POPULATION DYNAMICS FROM GAME THEORY

E.C. Zeeman.

Introduction.

We study a class of cubic dynamical systems on a n-simplex. They arise in
biology at both ends of the evolutionary scale, in models of animal behaviour and
molecular kinetics. The game theoretical aspects also suggest possible applications in
the social sciences.

Game theory was introduced into the study of animal behaviour by Maynard Smith
and Price [6,7,8] in order to explain the evolution of ritualised conflicts within a species,
as for example when individuals compete for mates or territory. They defined the notion
of an evolutionarily stable strategy (ESS) ima non-zero sum game. Each individual can
play one of ntl strategies, and different points of the n-simplex A represents populations
with different proportions playing the various strategies. The pay-off represents fitness,
or reproductive success, and an ESS is a point of A representing a population resistant
to mutation, because mutants are less fit.

However, an ESS is a static concept, and so, following Taylor and Jonker [14],
we introduce a dynamic into the game by assuming the hypothesis that the growth rate of
those playing each strategy is proportional to the advantage of that strategy. This gives
a flow on A whose flow lines represent the evolution of the population. In Section 1 we
verify that if there is an ESS then it is an attractor of the flow, thereby sharpening a
result of [14; see also 4]. The converse is not true : an attractor may not necessarily
be an ESS because locally the flow may spiral in elliptically towards the attractor (an
eventuality that is not always covered by the notion of ESS due to the linearity of its
definition). We show there is also a global difference between an ESS and an attractor :
if an ESS lies in the interior of A then it must have the whole interior as its basin of
attraction and so there cannot be any other attractor, whereas if an attractor lies in the
interior of A then its basin can be smaller, and the game may admit other competing
attractors on the boundary. This is illustrated in Example 1, which gives a flow on a
2-simplex with a non-ESS attractor in the interior and an ESS attractor at a vertex,
dividing A into two basins of attraction.

Meanwhile at the other end of the evolutionary scale studies by Eigen and
Schuster [1] of the evolution of macromolecules before the advent of life have led to
exactly the same types of equation. The resulting dynamics have been studied by
Schuster, Sigmund, Wolff and Hofbauver [11,12]. Here we are given ntl chemicals, and
different points in A represent mixtures of them in different proportions. The dynamic
represents their enzymatic action upon each other, and an attractor represents a mixture
that remains stable because of mutual cooperation. For instance the example mentioned
above would represent a mixture of three chemicals, and if they happen to be added to the
mixture in the right order, so that initial conditions fall into the basin of the interior

attractor, then the mixture will develop into a stable cooperative mixture of all three
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chemicals; but if they are added in the wrong order, so that the initial conditions fall into
the other basin, then only one of the chemicals will survive and the other two will be
excluded. Schuster and Sigmund have also applied the dynamics to animal behaviour in the
battle of the sexes [13].

One of the main benefits of the dynamic approach is that it allows the notion of
structural stability [9,10,15] to be introduced into game theory : a game is stable if
sufficiently small perturbations of its pay-off matrix induce topologically equivalent flows.
A property is called robust if it persists under perturbations. In Section 2 we study the
fixed points, since they seem to be the most important feature determining the nature of
the flows. For example a stable game can have at most one fixed point in the interior of
each face of A. We show that an isolated fixed point is robust, and give a sufficient
condition for there to be robustly no fixed points (and hence no periodic orbits) in the
interior of A. These constraints limit the type of bifurcations that can occur in
parametrised games : for instance elementary catastrophes [15] cannot occur, but we give
examples to show that exchanges of stability can occur if an interior fixed point runs into
another one on the boundary, and that Hopf bifurcations [5] are also possible.

In Section 3 we begin to tackle the classification problem, up to topological
equivalence. We conjecture that stable classes are dense, and finite in number for each n.
These conjectures are plausible because a game is determined by its pay-off matrix, and
therefore the space of games on an n-simplex is the same as the space of real (n+l)X(ntl)
matrices. For n =1 it is easy to verify the conjectures, and show there are only 2
stable classes (up to flow reversal). For n = 2 we conjecture further, that a stable game
is determined by its fixed points, and that there are therefore 19 stable classes (up to
flow reversal) as illustrated in Figure 11. This conjecture is surprising because it
implies that for n = 2 there are no periodic orbits in stable games, and therefore no
generic Hopf bifurcations. In fact at the end of the paper we prove that all Hopf bifurcations
on a 2-simplex are degenerate (thereby correcting a mistake in [14]), and the proof involves
going some way towards proving the last conjecture. On the other hand such a conjecture
would be false in higher dimensions, because when n 2 3 generic Hopf bifurcations do
occur, as is shown by Example 6, which is an elegant example due to Sigmund and his
coworkers [11]. In higher dimensions the number of stable classes proliferates, but
this is primarily due to the combinatorial possibilities of what can happen on the boundary
of A, and if the flow is given on the boundary there seem to be relatively few stable
extensions to the interior. For example if there are no fixed points in the interior we
conjecture the extension is unique and gradient-like on the interior. If there is a fixed
point then periodic orbits may also appear, but I do not know if strange attractors can
occur.

In applications where perturbations are meaningful it is best to use stable models
since they have robust properties. In another paper [16] we analyse the original game of
Maynard Smith L6, 8] about animal conflicts, which gives a flow on a tetrahedron since
there are 4 strategies involved. The retaliator is the best strategy, but it turns out to
be only a weak attractor because the game is unstable. When the game is stabilised it
becomes a proper attractor, but at the same time another competing attractor appears,
surprisingly, which is a mixture of hawks and bullies, and whxch has biological implications
for the evolution of pecking orders.
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Section 1. ESS's and attractors.

Suppose competing individuals in a population can play one of ntl strategies,
labelled i = 0,1,...,n. Let X, denote the proportion of the population playing strategy i.
Then x = (xo,xl, - .,xn) € A, where A denotes
the n-simplex in IRn+1 given by Exi =1, X 2 0.
Let A denote the interior of A given by X, > 0,

and 3A its boundary. Let X . .,Xn denote

(£
the vertices of A. We shall use x to denote

ambiguously the population, the point in A, the Figure 1

row matrix, and its transposed column matrix.
The game is determined by the pay -off matrix A = (aij), which is a real (n+l)x(n+l)

matrix. Pay-off means expected gain, and if an individual plays strategy i against another

individual playing strategy j, then the pay-off to i is defined to be aij’ while the pay-oif

to j is aji' This is a non-zero sum game, and therefore A is not necessarily skew-

symmetric. If the population x is large the probability of an opponent playing j is xj,

and therefore

pay-off to i against x = zaijxj = (ax), ,
]

pay-off to x against x = Exi(Ax)i = xAX .
i

If two populations x,y play against each other
pay-off to x against y = xAy.

Interpretation of the pay-off. There are three implicit assumptions : (i) Each
individual plays a fixed pure strategy. If individuals were allowed to play mixed
strategies then we should have to represent the population by a distribution on A rather
than a point of A, and this leads to more complicated, but related, dynamics [see 2, 16].
However, in this paper we keep to pure strategies. (ii) Individuals breed true, in other
words if an individual plays strategy i so do his offspring. Of course this avoids the question
of sex, but in applications to sex-related strategies, one can assume that the related sex
breeds true. (iii) Pay-off is related to reproductive fitness, in other words the more
pay-off the more offspring. In other applications the pay-off can represent rewards,
leading to sociological adaptation rather than biological evolution.

Definition of evolutionarily stable strategy (ESS)- Given e € p, call e an ESS of

Aif, I xE€ A - e,
either xAe < eAe
or XAe = eAe and XAX < eAx.
In other words a mutant x strain will be less fit than e because it either loses out against
e, or against itself. It will be convenient to write
fx = eAe - xAe, gx = eAx - xAx,
so that the condition becomes fx > 0 or fx = 0 and gx > 0.

