
Quantum algorithms: From foundations to
applications

Ashley Montanaro

Department of Computer Science,
University of Bristol

8 November 2018

Quantum algorithms

Quantum computers are designed to use quantum
mechanics to outperform any possible standard computer
based only on the laws of classical physics.

If built, a large-scale quantum computer would find
applications to fields as diverse as number theory,
computational chemistry, and electronic design
automation.

These applications are driven by quantum algorithms:
algorithms that run on a quantum computer.

This talk

In this talk, I’ll discuss two famous quantum algorithms:
Shor’s algorithm for integer factorisation;
Grover’s algorithm for fast quantum search.

And some more recent work:

A quantum algorithm for accelerating backtracking
algorithms;
Applications to solving hard constraint satisfaction
problems.

Disclaimer 1: The talk will focus on ideas and omit most/all
technical details.

Disclaimer 2: The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 392 papers
on quantum algorithms, so this is necessarily a partial view. . .

http://math.nist.gov/quantum/zoo/

This talk

In this talk, I’ll discuss two famous quantum algorithms:
Shor’s algorithm for integer factorisation;
Grover’s algorithm for fast quantum search.

And some more recent work:

A quantum algorithm for accelerating backtracking
algorithms;
Applications to solving hard constraint satisfaction
problems.

Disclaimer 1: The talk will focus on ideas and omit most/all
technical details.

Disclaimer 2: The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 392 papers
on quantum algorithms, so this is necessarily a partial view. . .

http://math.nist.gov/quantum/zoo/

This talk

In this talk, I’ll discuss two famous quantum algorithms:
Shor’s algorithm for integer factorisation;
Grover’s algorithm for fast quantum search.

And some more recent work:

A quantum algorithm for accelerating backtracking
algorithms;
Applications to solving hard constraint satisfaction
problems.

Disclaimer 1: The talk will focus on ideas and omit most/all
technical details.

Disclaimer 2: The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 392 papers
on quantum algorithms, so this is necessarily a partial view. . .

http://math.nist.gov/quantum/zoo/

This talk

In this talk, I’ll discuss two famous quantum algorithms:
Shor’s algorithm for integer factorisation;
Grover’s algorithm for fast quantum search.

And some more recent work:

A quantum algorithm for accelerating backtracking
algorithms;
Applications to solving hard constraint satisfaction
problems.

Disclaimer 1: The talk will focus on ideas and omit most/all
technical details.

Disclaimer 2: The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 392 papers
on quantum algorithms, so this is necessarily a partial view. . .

http://math.nist.gov/quantum/zoo/

Hidden subgroup problems

Hidden subgroup problem (e.g. [Boneh and Lipton ’95])
Let G be a group. Given access to a function f : G→ X such
that f is constant on the cosets of some subgroup H 6 G, and
distinct on each coset, identify H.

A particularly interesting, and simple, case: G = ZM for some
integer M. This is the problem of determining the period of a
periodic function which is one-to-one on each period:

On a quantum computer, the HSP can be solved using
O(log |G|) queries to f for all groups G [Ettinger et al. ’04].

Classically, some groups require Ω(
√
|G|) queries [Simon ’97].

Hidden subgroup problems

Hidden subgroup problem (e.g. [Boneh and Lipton ’95])
Let G be a group. Given access to a function f : G→ X such
that f is constant on the cosets of some subgroup H 6 G, and
distinct on each coset, identify H.

A particularly interesting, and simple, case: G = ZM for some
integer M. This is the problem of determining the period of a
periodic function which is one-to-one on each period:

On a quantum computer, the HSP can be solved using
O(log |G|) queries to f for all groups G [Ettinger et al. ’04].

Classically, some groups require Ω(
√
|G|) queries [Simon ’97].

Hidden subgroup problems

Hidden subgroup problem (e.g. [Boneh and Lipton ’95])
Let G be a group. Given access to a function f : G→ X such
that f is constant on the cosets of some subgroup H 6 G, and
distinct on each coset, identify H.

A particularly interesting, and simple, case: G = ZM for some
integer M. This is the problem of determining the period of a
periodic function which is one-to-one on each period:

On a quantum computer, the HSP can be solved using
O(log |G|) queries to f for all groups G [Ettinger et al. ’04].

Classically, some groups require Ω(
√
|G|) queries [Simon ’97].

