
London Mathematical Society Impact150 Stories 1 (2015) 9–14 Ce2015 Author(s)
doi:10.1112/i150lms/t.0002

Categorical Monads and Computer Programming

Nick Benton

Abstract

The categorical notion of monad was first introduced into computer science as a way of
structuring mathematical models of programming languages. The idea has subsequently been
transferred back into computing practice, influencing the design of widely-used languages and
frameworks.

Expressions in conventional imperative programming languages bear a superficial similarity
to conventional mathematical notation, but they behave quite differently. For example, if f

and g are both ‘functions’ or ‘methods’ that take an integer argument and return an integer
result (we say they have type int -> int and write f : int -> int), the two expressions

f(3) + g(4) and g(4) + f(3)

are not generally equivalent, as they would be if f and g were ordinary mathematical functions.
The issue is not that integer addition in programming languages is not commutative (it almost
always is), but that calling a ‘function’ can do many things as well as, or instead of, computing
a result depending solely on the arguments. And the order and multiplicity of these ‘other
things’ – which are called side-effects – affect the behaviour of one’s program. The ability to
perform input/output operations is one example of a side-effect. If, say, both f and g just
return their argument, but also print it to the screen, then the expressions will both have value
7, but we would see “34” printed in the first case, and “43” in the second, assuming that the
operands of addition are evaluated left-to-right.

Another ubiquitous side-effect is mutable state. If the definitions (in C-like syntax) were

int f(int x) {

r = 2;

return x;

}

and

int g(int y) {

return r;

}

where r is a global variable, then if the initial value of r is 0, the first expression returns 5,
and the second 3. (While f(3) always returns 3, g(4) returns 0 before f has been called and
updated r, but 2 afterwards.)

One response to this mismatch is to ask what mathematical objects do accurately model
particular programming language features. Another is to design programming languages that
obey reasoning principles closer to those of ordinary mathematical expressions.

Following the first line of enquiry, we have seen that, in the presence of effects, ‘functions’ of
type int -> int cannot be modelled simply as elements of the function space ZZ. However,
assuming that the only effect in our language is global state, we can model such functions as
elements of

(S × Z)S×Z

Received 20 May 2015.

2010 Mathematics Subject Classification 68Q55, 68N18, 68N15, 18D15, 18C15.



10 NICK BENTON

where S is a set suitable for modelling the store. That is to say, the interpretation (or
denotation) of an int -> int ‘function’ in the language is a real function mapping pairs
of an initial store and an integer argument to pairs of a new store and an integer result. In the
simple case of a fixed set V of integer-valued variables, one naturally takes S to be ZV , the set
of functions from variables to integers. The denotations of our integer-valued expressions are
then elements of (S × Z)S ; more specifically:

Jf(3) + g(4)K(s) = (s2, v1 + v2)
where (s1, v1) = JfK(s, 3)
and (s2, v2) = JgK(s1, 4)

Jg(4) + f(3)K(s) = (s2, v1 + v2)
where (s1, v1) = JgK(s, 4)
and (s2, v2) = JfK(s1, 3).

The semantic brackets, J·K, map language syntax to the corresponding denotation; JfK and
JgK are the interpretations of f and g. Note how order of evaluation is made explicit by the
threading of intermediate states through the semantics.

Following the second path leads to functional programming languages, in which implicit side-
effects are eschewed. Functional languages are based on the lambda calculus, a calculus of pure
functions introduced by Church [3] in the 1930s to study computability and the foundations of
mathematics. The language of category theory is widely used in studying structures arising in
programming [1]. A particularly important example is the interpretation of the simply-typed
variant of the lambda calculus in Cartesian closed categories, i.e. categories with finite products
and exponentials, with objects of the category interpreting types, and morphisms interpreting
terms [8].†

Moggi [13] made the crucial observation that the semantics of languages with various kinds of
side-effect, including the treatment of state sketched above, could all be factored in the same
way: as a Cartesian category C modelling pure (non-side-effecting) values, equipped with a
strong monad T for interpreting potentially side-effecting computations. A strong monad is an
endofunctor T : C → C equipped with natural transformations ηX : X → TX, µX : T (TX)→
TX and τX,Y : X × TY → T (X × Y ) satisfying some coherence conditions. If JXK models values
of some type X, then T (JXK) models computations of type X. In the case of global state, for
example, one might model values in the category of sets and functions and then use the monad

TX = (S ×X)S

T (f : X → Y ) = λc : TX.λs : S. (s1, f x) where (s1, x) = c s
ηX(x) = λs : S. (s, x)
µX(c) = λs : S. c1 s1 where (s1, c1) = c s

to interpret computations. The interpretation JX->YK of a function type is (T JYK)JXK, i.e. maps

from values to computations. In the case of state, one can see that (S × Y )S
X

is isomorphic to
(S × Y )S×X , which was used above. Moggi also proposed factoring the semantics of effectful
languages through that of a computational metalanguage, a typed lambda calculus extended
with a new type constructor T, corresponding to the functor, and new term constructors
interpreted using the monad operations.