Definition of the dynamic. The main hypothesis is that the growth rate of those

playing each strategy is proportional to the advantage of that strategy. By suitable choice
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of time scale we can make the factor of porportionality equal to 1.

., growth rate of X, (pay-off to i) - (pay-off to x)

o &= x,[(Ax), - xAx]
Maynard Smith suggests that if might be sometimes biologically more appropriate to divide
the right-hand side by xAx. This would change the length but not the direction of the
vector field, and so would not alter the phase portrait. = The above dynamic does have
the mathematical advantage of being polynomial, indeed cubic. The dynamic is defined

on IRn, but we are only interested in 4.

Lemma 1. A and its faces are invariant.

Proof. The n-plane containing A given by Exi = 1 is invariant because

(Zx) = TX, = xAx - (Zx)xAx = 0 .
Similarly, given any q-dimensional face I" then the g-plane containing T is invariant. Hence
A and its faces are invariant.

Induced flow. Let ¢ A denote the induced flow on A. Examples of such flows on a
2-simplex can be seen in Figure 11 below. The reverse flow is given by reversing the
sign, ONT O p If T'is a face of A we write T'< 5, and we shall use the symbol T to
denote ambiguously both the subset of A and the subset of {0,1,...,n} corresponding to
the vertices; thus i € T is an abbreviation for Xi eET If Alr‘ = {aij;i,j € T} denotes
the corresponding submatrix, then the induced flow on TI'satisfies (pAII" = (pAll" .

Attractors. For the most part we shall only need to consider point attractors.
Recall the definition : a point is an attractor of the flow if it is the (-limit of a
neighbourhood, and the «-limit of only itself. Its basin of attraction is the (open) set of
points of which it is the -limit. It is hyperbolic if its eigenvalues have negative real
part.

Theorem 1. An ESS is an attractor, but not conversely. This result was first
proved in {14] under the extra hypothesis that the ESS was regular, and giving the extra
conclusion that the attractor was hyperbolic. Another proof is given in [4].- The
Theorem shows that from the point of view of smooth dynamics an attractor is a more
general notion than an ESS, and better characterisation of the resistance to mutation.
Theorem 2 and Example 1 below show that there are also global differences between them.

Proof of Theorem 1. Suppose we are given an ESS e of A. We shall show that
A ﬂxiei
is a Lyapunov function for ®y- In other words we shall prove there is a neighbourhood

N of e such that

(1) VV.(e=x) >0
(2) V>0

By (1) V increases radially towards e, and so e is the maximum and there are no stationary

} Vx €N -¢e

points of V in N-e. By (2) all orbits inside a level curve of V tend to e, and so e is
an attractor, as required. The proof of the two conditions is divided into two cases,

according as to whether e lies in the interior or boundary of A.



Proof of (1) when e € A. Let N=A. Ifx€ A - e then V> 0 and

V. = éy = V—l—
1 aXl Xi
2

(e.-x.)

€.
S We(e-x) = ZV.(e.~x.) = VE—l(e,-x,) =VZ LI , since Te, = Zx, = 1. ), vV.(e=x) > 0,
iici X, 17 X i i
since x # e .
Proof of (2) when e € A. Recall that
x = eAe - xAe, gX = eAx - XAX .
Given x € A - e, and t € R, let x, = tx + (1-t)e. Then X, € A for |t| sufficiently small,

since e € 3 .
f(xt) > 0, since e an ESS. But f(xt) = tfx.
5ot = 0 for |t]| sufficiently small. = fx = 0.
;. gx > 0 since e an ESS.
e,
LV =ZVE = vz;li X,((Ax), - xAx) = Vgx > 0.
This completes the proof of Theorem 1 for the case e € A.

Notice that in this case, since N = A, the basin of attraction of e contains 4. But the
basin <}, because 3A is invariant. ', the basin = J.
Proof of (1) when ¢ € 3A. Suppose e € F, P < A.
Let N =t U j
G=ds-t=n-N.

IfxeNl-ethenxi#O,ie]_". A
e N
{VZ» ler Figure 2.
Vi= i
0, i¢r e T
(e_-x,)z

e,
S v.e-x) = ¢ v+ (e.-x,) = Vg + V(1-% x.) > 0, because the first term > 0 and
’Erxl 1 1 161" Xi lerl
the second term = 0. (Note that the proof given in [4] for this step does not work, and
the proof given for the next step is incomplete). e

. i _ .
Proof of (2) when e € 3p. If x € N, then v _1§I~V?ixi((Ax)i - XAX) = Vgx, since

e = 0, i ¢ " Therefore we have to find a neighbourhood N of e in Nl such that g is
positive on N - e, but the problem this time is that f may not vanish on N. Let

-1
G0 =Gnf 0. (Notice G0 D 3T). Then g > 0 on G0 by the ESS condition. [, g > 0 on

an open neighbourhood G1 of G0 in G. Let G2 =G - Gl' Then G2 closed in G, and

therefore compact. Since f > 0 on G2, the function % is defined and continuous on Gz, and
therefore bounded since G, compact. Choose ¢, 0 <¢ < 4 such that |§| < Elgon G,-
N E lgxl < ifx, vx € Gz. Let N be the neighbourhood of e in Nl given by

N={xt=tx+(l-t)e;x€ G, O=st<e}.
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Now

gx) = gx + HL-OB.
If0<t<e and x € G1 then on the right-hand side the first term >0 and the second
term 20. On the other hand if x ¢ 62 then the second term >0, and the first term is
smaller, because

|tgx| < elgx| < 4fx, by above, < (1-t)fx, since t < ¢ < 1.
Therefore in both cases g > 0. This completes the proof of Theorem 1 for the case
e € 3A. Finally the negative converse, that an attractor is not necessarily an ESS, is
established by Example 1 below. A similar counterexample is given in [147], but ours
has the extra subtlety of illustrating a global difference between the basins of attraction
of an ESS and an attractor, as indicated by the following theorem.

Theorem 2. If an ESS lies in A then its basin of attraction is A, and there are no

other attractors. If an attractor lies in A then its basin may be smaller than A, and there

may be other attractors in 3A (but not in A).

Proof. We have already shown in the proof of Theorem 1 that an ESS in A has basin A;
therefore there cannot be another attractor in A otherwise its basin would have to be a
non-empty open set in A disjoint from A, which is impossible since & is dense in A. The
second half of Theorem 2 is established by Example 1 below, which illustrates an
attractor in A with another in 3A, and hence the basin of the former must be smaller
than A. There cannot be another attractor in A, otherwise by Lemma 2 below the line
joining the two attractors would be pointwise fixed, so neither would be an attractor.

Lemma 2. If there are two fixed points in A then the line joining them is
pointwise fixed.
Proof. Given x € 4, X = 0<=>(Ax), = xAx, Wi

& (Ax)i independent of i, since Exi =1.

Given e,x fixed in A, and t € R, then x, is also fixed since
(Axt)i = (A(x+H1 -l:)e))i = t(Ax)i + (l-t)(Ae)i

is independent of i. This completes the proof of Lemma 2.

Example 1. Non-ESS attractor.

Figure 3.
0 6 -4
A=1]-3 0 5
-1 3 0
X0 X1

N is a flow on the triangle X0X1X2. There is an attractor at the barycentre e = (3,3, %)
with eigenvalues 3(-1xi/2). However, e is not an ESS because fXO = 0 but gX0 = -

the other hand XO is another attractor which is an ESS. The other fixed points are a

3 3). As visual notation for all

4 1
11 X, = (=, 0 = = 2
repellor at X, and saddles at X2 , Y (5, 0, 5) and Z (0,8, 3
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the figures in this paper we use a solid dot for an attractor and an open dot for a
repellor, and we always put in the insets and outsets of the saddles, as in Figure 3.
(Here insets and outsets are short for the usual more cumbersome terms ''stable and

unstable manifolds”). In the proof of Theorem 7 below we show that
_ .45 -10 i
V = xoxlx2 ( 4x0 le + 10x2)

is a global Lyapunov function for the flow in A. Therefore the inset 7 of Y flows away

from the repellor X., and all other orbits in A-e flow away from Xl and towards one or

1
other of the two attractors, e and XO' Hence n separates A into the basins of attractions
of the two attractors, as illustrated in Figure 3, where the basin of X0 is shown shaded.

