
Space and spaces

Graeme Segal

The idea of space is central in the way we think. We organize our percep-
tions in physical space, we think of time as a one-dimensional continuum, and
we carry spatial notions over to any number of our conceptual constructs.
Nevertheless, in some sense space is ‘our’ technology, wonderfully evolved for
dealing with our experience of the physical world. It is probably only an
approximation to reality.

Long ago I happened to be looking at an account of quantum field the-
ory written ‘for the general reader’ by Freeman Dyson, one of my favorite
writers about science. I came upon a passage where he said that there are
‘well-understood mathematical reasons’ why when we quantize a wave-like
physical system such as the electromagnetic field the result is best described
in terms of particles. “Unfortunately,” he added, “the reason for this can-
not be explained in non-mathematical terms.” I felt rather let down, for I
don’t like the idea of mathematics as an arcane mystery where even the ba-
sic ideas can only be explained to initiates. I also wondered exactly which
well-understood mathematical reasons Dyson had in mind. I have thought
about the question a lot since then, but haven’t come up with anything that
would be of much use to non-mathematicians; I leave it as a challenge. It
seems to me a challenge even to give a clear mathematical account. I suppose
that Dyson was thinking of the traditional statement that a free field can be
regarded as a system of independent harmonic oscillators — which mystified
me so much when I first encountered it in physics lectures as an undergradu-
ate — but I believe that to understand the essential point involves thinking
carefully about how we use the concept of space. That is the aim of this talk.

One of the triumphs of mathematics is the creation of the real numbers
as a model of a one-dimensional continuum. It perfectly encodes all our
intuitions of how such a thing should be1. Another great achievement — if

1Once when I was young and innocent I tried to explain to an eminent philosopher
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not quite on the same level — is the concept of a topological space, which
captures a more general intuitive idea. Primarily, a space is a set with a
notion of proximity, which tells us when a point of the the space is moving
continuously as a function of time, and tells us when a real-valued function
on the space is continuous. Beyond that, it has the feature that different
regions in the space can in some sense be studied independently. The formal
definition of a topological space does not involve the real numbers, but, as
you see, my account of the intuition very much does.

But spaces also have a non-local aspect. The crudest way to classify
topological spaces is by their homotopy-type. If we start with the category
of topological spaces and identify maps when they are homotopic — when
one can be deformed continuously to another — then we get the homotopy
category. In this category homotopy-equivalent spaces become isomorphic,
so, effectively, the homotopy category is very much smaller than the category
of topological spaces. It is the receptacle for the non-local properties of a
space: it records how the space is connected-up globally — what we still
need to know when we know everything about the local structure near every
point of the space.

We have very powerful intuitions about homotopy-types, at least in low
dimensions. No-one ever doubted that a real polynomial equation of odd
degree has a real root, long before there was any framework to prove the
intermediate-value theorem. In the same way, the winding-number proof
that the complex numbers are algebraically closed — the two-dimensional
analogue of the intermediate-value theorem — carries immediate conviction2.

The non-local nature of the homotopy category gives it a life of its own.
Though in principle its objects are sets, we often come upon well-defined
objects in the homotopy category for which there is no specially singled-out
topological space which represents them. The London tube map is obvi-
ously well-defined up to homotopy, but what, exactly, is the underlying set?
There are many more extreme examples: in mathematical logic and com-

in my Oxford college why mathematicans are no longer puzzled about how Achilles can
overtake a tortoise, and the resulting explosion has made me wary of transgressing cultural
boundaries.

2Our intuition is of course patchy and unreliable: one is rightly certain that if one puts
a disc of cloth down on a smaller circular plate so that the edge of the cloth runs twice
around the boundary of the plate then the cloth must cover the plate completely, but it
is less immediately evident that performing the act with ordinary cloth in ordinary space
is impossible.
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puter science it can be useful to think of a ‘proof’ as a ‘path’ — defined up
to homotopy — from one proposition to another. Evidently these paths are
maps from an interval of the real numbers into a definite topological space.

