \in V$ d(v) > 2n/5. Show that *G* is bipartite.
- 7. Prove that if G = (V, E) is a graph with $n \ge 3$ vertices and $\lfloor n^2/4 \rfloor + 1$ edges, then G contains at least $\lfloor n/2 \rfloor$ triangles.

Can you give an example to show that this is sharp?

8. Let G = (V, E) be a graph and π be a random ordering of V. By considering the expected size of the set

 $U = \{ v \in V \mid v \text{ comes before all of its neighbours in the ordering } \pi \},\$

show that

$$\alpha(G) \ge \sum_{v \in V} \frac{1}{d(v) + 1}.$$
(1)

Deduce Turán's theorem.

9. Let $\mathcal{P} \subset \mathbb{R}^2$ be a set of *n* points and $\mathcal{L} \subset \mathbb{R}^2$ be a set of *m* lines. How many pairs can there be $(P, L) \in \mathcal{P} \times \mathcal{L}$ with $P \in L$? (Hint: can you convert this into a forbidden subgraph problem?)

10. Let $S \subset \mathbb{R}^2$ with |S| = n and suppose that $||x-y||_2 \leq 1$ for all $x, y \in S$. Show that

$$T = \left\{ (x, y) \in S^2 \mid ||x - y||_2 > \frac{1}{\sqrt{2}} \right\}$$

satisfies $|T| \leq \lfloor n^2/3 \rfloor$. (Hint: can you express this as a forbidden subgraph problem?)

Give an example to show that this bound is sharp.

11. Let

$$\Sigma^{n} = \{ (x_{1}, x_{2}, \dots, x_{n}) \mid x_{1}, \dots, x_{n} \ge 0, \sum_{i=1}^{n} x_{i} = 1 \}.$$

Given a graph G = (V, E) with V = [n] and $x \in \Sigma^n$, define $\lambda(G, x) = \sum_{ij \in E} x_i x_j$ and $\lambda(G) = \max_{x \in \Sigma^n} \lambda(G, x)$.

Suppose that $y = (y_1, \ldots, y_n) \in \Sigma^n$ satisfies $\lambda(G) = \lambda(G, y)$.

(a) Show that if $y_i, y_j > 0$ then

$$\sum_{k\in\Gamma(i)}y_k=\sum_{k\in\Gamma(j)}y_k.$$

- (b) Show that there exists $z \in \Sigma^n$ such that $\lambda(G) = \lambda(G, z)$ and $\{i \mid z_i > 0\}$ is a clique in G.
- (c) Prove Turán's theorem using $\lambda(G)$.
- 12. Let G be a graph with $d(K_3) = d(K_2 + v) = 0$. Show that G is a complete bipartite graph.
- 13. Let G be a graph with edge density ρ . Show that

$$d(K_3) + d(K_3) \ge 3\rho(1-\rho).$$

- 14. Let σ be the type consisting of a single labelled edge.
 - (a) Write down all the σ -flags on 3 vertices. (There are 4 of them.)
 - (b) Compute all products of pairs of these σ -flags.
 - (c) Using the averaging argument express these products as real linear combinations of unlabelled graphs on 4 vertices.

You may wish to do parts (b) and (c) as a parallel computation...