If also follows from the prcof of Theorem 7 that this example is in fact stable. This
example completes the proof of Theorems 1 and 2.

Figure 3 illustrates qualitatively why an attractor need not be an ESS, and
reveals exactly where the notion of ESS fails. The local reason that e is not an ESS is

that the orbits spiral in somewhat elliptically; therefore a mutant X -strain will initially

have a slight advantage over e, but it will also stimulate the g-rowtl'? of an X2 -strain that
will soon wipe out that advantage, and which will in turn be wiped out by an Xl -strain, and
so on, as the orbit spirals in towards e. Meanwhile the global reason that e is not an
ESS is that its basin is not the whole of A.

In the application to chemical reactions, e represents cooperative behaviour,
while X0 represents exclusive behaviour. The fact that both types of behaviour occur in

the same example shows that one cannot divide all stable systems into cooperative or

exclusive, as might be suggested by the emphasis on this dichotomy in [11].
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Section 2, Stability, fixed points and bifurcations.

Equivalence. Let Mn " denote the space of games with ntl strategies, which we

identify with the space of real (n+l)x(n+l) matrices. Define A,B ¢ Mn+ to be equivalent,

written A ~ B, if there exists a face-preserving homeomorphism of A oito itself throwing
© A-orbits onto (pB-orbits. Here face-preserving means that each face is mapped onto
another face, not necessarily onto itself.

Stability. Call A stable if it has a neighbourhood of equivalents in Mn 0 Note
that this is a form of structural stability, with the proviso that we are confining ourselves
to a special type of dynamical system, and to a restricted form of equivalence. A stable
class is an equivalence class of stables. (Note that each stable class is open in Mn +1°

but may have some unstable equivalents on its boundary, so the full equivalence class may

be slightly larger than the stable class.)

Conjecture 1. Stables are dense in Mn 41"

Conjecture 2. For each n there are only a finite number of stable classes.

In other words we are suggesting that this is a well-behaved piece of mathematics.
Although the dynamical systems involved are non-linear and possess some unexpected
properties, nevertheless they appear to be qualitatively fairly simple, and there are so
few of them that it seems plausible to try and classify them, at least in the lower dimensions.
When n = 1 it is easy to verify the conjectures are true (see Section 3 below)., When n = 2
we go some way towards proving them (see Theorems 6,7). For all n the limitations on
the possible configurations of fixed points impose considerable constraints on the types of
flows and bifurcations that can occur, and so we begin by examining the fixed points.

Theorem 3. A stable game has at most one fixed point in the interior of each

face of A (including A).

Before we prove Theorem 3 consider some examples. In Example 1 above there are 6
fixed points, ome in the interior of each face except the edge X X.. Figure 11 below
illustrates all the different possible configurations of fixed points t can occur in stable
games on a 2-simplex. The following example shows that for any n it is possible to have
a stable game with exactly one fixed point inside every face. If a game is unstable there
may be more than one fixed point - for instance A = 0 has every point fixed.

Example 2. Let I denote the identity matrix. Then @ has a fixed point at the
barycentre of each face. The vertices are
attractors, the barycentre e of A a repellor, é‘ Figure 4.
and the rest are saddles. A.ﬁ
Proof. Consider the reverse flow “D-I' Ifxe€p-ethen Xx =0 and gx = [e-x]z > 0.
Therefore e is an ESS. Therefore by Theorem 1 e is an attractor, and by Theorem 2 there
are no other fixed points in A, Hence e is a repellor for o Similarly there is a fixed
point at the barycentre of each face, and no others. One can verify that this particular

example is in fact a gradient flow, x = 7(03"7;)’ where o is the kth symmetric function

of the xi's. Hence, by induction on the faces, it is structurally stable [9], and therefore

stable.
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Notation. Let u denote ambiguously the row vector u = (1,1,...,1) and its transposed
column vector.

Proof of Theorem 3. Suppose n > 1, otherwise the result is trivial. Let

Q, c Mn 417 denote the set of matrices all of whose symmetric q X q minors are non-
zero, for 1 < g <n + 1. Then Q is open dense in Mn 41 being the complement of an
algebraic subset. Therefore any stable class meets Q. Therefore it suffices to prove the
result for games in Q, since the result is invariant under equivalence, and so let A € Q.
Therefore A-1 exists since det A # 0. If x € A is a fixed point of =N then (Ax)i is
independent of i, by the proof of Lemma 2.

/v Ax = multiple of u. ', x = multiple of A-lu.
But the vector subspace [A—lu] of Rn+1 generated by A-lu pierces A in at most one point,
and so x is unique. Therefore N has at most one fixed point in A. The same holds for
each face of A, using the fact that the corresponding minor is non-zero. This completes
the proof of Theorem 3.

Robustness. A property of N is called robust if it is preserved under
perturbations; in other words the property is shared by @ for all B in a neighbourhood
of A. Otherwise it is called transient. For example if A is stable then all topological
properties of ¢ ), are robust, and if A is unstable some property of ¢ A is transient. But
we shall also consider robust properties of unstable games, as illustrated in the following
theorem, which we need for both bifurcations (see the Corollary below) and applications
[16].

Theorem 4. (i) Having an isolated fixed point in A is robust. (ii) If (adjA)u has

both positive and negative components then ¢ N has no fixed points and no periodic orbits

in A, and this is robust.

Remarks : In part (i) it is necessary that the fixed point be isolated, otherwise consider
the example A = 0; here every point is fixed but A has arbitrarily small perturbations
with no fixed points in A. Nevertheless the result is surprising because isolated fixed
poixits are not robust amongst dynamical systems in general. For example consider the
dynamic y'r = y2, y € R (the fold catastrophe); here the origin y = 0 is an isolated fixed
point, but the perturbation §' = y2 + ¢, ¢ > 0, has none.

In part (ii) the hypothesis on (adjA)u is necessary because otherwise the absence of
fixed points in A is not robust (for instance put ¢ = 0 in Example 3 below).

Proof of Theorem 4(i). Suppose ¢ A has an isolated fixed point e € A. Notice this

implies no other fixed points in A by Lemma 2. There are three cases accordingly as
to whether the rank, r{A) = ntl,n, or less.

-1 -1
Case 1 : 1(A) = ntl. Here e is a multiple of A &, Let LA = [A u], the

vector subspace of R generated by Alu. Then e € L Nl A. Therefore L A;‘ 0, and
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L A pierces A in e. Therefore if B is a sufficiently small perturbation of A, LB = []§ llﬂ #0

and LB pierces A in a point e

in &.

p fear e. Hence ep is the required unique fixed point of o

+1
Case 2 : r(A) = n. Choose x € R" , X #0, such that Ax = 0. If x is not a

multiple of e, let x, = tx + (L-t)e. For t sufficiently small [xt] pierces & in a point,
)\xt say, # e. Furthermore )th is fixed under N since (A)‘xt)i = M1-t)eAe, which is
independent of i. Therefore e is not isolated, since )\xt = e as t ~ 0, a contradiction.
Therefore x is a multiple of e. Therefore Ae = 0.

Suppose (adjA)u = 0. Then the matrix obtained by replacing any one column of A
by u has zero determinant. Since r(A) = n there are n linearly independent columms, and
so u is dependent upon them. Therefore there exists y € ]Rn+1, y # 0, such that Ay = u.
Therefore y is not a multiple of e since Ae = 0. For small t let Yy =ty H1-t)e, and
let )Lyt = [yt] N A. ‘Then )\yt is fixed under ¢ A since (A)\yt)i = At, which is independent
of i. Therefore again e is not isolated, a contradiction. Therefore (adjA)u # 0.