One place where the independent life of the homotopy category is impor-
tant is in algebraic geometry. An algebraic variety over the complex numbers
is a space, but not just any space: when a space is defined by algebraic equa-
tions its homotopy-type is very strongly constrained, and has an elaborate
additional structure. For the moment I’d just like to point out that the
homotopy-type of a variety plays a mysterious role in unexpected contexts. I
first became interested in mathematics through physics, and I was incurious
about number-theoretical questions like Fermat’s last theorem. I felt more
interested when the theorem was restated to me as the fact that the real plane
curve with equation xn + yn = 1 somehow gets from (1,0) to (0,1) without
going through any points with rational coefficients. But I was gripped when
I heard of Mordell’s conjecture, proved by Faltings in 1983, which gives a
criterion for any plane curve with a rational equation to have at most finitely
many rational points. The criterion is in terms of the homotopy-type of the
surface formed by the complex points of the curve: if the surface has genus
greater than 1, i.e. has more than one ‘handle’, then there are at most finitely
many rational points. What can the global topology of the complex variety
— or even of the subspace of points with real coordinates — have to do
with the rational points? An unromantic answer is that a property of the
algebraic equations happens to control both; but the homotopy-type of the
surface leaps out at one, while the genus is far from being a salient feature
of the algebraic description of the curve.

More magical still is the case of algebraic varieties defined over a finite
field by equations with integer coefficients. According to the Weil conjec-
tures, proved by Grothendieck and Deligne, the number of points of such
a variety is again related to the homotopy type of the associated complex
variety. The essential idea of the Weil conjectures is that an algebraic va-
riety over a finite field, though it is not in any ordinary sense a topological
space, nevertheless has a homotopy-type which is defined by its algebraic
structure. Grothendieck’s construction of this homotopy-type began from
the observation that to know the homotopy-type of an ordinary space one
does not need to know the space as a point-set: all one needs to know is the
way its contractible open subsets are fitted together combinatorially. There
is a simple construction — making essential use of the real numbers — which
associates a space |C|, and hence a homotopy-type, to any category C. The
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partially-ordered set UX of contractible open subsets of a space X is a cate-
gory, with just the inclusions as morphisms. Surprisingly, the homotopy-type
of |UX | is precisely the homotopy-type of the space X. What really makes
the homotopy type of a category significant is that it depends on the cat-
egory only up to equivalence of categories: the category of “all” finite sets
and bijections has the same homotopy type as the countable subcategory
whose objects are just the sequence of particular sets {1, 2, . . . , n} for n ≥ 0,
and whose morphisms are the symmetric groups. Grothendieck defined a
category of ‘generalized open subsets’ for an arbitrary algebraic variety, and
(oversimplifying slightly) the homotopy-type of the variety is defined as that
of this category.

When we prove the fundamental theorem of algebra by homotopy theory
we are applying our intuitions to our best model of physical space. But often
we use the language of spaces and geometry more like an analogy. We say,
for instance, that a module is projective if it is ‘locally free’, or speak of
an ‘infinitesimal deformation’ of an algebraic variety over an arbitrary field;
in these cases there is no genuine space around3 of the sort to which our
intuitions apply. These analogies are nonetheless very powerful tools. It is
something of a surprise, therefore, that the homotopy-types we assign to alge-
braic varieties over arbitrary fields are those of genuine spaces, even though
the points of the spaces are not those of the variety. Over the last half-
century the assignment of homotopy-types to groups, rings, and all manner
of other algebraic objects, has become steadily more pervasive in mathemat-
ics, since its beginnings when it was called ‘homological algebra’. I am as
far as possible from being a mathematical logician, but I am intrigued that
when I began research fifty years ago one of the avant-garde ideas in logic
was that categories and not sets were the right starting point for the founda-
tions of mathematics, while nowadays I hear about Voevodsky’s ‘univalent
foundations’ project — a theory of ‘types’ — which bases the foundations on
homotopy theory.

In the same half-century the subject called ‘noncommutative geometry’
has sprung up. It begins from the rough correspondence — contravariant —

3We can, of course, define the Zariski topology on the set of points of an algebraic
variety over any field. This is a topological space of a sort; but it is a weird space from
the point of view of our intuitions, and when I use it I feel I am employing my powers of
analogy rather than my spatial intuition.
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between the category of topological spaces and the category of commutative
algebras over C. In one direction, we associate to a space X the algebra C(X)
of continuous complex-valued functions on X, and, in the other, to a commu-
tative algebra A we associate the space Spec(A) of algebra homomorphisms
A → C, or, equivalently, the space of irreducible A-modules.