A great range of effects can be modelled this way. For exceptions, or errors, take TX = X +
E, the disjoint union of X with a set of exception values E. For non-determinism, TX = PfinX,
the finite powerset of X. For partiality due to recursion, TX = X⊥, the lift of X (adding a new
‘bottom’ element to X in a category of certain posets (domains) and continuous maps, rather
than sets). For output TX = C∗ ×X, pairs of sequences of characters from C with elements of
X. More sophisticated examples include monads for continuations (used to interpret jumps and
exotic control-flow mechanisms), resumptions (for concurrency), and probabilistic computation

†Among many other examples are the understanding of datatypes as initial algebras [4], coalgebras for studying
automata and dynamical systems [17], and groupoid models of dependent type theory [6].



CATEGORICAL MONADS AND COMPUTER PROGRAMMING 11

(with applications including machine learning and cryptography). Moreover, the translations
from impure languages into the pure metalanguage all have the same shape.

Moggi’s idea has been hugely influential in research on the semantics of programming
languages, but what is perhaps more notable is the way in which this piece of theory has
transferred back into practice, initially in the context of functional languages [2]. Programming
with higher-order functions and without side-effects has many advantages: programs are
concise, elegant and clear, amenable to parallelization and much easier to reason about and
transform than their imperative counterparts. But the point of running a program usually
is to cause some side-effect: reading and writing to the screen, file system or network.
Furthermore, using side-effects, particularly mutable state, is often desirable for performance
reasons. Functional programmers struggled for many years to incorporate input/output and
other effects, without destroying the good properties of their languages, until Wadler [18]
proposed using Moggi’s semantic construction (initially for mathematically modelling impure
languages) as an actual programming abstraction in pure languages, of which the best-known
example is Haskell [15].

Monads are a central abstraction in Haskell. The language provides convenient syntactic and
library support for programming with monads, including parameterizing code over different
monads. Many Haskell monads are defined entirely in the language, providing a reusable
abstraction of common patterns in purely functional programming (for example in parsing),
whilst others, including the monads for IO and mutable state, have built-in imperative
implementations, safely encapsulated by the monad abstraction. Monads make side-effecting
‘actions’ into first-class data values that can be composed, passed around and explicitly
computed with, rather than things that happen as an implicit side-effect of computation.
For example, the IO monad has an operation getChar : IO Char, representing the action
that when it is performed will read (and yield) the next character from the input. Similarly,
putChar : Char -> IO () is a function that takes a character, c, and returns the action that
will print c to the output (and yields a value of the trivial one-element type, ()). The infix
operator >>= corresponds to the Kleisli composition operation of the monad: it combines little
actions into bigger ones. If m : IO a is an action yielding a value of type a, and f : a -> IO b

is a function mapping a’s to b-yielding actions, then (m >>= f) : IO b is the action that
when run will first run m, performing some input/output and yielding a value x : a, and
then run (and yield the value of) f x, performing some more input/output. For example,
(getChar >>= putChar) : IO () is an action that first reads a character from the input and
then echoes that character back to the output.

A key point is that monads like IO are abstract: the type system ensures that one can only
manipulate IO actions using the provided operations. Crucially, there is no operation of type
IO a -> a, so no way to ‘forget’ the distinction between actions and values.† A consequence
is that (modulo termination) Haskell functions still behave like mathematical ones, depending
only on their arguments and satisfying simple equational laws, even when the arguments and
results may themselves be actions. A complete program is an expression of type IO (), and one
may imagine program execution as a process of ‘simplifying’ such an expression, using the usual
equations of the lambda calculus, to produce an action-expression in canonical form, which is
subsequently run to cause actual IO effects to be performed. This model of pure computation
of impure actions reconciles the mathematician’s ‘is’ with the programmer’s ‘does’.

Functional languages are not quite mainstream, but are used in many companies, from
small startups to large corporations (Intel, Facebook, Standard Chartered, Verizon, Ericsson,
BAE,. . . ), and in application areas including finance, hardware design, security, and cloud and

†It should be admitted that real Haskell implementations do include just such an unsafe operation. But
ordinary programmers are told that they should never, ever use it.



12 NICK BENTON

web infrastructure [5]. Industrial proponents of functional programming find that monadic
encapsulation of side-effects and powerful type systems not only remove whole classes of bugs,
but also enable the building of rich, higher-order domain-specific abstractions, so a program
can be close to a purely declarative, high-level, mathematical model of, for example, a financial
option [16] or an electronic circuit [14]. As part of its anti-abuse infrastructure, Facebook uses
a monadically-structured Haskell library, which transparently parallelizes, batches and caches
the fetching of data from external sources [10].