Furthermore (adjA)u is a multiple of e because all columns of adjA are multiples
of e, since r(A) =1 and Ae = 0. Let L, = [(adjA)u]. Then L, # 0 and L, pierces A
in e. Therefore if B is a sufficiently small perturbation of A, then LB = [(adBu] # 0
and L pierces A in a point e near e. Furthermore e, is fixed under o since

B B B

BeB = multiple of B(adjB)u = (detB)u.

There remains to verify that e, is isolated, and so suppose x € } is any fixed point

B
of (oB For sufficiently small perturbations, r(B) = r(A) = n. If r(B) = nt+l then

x = multiple of B_lu = multiple of (adjB)u, and so x = ep- If r(B) = n, then
(xBx)(adjB)u = (adjB)(xBx)u = (adjB)Bx = (detB)x = 0.
.. xBx = 0, since (adjBju # 0.
S Bx = (xBx)u =0 .
But BeB = multiple of (detBju = 0.
S X = multiple of ep’ since r(B) = n.
LX = egi SO we have shown that e is the unique fixed point of o in A, and therefore

isolated.

Case 3 : TA < n. Since the eigenspace of 0 has dimension = 2, we can choose

+1
x € R" ,x# multipie of e, such that Ax = 0. Then, as in case 2, this implies that e is

not isolated, a contradiction.

Proof of Theorem 4(ii). Let L A [(adjA)u]. Then L A # 0 and L A does not meet

A, since by the hypothesis L A meets the positive quadrant only in the origin. If B is a

sufficiently small perturbation then LB = [(adjB)u] # 0 and L

B does not meet A, since A

is compact. Also rB = rA > n, since adjA # 0. Therefore by the arguments in Cases

1 and 2 above, any fixed point of ¢y in A must lie in L, N &, which is empty. Therefore

B
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neither nor ¢, has any fixed points in A-

A
To show that no fixed points in & implies no periodic orbits in A, we use an
argument of Sigmund et al. [11]. For suppose that was an orbit of period T. Let

x(t), 0 < t s T denote the flow round the orbit, and let
T
e=["xd, Xx-= ijAxdt.
0 0

Then e € A, since each e > 0, and

X,
(Ae);, - X = J“((Ae)i - xAx)dt = j;l dt = [log xiJOT =0
i

Therefore (Ae)i = ), independent of i, and so e is fixed, a contradiction. This completes
the proof of Theorem 4.

Bifurcations. We now examine the types of bifurcation that can occur in parametrised
games. First we use Theorem 4 to show that there are no elementary catastrophes, the
typical bifurcations of gradient systems [15]. Then we shall give some examples to show
that classical Hopf bifurcations [5] and exchanges of stability can occur.

Corollary to Theorem 4. Elementary catastrophes cannot occur.

Proof. If an elementary catastrophe occured in A then some perturbation would have more
than one isolated fixed point in A, which is impossible by Lemma 2. If an elementary
catastrophe occured in 3A, then some perturbation would contain a fold catastrophe, where
the variation of a parameter causes two isolated fixed points to coalesce and disappear.
Now it is quite possible to make an isolated point in A run into another one in the boundary,
in T'say, P < A, so that at the critical parameter value they coalesce to form an isolated
fixed point in f_", but it is then impossible to make the latter disappear because it is robust by
Theorem 4(i) applied to }» Therefore elementary catastrophes cannot occur .

Example 3. Exchange of stabilities bifurcation.

X e Y 0
01 C>@—«—0 € >
s (0 )
% 0 L = < —0 e<0
and let qoe denote the induced flow. It is easy to verify there are two cases according to
the sign of the parameter £. If ¢ > 0 then o, has an attractor at e = (l—-li-g-’ﬁ) , and

repellors at the two vertices of the l1-simplex. If ¢ < O then (,DE has an attractor at

X =(1,0) and a repellor at Y = (0,1). Therefore A, is unstable at the critical parameter

value ¢ = 0. It is easy to verify As is stable if ¢ 7?0 (see Section 3 below). As g - 0+
the attractor e runs into X and donates its attractiveness to X.

Mathematically the bifurcation is best understood by considering the induced flow on
the line R containing A. If ¢ < O there is an additional repellor e € R outside a.

S S S, G

Thus as the parameter passes through the critical value the fixed points e,X cross and

exchange stabilities. Taking coordinates (x,y) the dynamic is given by
X = x(y-(Ite)xy), ¥ = ylex~(l+e)xy) .
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Purting x = 1-y, we can use y as a single variable for R, with origin at X, and then the
dynamic is equivalent to the single equation
¥ = v + -2y )

Within the constraint imposed by the games this is indeed a versal unfolding of the germ
)'v = -y2+y3 at y = 0, since the constraint requires that X be kept fixed, but if we were to
allow arbitrary perturbations on R then a versal unfolding would include an additional
constant term, thereby giving a catastrophe surface with a fold curve through the origin.
Then our constraint would be the same as taking the tangential section of this surface at
the origin, thereby recovering the above unfolding as the classical exchange of stabilities
bifurcation.

The following example shows the same phenomenon in one higher dimension. Here
a saddle in a 2-simplex runs into, and exchanges stabilities with, an attractor on an edge.

The details of proof are left to the reader (see also Figure 11).

0 e -1 Figure 5. £>0 £<0
A =2+ 0 -1
€
1 1 0

Example 4. The rock-scissors-paper game.

X
0 1 -1 , 2
Figure 6.
A=1q- 0 1
1 -1 0
The associated dynamic is given by permuting cyclically
x = X, ). < X
Xy = XXy X)) %o < 1
Let V = x x X Then V has a maximum at the barycentre e, and no other stationary

071727
points in A {by an argument as in the proof of Theorem 1). Meanwhile

3 _ V N _ _ B _ _
V= Exixi = (xl x2) + (x2 xo) + (xo xl) 0.
Therefore the orbits of ¢ N in A-e are the level curves of V, which are smooth simple
closed curves surrounding e. The following perturbation shows that A is unstable.

Example 5. Degenerate Hopf bifurcation.

=l <0
0 e -1 Figwre 7. e>0 e=0 &
A =1-1 0 1+
£
e -1 0

At the initial parameter value ¢ = 0 we have the previous example. When ¢ # 0 the same

function V becomes a Lyapunov function for the flow, as we now show. The dynamic is

given by permuting cyclically

x5 = xo(xl -)(241»:()(1 -g)), where g = x0x1+xlx2+x2x0 .
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Therefore \‘7 = g{1-3¢). But ¢ has a2 maximum of { at the barycentre e, and no other
stationary points in & Therefore if ¢ > 0 then \'7 >0on A - e, and so e is an *attractor
with basin of attraction A. Similarly if ¢ <O then V <O on A - e, and so e is a repellor
with basin of repulsion A. Therefore as the parameter passes through the critical value

the flow exhibits a Hopf bifurcation as the fixed point switches from attractor to repellor [5].

Notice that this is a "degenerate” Hopf bifurcation in the sense that all the cycles
occur at the critical value ¢ = 0, and so there are no small cycles before or after passing
through the critical value. This type of Hopf bifurcation is called "degenerate” because it
has codimension = in the space of all 2-dimensional flows. However in our context it turns
out to be typical rather exceptional, because in Theorem 6 below we show that it has
codimension 1, and in Theorem 7 that all Hopf bifurcations on a 2-simplex are of this
nautre. On the other hand if we raise the dimension by one then generic Hopf bifurcations
do appear, as illustrated by the next example.