Why might a mathematician want to extend this correspondence to in-
clude noncommutative algebras? One kind of reason is that the properties
of a commutative ring — even if one’s interest in it is purely algebraic —-
are unquestionably illuminated by thinking in terms of the space it defines,
and one can aim for similar illumination about noncommutative rings.

A quite different kind of reason is that we encounter mathematical ob-
jects which we feel intuitively are ‘spaces’, but whose space-like properties
cannot be captured by the usual concept of a topological space. Standard
examples are the space of leaves of a foliated manifold when each leaf is dense
in the manifold, and the space of orbits of a group which acts ergodically on
a space — e.g. the group of integers Z acting on the circle T by an irra-
tional rotation. These badly-behaved quotients of ordinary spaces are the
examples which Connes uses to motivate the study of noncommutative ge-
ometry, for, even though every scalar-valued continuous function of the leaf
or orbit is necesarily constant, nevertheless there are non-constant operator-
valued functions, and the leaves or orbits precisely parametrize the irreducible
representations of a noncommutative algebra A naturally associated4 to the
foliation or group action. It is useful to think of A as playing the role of the
functions on the space. Another surprise, in these quotient-space examples,
is that — as we shall see — there is an ordinary homotopy-type which is
naturally associated to the noncommutative algebra.

These examples may seem rather pathological, but the idea can be seen in
much simpler situations. The prime examples of quotient spaces are spaces

4When a discrete group Γ acts on a compact Hausdorff space X the natural algebra
A is the twisted group-algebra C(X)[Γ]. If Γ acts freely and the quotient-space X/Γ is
Hausdorff then A has the same category of modules as the commutative algebra C(X/Γ).
The representation of A associated to an orbit ω of Γ in X is on the Hilbert space `2(ω),
on which Γ acts by translation, and functions f ∈ C(X) act by multiplication operators,
regarding ω as a subset of X. A potentially confusing point, if one wants to think of
elements of A as operator-valued functions on the space of orbits, is that the space `2(ω)
on which the operator acts is changing with the orbit: that is essential, for any operator
in a fixed space which depended continuously on the orbit would have to be constant for
the same reason as a scalar-valued function.
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of isomorphism classes of objects of various kinds — objects of topological
categories, i.e. categories whose sets of objects and of morphisms have a
topology5. Spaces of isomorphism classes are not quite ordinary spaces. Let
us think of the space of dumbbells of weight 1. A dumbbell is described
by a pair (a, b) of positive numbers such that a + b = 1, but we have the
isomorphism (a, b) ∼= (b, a). Thus the space of dumbbells is the quotient of
the open interval (0, 1) by the relation a ∼ 1 − a, and it looks as if that
is the same as the half-open interval (0, 1/2]. But the situation is more
complicated. Is the space simply-connected? Consider the obvious closed
path of dumbbells from (1/3, 2/3) to (2/3, 1/3). It seems one can contract
it to the constant path (1/2, 1/2). But when one does that one doesn’t get
a constant dumbbell: one gets the boundary of a Möbius band. The “true”
fundamental group of the space is of order 2. Noncommutative geometry
handles this situation very satisfactorily. Any topological category defines
a noncommutative space6, and equivalent topological categories define the
same noncommutative space7

Why do we care about spaces of isomorphism classes? One of the striking
discoveries of twentieth-century physics was that all of the state-spaces of
fundamental physics are of this kind: in the language of physics, they are
gauge theories. In the nineteenth century it was believed that a state of the
electromagnetic field, in the absence of particles, was described by its field-
strength, a tensor field on space-time which satisfies Maxwell’s equations.
But in the twentieth century it was realized that a more subtle idea is needed:
an electromagnetic field is not a function on space-time but rather an object,
in fact a pair (L,A) consisting of a complex hermitian line-bundle L on
space-time equipped with a connection A, up to isomorphism of such pairs.