Futhermore, following an evolutionary, rather than revolutionary, path, functional ideas,
and monads in particular, have seen significant adoption in more traditional languages over
the last decade or so. Google’s influential MapReduce model for parallel processing of large
datasets is based on the observation that computations expressed in terms of a restricted set
of well-known functional primitives are amenable to being automatically distributed across
networked clusters of machines [9]. Microsoft ships both a functional language, F], and an
object-oriented language, C], that has numerous functional features. These include ‘Language
Integrated Query’ (LINQ): a uniform interface to many kinds of data (including traditional
databases, XML documents, and data on the web). LINQ generalizes the standard database
query language, SQL, and is explicitly designed around monads, here as a common abstraction
of collections and sequences [11]. A further development is the Reactive Extensions (Rx)
library, which also presents asynchronous events, such as mouse clicks or stock quotes, as
LINQ-queryable data sources. Rx is now available in many languages and greatly simplifies
programming of reactive applications by, roughly, allowing one to describe the desired
relationships between event streams, rather than writing imperative code to be executed when
each event occurs. Rx was originally devised by formally dualising (in the categorical sense)
the types of collection operations [12]. F] also supports general monadic programming in the
form of its ‘asynchronous expressions’, a primary use for which is scheduling communicating
concurrent tasks.

The monad abstraction has now been implemented in all major programming languages
(often many times) and is widely deployed, from simple uses of the error monad (TX = 1 +X)
as a better alternative to null-pointers, to the use of Rx in both the server and the client parts of
Netflix’s video streaming service, smoothly orchestrating concurrent streams of asynchronous
events between the user interface and backend services [7]. Online, there are now hundreds
(possibly thousands) of articles on monads, aimed at practising programmers and making
many fanciful analogies, comparing monads to spacesuits, monsters, boxes, elephants, and
onions, amongst other things. While the exact relationship between some of the real-world
code and the original, formal mathematical constructions may be a little loose, the fact remains
that some of the most important ideas in 21st century programming have their roots in 1930s
mathematical logic and 1960s category theory.

References

1. M. Barr and C. Wells. Category Theory for Computing Science. Prentice-Hall, 1990.
2. N. Benton, J. Hughes, and E. Moggi. Monads and effects. In G. Barthe, P. Dybjer, L. Pinto, and J. Saraiva,

editors, Applied Semantics: Advanced Lectures, volume 2395 of LNCS. Springer, 2002.
3. A. Church. A set of postulates for the foundation of logic. Annals of Mathematics, pages 346–366, 1932.
4. J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to the specification, correctness and

implementation of abstract data types. In R. Yeh, editor, Current Trends in Programming Methodology,
pages 80–149. Prentice-Hall, 1978.

5. Haskell.org. Haskell in industry. https://wiki.haskell.org/Haskell_in_industry. Accessed April 2015.
6. M. Hofmann and T. Streicher. The groupoid interpretation of type theory. In G. Sambin and J. Smith,

editors, Twenty-Five Years of Constructive Type Theory, volume 36 of Oxford Logic Guides, pages 83–111.
OUP, 1998.

7. J. Husain. Netflix: End to end reactive programming. In Commercial Users of Functional Programming,
2013. http://cufp.org/2013/jafar-husain-netflix-end-end-reactive-programming.html. Accessed
April 2015.



CATEGORICAL MONADS AND COMPUTER PROGRAMMING 13

8. J. Lambek and P. J. Scott. Introduction to higher-order categorical logic, volume 7 of Cambridge Studies
in Advanced Mathematics. CUP, 1988.

9. R. Lämmel. Google’s MapReduce programming model – revisited. Science of Computer Programming,
70:1–30, 2008.

10. S. Marlow, L. Brandy, J. Coens, and J. Purdy. There is no Fork: An abstraction for efficient, concurrent,
and concise data access. In International Conference on Functional Programming. ACM, 2014.

11. E. Meijer. The world according to LINQ. ACM Queue, 9, 2011.
12. E. Meijer. Your mouse is a database. Communications of the ACM, 55(5):66–73, 2012.
13. E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92, 1991.
14. R. S. Nikhil. Types, functional programming and atomic transactions in hardware design. In Buneman

Festschrift, volume 8000 of LNCS, pages 418–431. Springer, 2013.
15. S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report. CUP, 2003.
16. S. Peyton Jones and J.-M. Eber. How to write a financial contract. In The Fun of Programming. Palgrave

Macmillan, 2003.
17. J. Rutten. Universal coalgebra: A theory of systems. Theoretical Computer Science, 249:3–80, 2000.
18. P. Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2(04):461–493, 1992.

N. Benton
Microsoft Research
21 Station Road
Cambridge CB1 2FB
United Kingdom

nick@microsoft.com