X
Example 6. Generic Hopf bifurcation. 3
Figure §. \
0 1 € 0]
0 0 1 € X
A =4 X 2
e 0 0 1 1 ‘
1 £ 0 0

0
This example is due to Sigmund and his coworkers [11 part (ii)], and they have generalised

it to all n = 3. We first consider the critical case ¢ = 0, which they call the hypercycle,
since it represents a cycle of 4 chemicals each catalyzing the next. We shall show the
barycentre e of the tetrahedron A is anm attractor with basin A. It is convenient to choose
coordinates (y,z) € R X €, centred at e, given by

y = (x0+x2) - (xl+x3)

z = zl‘Hz2 = (xo-xz) + 1(x1-x3)
where, for this example only, the notation i means ,/-1. The dynamic is given by
permuting cyclically

s _ 2

Xy = x0(4x1 1) .
Therefore in terms of y,z the dynamic can be rewritten
= ~ytHiz.z +y3

172 2

= -iz-(1-i)yZty z.

e

Ne

*

Alternatively we could deduce this from Theorems 1 and 2, because e is an ESS, since
fx = 0 and gx = ¢(3-0) > O on A - e. However this argument fails to generalise when we
need it for classification in Theorem 6 below.
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The linear approximation at the fixed point is

e

=y
z = -iz .

Therefore the fixed point has eigenvalues -1, +i. Nevertheless e turns out to be an
attractor, unlike the previous example. For consider the Lyapunov function V = XX XX
which has a maximum at e and no other stationary points in A. Then V= 4Vy , and so
V > 0 on & except on the plane y = 0. If y = 0 and z,%, #Othen§=4zlzz # 0, and so
the orbit crosses this plane transversally. If y = 2, = 0 and zy # 0 then El =z, # 0,
and so the orbit crosses the zz-a.xis transversally. Similarly orbits cross the zl-axis
transversally. Therefore V decreases strictly along all orbits in A-e. Hence e is an
attractor with basin of attraction A. The subtlety of this example compared with the
previous one is that the orbits cannot linger in the eigenspace of the eigenvalues +i, and
so they have to get sucked into e.

Now consider the perturbation ¢ # 0. The barycentre e is again the unique fixed
point in A, but this time the linearised equations at e are :
(-Ite)y
~(e+i)z .

e
i}

Ne
il

This time the eigenvalues are -l4¢, -¢H, and

V= aVi(ely’ + 22|77 .
Hence if 0 < ¢ < 1 then e is an attractor (indeed an ESS) with basin A. On the other
hand if ¢ < O then e is a 1-saddle. For small ¢ < 0 there must be an attracting small

closed cycle near e by the Hopf bifurcation theorem [5], since there are no small cycles

for ¢ = 0. This attracting cycle is shaped X
3
like the seam on a tennis ball, and as ¢
decreases it expands out to the cycle Fégure 9.
X
X3X2X1X0 on the boundary. 2
Chemically this example represents Xl

a mixture of 4 chemicals, and the Hopf

bifurcation represents the continuous

transition from a stable equilibrium into a 0

little chemical clock - the precursor,

perhaps, of the first biological clock? With only 3 chemicals this is impossible because
by Theorem 7 below all Hopf bifurcations on a 2-simplex are degenerate as in the previous
example, and so instead of getting a continuous transition from equilibrium to clock one
would get a catastrophic breakdown of equilibrium, leading to the exclusion of two of the
chemicals,
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Section 3. Classification.

The eventual aim of classification is to list the equivalence classes, both the stable
classes and their bordering relations with those of higher codimension, and to describe
the qualitative nature of the resulting flows, bifurcations and catastrophes. In particular
the classification would involve giving criteria for two matrices to be equivalent, in other
words to induce topologically equivalent flows.

We begin very modestly in Lemma 3 by finding the condition for two matrices to
induce the same flow. For instance if a constant is added to a column of A then the flow is
unaltered. The interpretation of this in terms of game theory is as follows : if the
pay-off to all strategies is increased equally then the relative advantage of each strategy is
unaltered, and so the evolution is the same. Therefore given any matrix we can, without
altering the flow, reduce its diagonal to zero by subtracting a suitable constant from each
column. This simplifies the classification problem by reducing the dimension of the
classifying space; it also explains why we have chosen zero diagonal in all our examples.

Notation. Let Kn’ lod Mn, be the set of nxn matrices all of whose columns are
multiples of u, Let Zn' < Mn’ be the set of matrices with zero diagonal. Since
Zn a Kn = 0 we can write Mn as the direct sum or topological product
M =Z XK.
+ n n n
Let Zn denote the demse subset of Zn consisting of matrices with zero diagonal and non-
zero off-diagonal terms.

Lemma 3. Given A,B ¢ Mn+1 then Q= <pB¢==}A-B € Kn+1'

Proof. Since X depends linearly upon A it suffices to prove @ = 0 if and only if A € Kn'
Py =0=>%=0, x€n
= (Ax)i independent of i, vi,x, such that x, #0
+ = = + =t) ‘: i, t, t
=>aiit aij(l t) ajit ajj(l t), vi,j,t, such tha
0 <t <1 (putting x =t xj = 1-t)
:aij = ajj’ Vi, j (comparing coefficients)
=>A ¢ K.
Conversely, A € KIl :aij independent of i, vi,j
%(Ax)i independent of i, Vi,x
=>x fixed, vx, and so Oy = 0.

Corollary.  Every equivalence class in Mn+ is of the form E X Kn+1’ where E

1

Therefore stables are dense in Mn+ if and only if they

is_an equivalence class of Z ..
2 “ni1 1
are dense in Zn 1 and to classify equivalence and stable classes in Mn 1 it suffices to

lassify i .
classify them in Zn+l

Classification for n = 1. The corollary enables us to dispose of this case at once.
0a
2 bo/’
the fixed points it is easy to verify there are 4 equivalence classes, as follows. In the
first two classes there is a fixed point e = (L,i) € A, which is an attractor in the
a+b’ atb

first class, and a repellor in the second. As usual, attractors are indicated by solid dots

Here A is a 1-simplex, and Z, consists of games of the form A = By examining

and repellors by open dots. In class (iv) all points are fixed. Equivalences can be
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constructed by mapping fixed points to fixed points and extending piecewise linearly. I
one of the variables changes sign while the other remains non-zero there is an exchange
of stabilities bifurcation as in Example 3 above.

(i) a,b>0 O—>—@—~—0

(i) a,b<0 *——O0—»—0

(iii) a > 0 2 b, not both zexro =~ @®———<——0

< b, not both zero O——>——@

0.

a<0

(iv) a=>b
Therefore A is stable <> A ¢ Z; Therefore there are 3 stable classes (or 2 up to flow
reversal since (i) is the reverse of (ii)), given by

1) a,b>0
(ii) a,b<0
(iii) a>0>b or a<0<b.

+
Lemma 4. A € Zn+1 and A stable —»>A € Zn_'_1

Proof. Suppose not. Then aij = 0 for some i # j. Let I' denote the edge ij. If aji #0
then there are no fixed points in F, and a perturbation making aij the same sign as aji will
introduce a fixed point in f", making an extra fixed point in the 1-skeleton of A, and hence
an inequivalent flow. Therefore A is unstable. If aji = 0 then T is pointwise fixed, and

a perturbation making aij non-zero will have no fixed point in ¥, making one fewer
pointwise-fixed edge in the 1-skeleton, and hence an inequivalent flow. Therefore again
A is unstable and the Lemma is proved.

Saddle points. Recall a fixed point is called hyperbolic if its eigenvalues have
non-zero real part. It is called a saddle ofindex r, or more briefly an r-saddle, if
the inset (= stable manifold) has dimension r and the outset (= unstable manifold) has
dimension n - r. For instance an attractor is an n-saddle, and a repellor is a 0-saddle.

Lemma 5. If A € Z:_H then all the vertices of A are hyperbolic. The index of Xj

equals the number of negative terms in the jth column, and the inset, outset of Xj are

open subsets of the faces {i;aij < 03}, {i;aij = 0} respectively.