5When one has an equivalence relation on a space X one can think of the points of X
as the objects of a category, and an equivalence x ∼ x′ as a morphism from x to x′, so that
the set of morphisms of the category is a subspace of X×X. Just like a discrete category,
a topological category C defines a space |C|, and hence a homotopy-type, and this is the
homotopy type of the noncommutative quotient-space which was just mentioned

6via a straightforward generalization of the twisted group-algebra which described the
orbits of a group-action

7The topological category describing the action of the cyclic group Z on the circle
T by multiplication by eiθ is a subcategory of that describing the foliation of the torus
T × T by lines of slope θ. The inclusion of topological categories is an equivalence, so
the noncommutative spaces are the same. This lets us see why the homotopy-type of the
quotient of the circle by an irrational rotation is that of a torus.
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The classical field strength is the curvature of the connection, and it must
satisfy Maxwell’s equations. If we want to include electrons, then a state is
an isomorphism class of triples (E,A, ψ), where the line-bundle L has been
replaced by a complex spinor-bundle E, still with a connection A, but with
a section ψ in addition8. Similarly, in general relativity it is crucial that
a state of the gravitational field is not a metric tensor on a fixed space-
time which satisfies Einstein’s equations, but rather an isomorphism class of
pseudo-Riemannian manifolds.

Let us think in more general terms about the uses of space in physics.
Obviously there are the space and time in which we live. But in classical
(nonrelativistic) physics, whenever we single out a part of the world we en-
counter a new space: the space Y of states of the system we are considering.
Usually the state consists of the instantaneous configuration, which is a point
of a configuration manifold X, together with its instantaneous rate of change.
Thus Y is the tangent bundle TX of X. Physics tells us that Y is a Poisson
manifold (i.e. it comes with a bracket operation

{ , } : C∞(Y ) × C∞(Y ) −→ C∞(Y )

on the vector space C∞(Y ) of smooth functions Y → R which makes C∞(Y )
a Lie algebra), and there is a function H : Y → R called the energy or
Hamiltonian such that the time-evolution of the states in Y is given by

d

dt
f = {H, f},

where f is any element of C∞(Y ).
Passing from classical to quantum physics forces the state-spaces Y to

be something more general than ordinary topological spaces. If we want to
study quantum gravity then we probably need to rethink space-time itself,
but we shall not go down that road: this talk is specifically directed at
quantum field theory. Classically, space-time9 M ×R is given to us, and the
state-space Y = YM of the world is TXM , where a point of the configuration-
space XM consists of a finite subset σ of M — the positions of particles —
together with some “fields”, which are smooth functions10 defined only in the

8The triple must satisfy the coupled Maxwell and Dirac equations.
9For simplicity, in this talk I shall assume that space-time is a the product of a space

manifold M with the time-axis R.
10More accurately, sections of some bundle on M .

7



complement M \ σ of the particles. The worst complication — ultimately
fatal for classical physics — lies in the difficulty of prescribing how the fields
behave in the neighbourhood of the particles.

In one way quantum field theory is enormously simpler than its classical
counterpart, for there are no particles: the manifold of configurations XM is
simply a space of smooth fields on M . In exchange for this simplification,
the state-space YM can no longer be interpreted as an ordinary space: it is
an object of noncommutative geometry, and that is why when we look at
the world we sometimes see particles and sometimes see fields. But before
coming to that I must emphasize a philosophical point. A classical dynamical
system (Y,H) consisting of a Poisson manifold Y and a Hamiltonian function
H : Y → R is not recognizable as a description of the world — if Y is 60-
dimensional it might equally well describe ten particles moving in R3 or
a single particle moving in R30. The physics of the situation lies in the
prescription or functor which tells us how Y = YM is constructed from the
physical space-manifold M , in other words, it lies in the prescription telling
us that the world consists of particles and fields. A quantum system is a
noncommutative analogue of a pair (Y,H) consisting of a Poisson manifold
and a Hamiltonian, and it has a similar lack of relation to what we see.
Quantum field theory, on the other hand, is the description of the functor
M 7→ YM which assigns to each space M a quantum system YM . It does aim
to describe the world.