Periodicity in pictures

The quantum algorithm proceeds as follows:

1 Query all function values in superposition:

2 Measure the function value, receiving a random answer:

3 Apply the quantum Fourier transform. If the period was t
we get a superposition with period M/t (ignoring phases):

4 Measure, getting a random outcome r = kM/t. Simplify
the fraction r/M and output the denominator.

Periodicity in pictures

The quantum algorithm proceeds as follows:

1 Query all function values in superposition:

2 Measure the function value, receiving a random answer:

3 Apply the quantum Fourier transform. If the period was t
we get a superposition with period M/t (ignoring phases):

4 Measure, getting a random outcome r = kM/t. Simplify
the fraction r/M and output the denominator.

Periodicity in pictures

The quantum algorithm proceeds as follows:

1 Query all function values in superposition:

2 Measure the function value, receiving a random answer:

3 Apply the quantum Fourier transform. If the period was t
we get a superposition with period M/t (ignoring phases):

4 Measure, getting a random outcome r = kM/t. Simplify
the fraction r/M and output the denominator.

Periodicity in pictures

The quantum algorithm proceeds as follows:

1 Query all function values in superposition:

2 Measure the function value, receiving a random answer:

3 Apply the quantum Fourier transform. If the period was t
we get a superposition with period M/t (ignoring phases):

4 Measure, getting a random outcome r = kM/t. Simplify
the fraction r/M and output the denominator.

Periodicity and factorisation

Claim [Miller ’76]

To find the prime factors of an integer N, it is sufficient to
determine the period of the function f (x) = ax mod N for
arbitrary integers a.

For any a, this function is periodic over Z. We truncate it
to the integers mod M for some M > N.
If the period t does not divide M, the distribution on
measurement outcomes is peaked around integer
multiples of M/t.
e.g. if f has period 5 on domain size M = 32:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.2

Periodicity and factorisation

Claim [Miller ’76]

To find the prime factors of an integer N, it is sufficient to
determine the period of the function f (x) = ax mod N for
arbitrary integers a.

For any a, this function is periodic over Z. We truncate it
to the integers mod M for some M > N.
If the period t does not divide M, the distribution on
measurement outcomes is peaked around integer
multiples of M/t.

e.g. if f has period 5 on domain size M = 32:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.2

Periodicity and factorisation

Claim [Miller ’76]

To find the prime factors of an integer N, it is sufficient to
determine the period of the function f (x) = ax mod N for
arbitrary integers a.

For any a, this function is periodic over Z. We truncate it
to the integers mod M for some M > N.
If the period t does not divide M, the distribution on
measurement outcomes is peaked around integer
multiples of M/t.
e.g. if f has period 5 on domain size M = 32:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.2

Hidden subgroup problems

Many cryptosystems and other problems reduce to the HSP, e.g.:

Problem Group Complexity Cryptosystem
Integer factorisation Z Polynomial1 RSA
Discrete log Zp−1 × Zp−1 Polynomial1 Diffie-Hellman, DSA, . . .
Elliptic curve d. log Elliptic curve Polynomial2 ECDH, ECDSA, . . .
Principal ideal R Polynomial3 Buchmann-Williams
Shortest lattice vector Dihedral grp Subexp.4 NTRU, Ajtai-Dwork, . . .
Graph isomorphism Symmetric grp Exponential −

1Shor ’97, 2Proos et al. ’03, 3Hallgren ’07, 4Kuperberg ’05, Regev ’04

A significant amount of other work on the HSP has resolved
its complexity for many other groups.

Open problem
For which groups G can the HSP be solved efficiently?

Hidden subgroup problems

Many cryptosystems and other problems reduce to the HSP, e.g.:

Problem Group Complexity Cryptosystem
Integer factorisation Z Polynomial1 RSA
Discrete log Zp−1 × Zp−1 Polynomial1 Diffie-Hellman, DSA, . . .
Elliptic curve d. log Elliptic curve Polynomial2 ECDH, ECDSA, . . .
Principal ideal R Polynomial3 Buchmann-Williams
Shortest lattice vector Dihedral grp Subexp.4 NTRU, Ajtai-Dwork, . . .
Graph isomorphism Symmetric grp Exponential −

1Shor ’97, 2Proos et al. ’03, 3Hallgren ’07, 4Kuperberg ’05, Regev ’04

A significant amount of other work on the HSP has resolved
its complexity for many other groups.

Open problem
For which groups G can the HSP be solved efficiently?