Proof. Taking xi,i # j, as local coordinates at Xj’ the linearization of the dynamic at
Xj is ;(i = aijxi’i # j. Hence the eigenvalues of Xj are aij'i # j, which are non-zero by
) +
the hypothesis A € Zn e
faces of A are invariant Xj is an attractor, repellor of the induced flows on the two faces

Therefore Xj is hyperbolic with the required index. Since the

specified, and so its basins of attraction in them are open subsets of them, and these
are the same as its inset, outset under ¢ A

Combinatorial equivalence. Given A,B € Z;H call them sign equivalent if

corresponding off-diagonal elements have the same sign. Denote a sign class by the
corresponding matrix of signs. Given a permutation ¢ of {0,1,...,n} let gA denote the

matrix obtained by permuting both rows and columns by . Call A,B combinatorially
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equivalent if gA,B are sign equivalent for some ¢.

Lemma 6. Stable classes refine combinatorial classes.

+
Proof. By Lemma 4 stable classes in Zn+1 are contained in Zn+l’ and so it suffices to

show that A ~ B implies A is combinatorially equivalent to B. Let h be a face-preserving
homeomorphism of A inducing A ~ B. In particular h permutes the vertices, by a
permutation o, say. If g, denotes the induced linear homeomorphism of A then o, gives
an equivalence A ~ gA. Therefore hcr; 1 gives an equivalence gA ~ B, that fixes the
vertices. But any equivalence maps insets to insets and outsets to outsets. Therefore gA
is sign equivalent to B by Lemma 5, and so A is combinatorially equivalent to B, as
required.

Therefore the problem of classifying stable classes can be split into two, firstly
the listing of combinatorial classes, and then the decomposition of them. It is a
straightforward combinatorial task to list them, since each is characterised by the fixed
points in the l-skeleton of 4, although the list tends to get large as n increases. Meanwhile
to decompose a combinatorial class it suffices to consider a single sign class (since all
the other sign classes decompose isomorphically). In each sign class there seems to be
relatively few equivalence classes, although to establish the actual decomposition in each
case appears to be a non-trivial problem.

Theorem 5. The number of combinatorial class (up to sign reversal) is as follows:-

n 1 2 3
umber of classes| 2 10 114

The case n = 1 has been already done above; we shall prove the case n = 2 and leave n = 3
to the reader. Figure 10 illustrates the 10 cases for n = 2 by giving in each case an
example of the flow on the l-skeleton. As abbreviated visual notation we only put an
arrow on an edge if there is no fixed point in the interior of the edge, and otherwise
indicate the fixed point by a solid, open dot according as to whether it is an attractor,
repellor for that edge, although of course when the flow is extended over the interior it
may in fact turn out to be a l-saddle, depending upon the coefficients in A.

AN D BB B

Proof. We compute the number Nr of classes having fixed points inside r edges by listing

the inequivalent ways of putting arrows on the other edges. N0 = 2 because the arrows can

be cyclic or not, giving classes 1,2. Nl = 3 because up to flow reversal we can choose

the fixed point to be an attractor, and then the opposite vertex can be a repellor, attractor
or saddle, giving classes 3,4,5. N2 = 3 because if the two fixed points are similar the
direction of the arrow does not matter, giving class 6, but if they differ it does, giving
classes 7,8. Finally N3 = 2 because the three fixed points can be similar or not, giving

classes 9,10.

Now comes the more difficult business of decomposing combinatorial classes into
stable classes. We only attempt this for n = 2, because this dimension seems to have the
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following convenient property.

Conjecture 3. If n = 2 the fixed points determine the stable classes.
The conjecture looks harmless, but is surprising because it implies there are no periodic
orbits in the stable classes. This in turn implies that there are no generic Hopf
bifurcations, but we prove this result separately in Theorem 7 below. (For n = 3 there
are generic Hopf bifurcations by Example 6 above). The conjecture also implies the
classification :

Corollary to Conjecture 3. If n = 2 there are 19 stable classes (up to flow reversal)
as shown in Figure 11. Taylor and Jonker [14] and Schuster et al. [11, Part (iv)] have
published computer drawings of some, but not all, of these 19 classes. We have
arranged them in Figure 11 so that the first 5 classes are those with an attractor in the
interior, the next 4 are those with a saddle, and the last 10 are those without a fixed point
in the interior;of the latter the first 4 have one attractor on the boundary, the next 5 have
two attractors, and the last has three attractors. In each class we have chosen a
representative matrix such that, if there is a fixed point in the interior, it is the barycentre,
and, if not, the fixed points on the edges are at their barycentres. We have labelled each
class by the combinatorial class containing it (see Figure 10), with a suffix if necessary,
and a minus sign in those cases without a fixed point in the interior where the reverse
flow has been chosen in order to maximise the number of attractors on the boundary. The
three combinatorial classes 2,3 and 8 are in fact equal to stables classes, but the other
seven combinatorial classes each contain more than one stable class. In particular class 1
contains both the class shown and its reversal. It can be shown that the 19 cases are the
only possible stable configurations of fixed points, and that these configurations are dense.
In the last 14 cases it is easy to verify by Poincaré-Bendixson theory [3] that the fixed
points determine the topology of the phase portrait, but in the first 5 cases this is not so
obvious because it is necessary to prove the non-existence of periodic orbits surrounding
the attractor. We prove this for class 1 in Theorem 6 below, but my proof for the other
4 classes is incomplete. Before we prove this we simplify the problem by showing how to
move a fixed point in the interior to the barycentre.

Py
0

0
Let P be a positive diagonal matrix P = ".p'), where p; > 0, i=0,1,...,n.

Let p:A = A be the induced projective map given by (px)i = n-lpixi, where ¢ = Epixi .

Lemma 7. p induces an equivalence AP ~ A.

Proof. Let v,w be the vector fields on A induced by A, AP respectively. Then
(vx); = x,((Ax), - xAx), (wx), = x,((APx); - XAPX).
- _ .3 _ -1 -2
The derivative maps ((Dp)w)i ﬁ,axj (px)iwj T PW, Cw pixiz];pjwj
-1 -2
L (D . = X, - .
S A(Dpywx), = ¢ PX,(APX), - 7 "X, Epjxj(APX)j
(since the other two terms cancel)

pixi((zw'll’x)i - xPp tan Tpx)

7 (v(px));
Therefore Dp maps w onto v multiplied by the scalar o, and so p maps (pAP-orbits to
© A-orbits as required.

Call a matrix central if it has an isolated fixed point at the barycentre of A. Suppose
we are now given A with an isolated fixed point e € A (which is then the unique fixed point
in A by Lemma 1). Let E denote the diagonal matrix with e along the diagonal. Define

the centralisation of A to be the matrix A = (n+l)AE.
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5l 61 71
0 3-1 011 0 6-4
101 -103 -305
3-1 0 110 ~130

4l 72
0 3-1 013 0 1-1
3 0-1 -1 05 -101
110 130 -110

2 52
11 01 1 0 1-1
01 10 1 101

~-10 -1-1 0 1-1 0

—42 —64
-11 0-1- 1 0-1-1
o1 1 0-1 1 0-3
-10 -1~ 10 -1-3 0

-102
0 1-3 0-3-1
1 0-1 -3 0-1
-1-10

The conjectured List of 19 stable classes for n=2 {up Lo
§low revensal). Attractons are marked with a solid dot,
nepellons by an open dot, and saddles by theirn insets and
outsets. ALL othen ornbits flow from a repellor to an
attracton, except in class 1, where the o-Limit 44 the
boundany. The numbens nefen to the combinatonial class
in Figune 10, and a minus sdign indicates §Low nevernsal.

A nepresentative matnix {s given forn each class.
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Lemma 8. A is central and A ~ A. If A central then A = A.

Proof. Let P = (n+l)E. Then A = AP and so p‘A ~ A by Lemma 7. Meanwhile p maps
the barycentre to e, and so A is central. If A is already central then P = I, and so
A=A,

Let C = combinatorial class 1, which consists of the two sign classes

o + - 0o - +
S = - 0 + , S={+ 0 -
+ - 0 -+ 0
Let C ,C_,C_ denote the subsets of C given by det A 2 0. (Note that each subset meets

+ 70
each sign class.)