I believe quantum theory forces us to accept that the truest description
of the physical world is in terms of algebraic structures. Nonrelativistically
— and our intuitions are certainly nonrelativistic — the structure which
nature seems to provide is a noncommutative topological11 ∗-algebra A of
observables. We form our picture of the world, however, by recognizing the
noncommutative algebra as a small deformation12 A = Ah of a commutative
algebra A0. More precisely, out of the vast torrent of observables which the
world presents to us we select a subalgebra Ah which we can recognize as a
very small deformation of a commutative algebra. Then we can identify Ah

with A0 as a vector space, and can define a Poisson bracket on A0 as the

11To an algebraist we are here letting in topology by the back door; but quantum theory
does require us to know when observables are close — otherwise a self-adjoint operator
would not have a spectrum. I shall return to this point later.

12The meaning of this needs care. In the typical examples the isomorphism-class of Ah
is independent of h if h 6= 0, but jumps when h = 0.
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departure of Ah from commutativity, to leading order in h, i.e.

{f, g} = (fg − gf)/ih,

where the product on the right is that of Ah. This gives us a space of states
Y defined by the commutative algebra A0, a Poisson structure on Y , and a
time-evolution which arises from the noncommutativity and a Hamiltonian
element H ∈ Ah.

Let us quickly review some of the ways in which noncommutative geom-
etry is different.

Passing from commutative to noncommutative geometry we lose not only
the idea of points — for the “points” of a noncommutative algebra are its
irreducible representations, which do not usually form a reasonable space —
but also, in general, the idea that different parts of the space can be studied
independently. It might at first seem that we have lost geometry altogether.
That is not the case, but it is true that the category of noncommutative
spaces has some features resembling the homotopy category more than the
category of spaces. Indeed much of noncommutative geometry is about the
homotopy-types of the objects — it is focussed on algebraic-topological ideas
like cyclic homology and K-theory.

Another ‘ungeometrical’ feature of noncommutative geometry arises be-
cause in the usual interpretation the actual geometric object is not the non-
commutative ring or algebra A itself, but rather the category of left A-
modules. Thus the algebra Matn(C) of n × n complex matrices is just a
point in the eyes of noncommutative geometry, whatever the value of n, and
for any algebra A the algebra Matn(A) defines the same noncommutative
space as A. Because the modules form an additive category this means we
can add morphisms of noncommutative spaces. In geometrical language, we
automatically include multi-valued maps along with ordinary maps, and —
in my view — this is the fundamental reason that quantum field theory deals
with assemblies of identical particles rather than single particles. There is a
best-possible way of adjoining maps to the homotopy category so as to make
it additive. The result is the stable homotopy category, about which I shall
say a little more presently; and it does indeed turn out that noncommutative
spaces have stable homotopy types rather than the usual sort.

Yet another perspective on the passage from commutative to noncommu-
tative geometry focusses on inadequacies of the standard notion of a topo-
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logical space. Topological spaces fall short of our needs in two dual respects.
I have already mentioned the problem of ‘bad’ quotient constructions, but
there is a dual inadequacy in dealing with ‘bad’ subspaces.

The prime examples of “bad subspaces” are spaces of solutions of systems
of equations. The simplest illustration is a root of multiplicity m > 1 of a
polynomial equation in one variable, where a single point needs somehow to
remember that it is potentially m distinct points. Spaces where the points
have this kind of additional structure can be handled very simply in terms of
algebra, and in this case only commutative algebra is needed. If f ∈ C[x] is
a polynomial with distinct roots then the quotient ring A = C[x]/(f) is the
usual algebra of functions on the set of roots of f . If the roots are not distinct
the ring has nilpotent elements and is no longer the algebra of functions on a
set, but, following Grothendieck, one can still think of it as defining a space in
which the points have multiplicities: it is an ‘infinitesimal thickening’ of the
actual set of roots. (The general situation — nowadays called a Kuranishi
structure — is the zero-set of a smooth section of an infinite-dimensional vec-
tor bundle on an infinite-dimensional smooth manifold, where the derivative
of the section is everywhere Fredholm.)

Whereas the “bad quotient spaces” which were mentioned above do have
well-defined homotopy types in the usual sense, “bad subspaces” have only
stable homotopy types, in the sense that one can at best say what the ho-
motopy type becomes after iterated suspension13. To understand why this
is so, let us think of the “overdetermined” case when X, though non-empty,
is defined as f−1(0), where f is a proper smooth immersion f : U → Rn

of a manifold U of dimension m < n. Then, morally, X has the negative
dimension m − n, for if f is perturbed a little it will disappear completely,
and one has to probe with an (n−m)-dimensional family to find it.

Both deficiencies of the notion of topological space are relevant in quan-
tum theory. I have said enough about quotients. We meet noncommutative
geometry much more directly when we look for the origin of the Poisson
bracket of functions on the classical state-space. From the quantum perspec-
tive it is the residual vestige of noncommutativity, but in classical physics it
arises because the evolution of the state is governed by a variational principle
— the “principle of least action”. In this picture the classical trajectories sit
as a subspace — the solutions of the Euler-Lagrange equation for the action

13The n-fold suspension of a compact space X is the one-point compactification of
X × Rn.
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functional — in the much larger space of trajectories which need not satisfy
the equations of motion. In this talk I cannot hope to give an account of
the relation between the noncommutativity and the variational principle, so
I shall just say that one way to pass from classical to quantum physics is to
integrate over all trajectories in the classical configuration space, weighted
according to their action (so that the trajectories obeying the classical equa-
tions of motion provide the leading contribution). From that viewpoint the
semi-classical approximation is the study of an infinitesimal thickening of the
classical state-space.

As I have said, quantum theory suggests looking at a noncommutative
space in terms of the commutative space of which it is a small deformation.
This is a somewhat different picture from the usual one of noncommutative
geometry, but it is helpful for understanding the wave-particle duality of
quantum field theory. I shall spend the remainder of this talk describing how
noncommutative geometry can make a space of fields look like an assembly
of particles.

The simplest kind of field on a compact Riemannian manifold M is de-
scribed by a smooth real-valued function on M , and so the configuration
space XM is the infinite-dimensional vector space C∞(M), and the classical
state-space is its tangent bundle

YM = C∞(M)⊕ C∞(M).

We take the energy of a state (φ, φ̇) ∈ YM to be given by the quadratic form

1

2

∫
M

{φ̇(x)2 + ‖dφ(x)‖2 +m2φ(x)2}dx.

What we want to explain is how noncommutativity makes the algebra of
functions on the vector space YM look like the functions on the tangent
bundle of the configuration space

Xpart
M =

∐
n≥0

(Mn/Symmn)

of an indefinite number of indistinguishable particles moving in M .
The first point is that quantum field theory tells us that the appropri-

ate commutative algebra A0 of smooth functions on the infinite-dimensional
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space YM is more subtle than the schematic description C∞(YM) suggests.
It does not contain the smooth function (φ, φ̇) 7→ φ(x) given by evaluation
at a point x of M . Traditionally this is expressed by saying that φ(x) is
‘fluctuating too fast’ to have an ‘expected value’. On the other hand it does
contain the ‘smeared-out’ function

(φ, φ̇) 7→ φf =

∫
M

f(x)φ(x) dx,

for every smooth test-function f with compact support on M . This —
together with the corresponding smearings of φ̇ — gives us a linear map
Y → A0 which extends to a map of algebras

S(Y ) → A0

from the symmetric algebra of Y .
This map of algebras is a dense embedding. Nevertheless, there are still

many different topologies in which one might complete the symmetric alge-
bra, and quantum field theory picks out a topological algebra A0 of functions
on YM which is intimately related14 to the geometry of the manifold M .

Let us now see how the existence of a noncommutative deformation of
the algebra A0 completely changes the geometric picture.

The crucial example which gives the idea is the abstract polynomial alge-
bra C[a] in a single variable. This is a dense subalgebra of the algebra C∞(R)
of functions on the real line, and also of the algebra C(N) of functions15 on
the discrete space N of positive integers. But C(N) has a quite different alge-
braic structure from either C[a] or C∞(R), being generated by idempotents
ek for k ≥ 0 such that ekem = 0 when k 6= m.