Theorem 6. Two matrices in C are equivalent if and only if their determinants

have the same sign. Therefore C contains three equivalence classes, of which C +,C_

are stable classes and flow reversals of each other, while C0 is unstable, being a

submanifold of codimension 1 separating the stable classes. If A € C+,C_ then ¢ A has an

attractor, repellor in A with basin of attraction, repulsion equal to A. If A € C0 then N

has a focus in A, and all other orbits in A are cycles. The phase portraits are :

Figuwre 12. /\\ /\

Therefore any path in C crossing C transversally induces a degenerate Hopf bifurcation,

as in Example 5 above.

Example 7. Before we prove Theorem 6 we use if to correct a mistake of Taylor
and Jonker (14, p.151]. They give a (computer inspired) example

2 1 S
A= S o 0
1 4 3

which they claim has an attractor in A when o = 3, undergoes a generic Hopf bifurcation
when « passes 3, and has a small attracting cycle with a = 3 + g, ¢ > 0, provided ¢

sufficiently small. However, by Lemma 3, A gives the same flow as

0 1-g 2
B = 3 o -3
-1 4-a¢ O

and detB = %3-0) = -9%. Therefore by Theorem 6 when o = 3 the fixed point isa focus
rather than an attractor, as q passes 3 the Hopf bifurcation is degenerate rather than

generic, and when 0 < ¢ < 1 the fixed point is a repellor with basin of repulsion A, so

there are no cycles.



491

Proof of Theorem 6. Up to equivalence it suffices to confine attention to the sign

class S, because if B € -S, and ¢ is any odd permutation, then ¢Be S, ¢B ~ B and

det gB = det B. Therefore suppose A € S. Then all the coefficients of adjA are positive,
and hence so are those of (adjA)u. Therefore the vector subspace generated by (adjA)u
meets A is a point e, which is therefore the unique fixed point of N in A. By Lemma 8,
A is equivalent to its centralisation. Therefore up to equivalence it suffices to assume A

is central, in other words e is the barycentre. Therefore, since (Ae)i is independent

of i, the sum of the columns of A is a multiple of u, = 26u say. Therefore we can write
0 e—iao e-ao
A= 6-a; 0 gta; , 0= 6| <a -
gta, 6-a, 0

20%1 12 20

Then detA = 26(62+p), where p = a,a, +aa, +a,a, > 0. Therefore detA 2 as 6 % 0.
We now construct a Lyapunov function V for (,oA in A as follows. For i =0,1,2

let bi = ;3, where b = (D—) Then b > 0 and Z:b = 1. Given x € 4, let
i 3
= PQ, where P = ﬂx i, Q = be
3V Pb, Q
Then Vi = Y = PQi + PiQ = Pbi -x— . By Lagrange's method V has a stationary point
i i

at x provided V - )\(Sx.-l) is stationary. Vi -A=0

Pblx - PbiQ - xxi =0
Summing over i, X = 0. x1 =Q. . x =e. Therefore e is the only stationary point
of Vin A, and is a minimum because V - ® as x = 3A.

g o= , = _9 -
V = EVixi L,Pbi(l xi)xi[(Ax)i xAx]

= PEb (x,-Q)[(Ax), - xAx]

= P[Z}bixi(Ax)i - QbAx], since the other two terms cancel.
Now b X (Ax) = boxo[(e-f-a )x + (8-a )x2]

=6b(xx+xx)+b(x0

;. obx (Ax) = 82 (b +b )x x
i1 i<

bO(Ax)0 = bo[(eﬂo)xl + (e-ao)x2]
=eb(x+x)+b(x X,

17%0%2)

S bAX = GZXl -b, )x , since Tb, =1
f? i
“ QbAx = ezb.x.z(l-b,)x, = O[Eb.(l—b.)x,z +3 bi(l-bj)xixj]

= eE[bb(x +x2) + (b+b be)xx]
i<j i

= GZ[bb(x -x) + (b+b)xx]
i<j

Vo= “GPEbb(x -x)

i<j
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Ifxe il -ethenxi;éxjforsomei#j, and so

VS 0as 9%0, hence as detA%O.
If detA > 0 all orbits in A - e flow towards the minimum e of V, which is therefore an
attractor with basin A. Similarly if detA < O then e is a repellor with basin A. If
detA = O then V = 0 and the orbits of ®p in A - e are the level curves of V, which are
all simple closed curves surrounding e. We have established the phase portraits. Given
two central matrices A,B whose determinants have the same sign we need to show they
are equivalent, and in order to construct the required homeomorphism the following lemma

is convenient.

Lemma 9. The orbits in A - e cross the rays through e transversally, going

clockwise around e.

Proof. %a(x-e) = multiple of u, = 3&u say. We need to show that § > O on & - e.
Throughout this proof let T denote the sum of the three terms obtained by permuting the
suffices 012 cyclically, Adding the components of )'(A(x-e) gives
= X - =% -
8 = Ix,(x; X,) = Dx(Ax),(x, X,).

When g = 0, (AX)O aO(xl -Xz), and so

=%
8 = Zapx,(x,

(ao-e)(xl-xz) +26x,, and so

2 .
x2) > 0, since xi # 0, some xi # xj .

When 6 > 0, (Ax)0
6= E(a(.)-e)xo(xl-xz)2 + 26¢, where a = Exoxl(xl-xz) .
Since |6] < a; the first term > 0, and so it suffices to show o = 0 in A. Let 8= Exo(xo-xl)-
Now o, 8 = 0 on 3A, because if x = (s,1-5,0), 0 < s < 1, or cyclically for the other sides,
then ax = s(1 -s)2 20, Bx-= 352-3s+l >0.
Therefore if xt =tx+(l-t)e, x € 3p, 0 <t =<1,
a(xt) = tsax + %tz(l -t)8x = 0 .
Finally the case 6 < 0 is obtained by reversing the flow and permuting Ol.
Returning to the proof of Theorem 6, we can construct a radial homeomorphism
of A keeping e and 3A fixed, and throwing ¢ A-orbits to <pB-orbits by the standard technique
of structural stability [107 of using the two Poincaré return maps on one particular ray,
and extending orbitwise to the other rays. Hence A ~ B.
Finally C0 is a submanifold of codimension 1 separating C , necause we can
parametrise any matrix in C by the parameters (e, 8, ai) where e denotes its fixed point and
o, a denote the parameters of its centralisation . This completes the proof of Theorem 6.

Remark. If we allow the parameters a, to be negative, then we can use the same
Lyapunov function V to determine the phase portraits of the four other stable classes in
Figure 11 with an attractor (or repellor) in A provided p > 0. However, if o < O then V
is no good because its stationary point becomes a saddle rather than a maximum or
minimum, and so what is needed to complete the proof of Conjecture 3 is to find another
Lyapunov function to cover the case p < 0. On the other hand we shall show that Hopf

bifurcations can only occur when p > 0, and so we can at least classify those.
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Suppose A has an isolated fixed point e € A, and centralisation
_ 0 e+a0 6-a0
A = 3AE = g-a, 0 Ba, | , 62, € R
e-laz e-a2 0
We call g, a the central parameters of A. As before let p = a a +a.a_+a,a

071 7172 7270°
Lemma 10. The eigenvalues of ¢ A at e are (-8 +4/-P). Therefore they depend

only on the central parameters and not on e.

Proof. Let x = ety. Then yu= 0 and so yAe = 0.
A (eiﬂi)[(}c’); + (Ay)i - eh€ - eAy -yA€ - yAy]

ei[(Ay)i - eAy] + higher order terms in y.

il

Therefore the linearisation et e is
§r = EAy - e(eAy) = (E-ee)Ay.