Whether the algebra C[a] should be regarded as consisting of functions
on the line R or on a closed subset Σ of it — i.e. determining the spectrum

14For example, one might guess that the appropriate completion of the symmetric square
S2(C∞(M)) should be the space of symmetric functions in C∞(M×M), but in fact it also
contains smooth delta-functions along the diagonal in M×M , i.e. it contains the functions
obtained by smearing φ(x)2. More generally, the QFT completion of S(Y ) contains all
functions of (φ, φ̇) obtained by smearing any differential polynomial in φ(x) and φ̇(x), such
as the Hamiltonian density itself.

15For any closed Σ ⊂ R we give C(Σ) the topology of uniform convergence on compact
subsets.

12



Σ of the operator a — is prescribed by the topology on the algebra, which
is an essential part of the quantum-mechanical description. The question
is for which points λ ∈ R the evaluation-map f 7→ f(λ) is continuous16.
There is a simple algebraic mechanism which can force on C[a] the topology
induced from C(N) rather than from, say, C∞(R). Suppose that C[a] arises
as a subalgebra of the noncommutative ∗-algebra C〈b, b∗〉 generated by an
element b such that b∗b− bb∗ = 1, and that a is the self-adjoint element bb∗.

Theorem If a ∗-action of C[a] on a Hilbert space H extends to an action
of C〈b, b∗〉, then the action extends canonically from C[a] to C(N).

This theorem is a version of the Stone-von Neumann theorem on the
uniqueness of the irreducible representation of the Heisenberg algebra. The
way it is relevant at the moment is that if we are presented with a system
represented by the algebra A = C〈b, b∗〉 with the Hamiltonian element a
multiple of a then we may choose to see it as a small deformation of the
commutative algebra C[b, b∗] — and then we can see a particle oscillating on
a line — but (depending on the scales of the observable elements) the whole
algebraAmay not be sufficiently commutative, and we may model the system
just by the subalgebra C[a], in which case we see a stationary system with
just a discrete sequence of states. The theorem has a far-reaching (but not
much harder to prove) generalization which explains why we see particles
and not waves when we look at the quantum algebra of the state-space of
fields on a manifold M .

Theorem If Ah is the standard Heisenberg deformation of the commutative
algebra17 A0 of functions on the symplectic vector space

YM = C∞(M)⊕ C∞(M),

then there are commuting elements af ∈ Ah for f ∈ C∞(M) which generate
an algebra isomorphic to C∞(Xpart

M ), where

Xpart
M =

∐
n≥0

(Mn/Symmn).

16Operator algebraists like to hide the topology in algebra by encoding it in the way the
algebra is completed, but I feel that obscures the real issue.

17This is a little disingenuous, in that I am assuming that the topology of Ah is suffi-
ciently fine to allow us to form the operators af . A more satisfactory formulation of the
theorem would need a fuller account of quantum field theory.
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Here af corresponds to the symmetric function (x1, . . . , xn) 7→
∑
f(xi)

on M × . . .×M , though as a function on YM it is obtained by smearing the
quadratic function a(x) which takes (φ, φ̇) to

1

2
{φ(4+m2)

1
2φ+ φ̇(4+m2)−

1
2 φ̇}(x)

with the function f on M . In particular, a1 is the function which counts
the number of particles present, and it commutes with the Hamiltonian H.
The commutant A0

h of a1 is generated by the elements af and their time-
derivatives ȧf = i[H, af ]. It is the usual quantum deformation of the algebra
of functions on the tangent bundle Y part

M = TXpart
M . It does not contain

the operators φf and φ̇f which describe the actual classical fields: they do
not commute with the number operator a1, but are the analogues of the
elements b, b∗ in the usual Stone-von Neumann theorem. They are not part
of the ‘picture’ in which one sees particles, though of course from a different
point of view in different circumstances we might see the whole algebra18 Ah

as approximately commutative, giving us a picture of fields rather than of
particles.

18Just like C〈b, b∗〉, the algebra Ah is Z-graded, with the ‘particle’ algebra A0
h as its

degree 0 part.
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