The eigenvalues are the same as those of the matrix

M = A(E-ee) = AE - (Ae)e = AE - (36u)e, since Ae = AEu = 36u,
~26e 6+a -26e 6-a,-28e,
L oaa _ }
= 3|62 2960 2661 G-Ial 29e2
9+a2-29€0 6-a2-29e1 -Zeez , ,
Now detM = 0 because (E-ee)u = 0. Therefore the eigenvalues are given by A -2a) +8x = 0,
where
200 = trace M = -%9- . hacs -g.
= i = i\-\ - - _
B = trace(adjM) = 9;,[ (6ta )6 a,) + 26e0(e+ao) + 26e,(6-2,)]
_ L2
= 9(9 +p) .

The eigenspace corresponding to A = 0 is transverse to A, and so the eigenvalues for (pA
2
are A = g + Jo - = ¥-6 +./p)-

Theorem 7. When n = 2 all Hopf bifurcations are degenerate.

Proof. For a Hopf bifurcation to occur at a matrix A_, it is necessary for it to have an

isolated fixed point e € A with pure imaginary eigenval?les. Therefore if 6, ay denote the
central parameters of AO then § = 0 and p > 0 by Lemma 10. Up to equivalence it suffices
to assume AO central, by Lemma 8, since this does not affect the eigenvalues, by Lemma
10. There are three cases :-

(1) Al a; non-zero and the same sign.

(2) Al a, non-zero, but not all the same sign.

(3) Some a, = 0.
Case (1) is covered by Theorem 6. In case (2), by permuting and reversing sign if
necessary, we can assume

a al>0, a, < 0.

o’ 2
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1.-1 3t b
As before let b = (3—) ~ = , b,==— . Then Tb, =1 and b, > 0. but b,b.,,b, < 0.
ai [ i a1 i 2 0’71

We use the same Lyapunov function V as in Theorem 6, and again the only stationary

point of V in A is the barycentre e. However, this time V = 0 on the edges X X XIX

02’ 2

and on the line Q = 0, which meets those edges in points

a0 -a2 al '32
Y=a-a’o’a—a ’Zzo’a-a’a-a
0 2 0 2 1 72 71 2

Also V = -= as X ~ interior (edge XOXI)' The level curves of V are illustrated in the

middle picture of Figure 13 below. The condition p > 0 implies that e lies inside the
triangle X2YZ, in which V > 0, and so e is a maximum, and the level curves inside the
triangle are simple closed curves surrounding e. Meanwhile inside the complementary

L4 9
trapezium V < 0 and the level curves are arcs joining X ’Xl' As before V =0 in A

0
because 8 = 0. Therefore the orbits of @, are the level curves of V, with a focus at e,

saddlgs at X_,Y,Z, and a saddle-connection ZY, as

an attractor at X,, a repellor at Xl’ 2

0
shown in Figure 13.

Now consider a perturbation A of A We can assume A has an isolated fixed

0"
point in A, since this is a robust property by Theorem 4, and so up to equivalence we can
centralise A. Therefore we can write A in the same form as in the proof of Theorem 6,

with fixed point at the barycentre e, and central parameters 6, ay satisfying

aga, >0, a, <0, (8] < ]a2|, p > 0.
As before
\" = -gP= b.b,(x_-x.)2 = Ky say, where
g VIT17]
6Pb2 2 >
K=-=——%0as@gZ0, since a, « 0, and
aoala2 2

_ . 2
Y = cyclic sum }:ai(xj xk) .

Lemma 11. y > 0onp - e .

Proof. Notice that the sum of any pair of ai's is positive, for :

ao—fal >0 , since agpa; > 0
ao(al-!-a2) > -ala2 , since @ > 0
>0 , sinceal>0>a2
al*l“az >0 ,  since a; > 0.
a0+a2 >0 s similarly.

It suffices to prove the lemma for x € 3A, because if x, = tx-H1-t)e then gp(xt) = tzgpx > 0,
Vt, 0 <ts<l. If x =(s,1-s,0) then
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ao(l -s)2 +a s2 + a2(2s-1)2
= (ao-ba1+4a2)s - 2(a0+232)s + (a0+a

Px
)
> 0, v¥s, since

X, and

2
a + a, > 0, and (ao+al+4a2)(a0+a2) - (a0+Zaz) = p > 0. Therefore y > 0 on XO 1

similarly on the other edges. This completes the proof of Lemma 11.
Continuing with the proof of Theorem 7 we have shown V20 as 8 20on A - e.

Therefore if § > 0 then ¢ A has an attractor at e. It also has another attractor at XO’

a repellor at Xl’ and saddles at XZ’YG’ZG’ where
a.-f -a,-0 \)
0 2
Y = R , — € YX
2] (ao a2-29 ao a2 26 0
Z = (0 al+e _82+e )G ZX
2] al-a2+29 al-a2+26 2

Figure 13.

.
Therefore, since V > 0, the inset n of Y_must come from the repellor X , and the outset

1

of Ze must go to the attractor e. Since V > 0 there are no closed cycles in A - e, and

so all orbits in A - e must come from X,, and, except for 7, must go to X  or e.

1 0
Therefore 7 separates the basins of attraction of X0 and e, and the phase portrait is as
in Figure 13. The numerical Example 1 in Section 1 above was obtained by putting
a0=5, al=4, a2=-2, 6 =1.
If 8 < O then the reverse situation occurs, with X0 the only attractor, e a repellor,
and the outset { of Z9 separating the basins of repulsion of e and Xl'
0+ -
Let J denote the open subset of the sign class | - 0 + | consisting of matrices having
~+0
an isolated fixed point in A, and central parameters 6, ai such that all,a.2 > 0, a.2 <0,

. >
le| < |a2|, p > 0. We have shown that the subsets J,J,]_of J given by @ Z 0 have phase
portraits as in Figure 13. Given two matrices in the same subset we show equivalence by

constructing a homeomorphism of p throwing orbits to orbits, as follows. When 6 # 0
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the flows are gradient-like, so the construction uses the standard techniques of structural
stability [9], mapping fixed points to fixed points, and extending inductively to tubular
neighbourhoods of their insets, starting with repellors and finishing with attractors. When
6 = 0 again map fixed points to fixed points and extend piecewise linearly to ap U YZ; then
map the inside of the triangle radially frome so as to preserve orbits, and use the
structural stability technique inside the trapezium.

Therefore J n ]0 are the intersections of J with 3 equivalence classes. Since ] , are

open, they are contained in stable classes; ], is contained in class 71 of Figure 11, “and

J_ in the reversal. However they are not c:mected components of the stable classes,
because the latter also contain matrices for which p < 0. On the other hand J() is a
connected component of its equivalence class because by Lemma 9 a focus implies p > 0;
the other 5 components are obtained by the action on the triangle of the symmetry group of
order 6. Now ] is a neighbourhood of JO’ and ]0 is a submanifold of codimension 1
separating J K Therefore to obtain a Hopf bifurcation we must take a path in ] crossing ]0
transversally from ] + to J . As this path crosses ]0 there occur simultaneously the
degenerate Hopf bifurcation at e and the crossing of the saddle-connection ZY. The latter
is really part of the former, and that explains why the simultaneity can be a

codimension 1 phenomenon.

There remains case (3), where the matrix A has one of its central parameters

0

a; = 0. Since P > 0 the other two a's must be non-zero and the same sign, and so

without loss of generality suppose a.,a, > 0, a, = 0, 8 = 0. Consider the perturbation

071
A of AO given by putting a, = 26 # 0.
0 e-kao e-ao
A= 9~a1 0 gt
36 -6 0
When g > O the phase portrait of N is as in case (1), the left-hand picture in Figure 12,

ya. .

18] <agya,

1 ?

and when § < 0 it is as in case (2), the right-hand picture in Figure 13. Therefore there
are no small cycles when g # 0, and so by the Hopf bifurcation theorem [5] there is a
1-parameter family of cycles surrounding e in the phase portrait of ¢ K Therefore any
path through A0 transverse to § = 0 induces a degenerate Hopf bifurcatPon. This completes

the proof of Theorem 7.
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