Unstructured search

Problem
Given access to a function f : {1, . . . ,n}→ {0, 1} such that
f (x) = 1 if and only if x = x0 for some x0, output x0.

Write |ψ〉 = 1√
n

∑n
i=1 |i〉 = (1, 1, . . . , 1)T/

√
n.

Grover’s algorithm: starting with |ψ〉, alternately reflect
about

∣∣x⊥0 〉 and about |ψ〉:

R|ψ〉R|x⊥0 〉R|ψ〉R|x⊥0 〉 . . .R|ψ〉R|x⊥0 〉,

where for a state |χ〉, R|χ〉 = 2|χ〉〈χ|− I.

R|x⊥0 〉 can be implemented by mapping |i〉 7→ (−1)f(i)|i〉,
which can be done using one evaluation of f .

Unstructured search

Problem
Given access to a function f : {1, . . . ,n}→ {0, 1} such that
f (x) = 1 if and only if x = x0 for some x0, output x0.

Write |ψ〉 = 1√
n

∑n
i=1 |i〉 = (1, 1, . . . , 1)T/

√
n.

Grover’s algorithm: starting with |ψ〉, alternately reflect
about

∣∣x⊥0 〉 and about |ψ〉:

R|ψ〉R|x⊥0 〉R|ψ〉R|x⊥0 〉 . . .R|ψ〉R|x⊥0 〉,

where for a state |χ〉, R|χ〉 = 2|χ〉〈χ|− I.

R|x⊥0 〉 can be implemented by mapping |i〉 7→ (−1)f(i)|i〉,
which can be done using one evaluation of f .

Unstructured search

Problem
Given access to a function f : {1, . . . ,n}→ {0, 1} such that
f (x) = 1 if and only if x = x0 for some x0, output x0.

Write |ψ〉 = 1√
n

∑n
i=1 |i〉 = (1, 1, . . . , 1)T/

√
n.

Grover’s algorithm: starting with |ψ〉, alternately reflect
about

∣∣x⊥0 〉 and about |ψ〉:

R|ψ〉R|x⊥0 〉R|ψ〉R|x⊥0 〉 . . .R|ψ〉R|x⊥0 〉,

where for a state |χ〉, R|χ〉 = 2|χ〉〈χ|− I.

R|x⊥0 〉 can be implemented by mapping |i〉 7→ (−1)f(i)|i〉,
which can be done using one evaluation of f .

Unstructured search

Problem
Given access to a function f : {1, . . . ,n}→ {0, 1} such that
f (x) = 1 if and only if x = x0 for some x0, output x0.

Write |ψ〉 = 1√
n

∑n
i=1 |i〉 = (1, 1, . . . , 1)T/

√
n.

Grover’s algorithm: starting with |ψ〉, alternately reflect
about

∣∣x⊥0 〉 and about |ψ〉:

R|ψ〉R|x⊥0 〉R|ψ〉R|x⊥0 〉 . . .R|ψ〉R|x⊥0 〉,

where for a state |χ〉, R|χ〉 = 2|χ〉〈χ|− I.

R|x⊥0 〉 can be implemented by mapping |i〉 7→ (−1)f(i)|i〉,
which can be done using one evaluation of f .

Grover’s algorithm

The composition of two reflections is a rotation: R|ψ〉R|x⊥0 〉
rotates by angle 2φ from |ψ〉 to |x0〉, where

sinφ = 〈ψ|x0〉 = 1/
√

n.

|x0〉

|ψ〉

φ ∣∣x⊥
0

〉

Thus the algorithm uses f O(
√

n) times to reach |x0〉.

Grover’s algorithm

The composition of two reflections is a rotation: R|ψ〉R|x⊥0 〉
rotates by angle 2φ from |ψ〉 to |x0〉, where

sinφ = 〈ψ|x0〉 = 1/
√

n.

|x0〉

|ψ〉

φ ∣∣x⊥
0

〉

Thus the algorithm uses f O(
√

n) times to reach |x0〉.

Grover’s algorithm

The composition of two reflections is a rotation: R|ψ〉R|x⊥0 〉
rotates by angle 2φ from |ψ〉 to |x0〉, where

sinφ = 〈ψ|x0〉 = 1/
√

n.

|x0〉

|ψ〉
φ ∣∣x⊥

0

〉

Thus the algorithm uses f O(
√

n) times to reach |x0〉.

Grover’s algorithm

The composition of two reflections is a rotation: R|ψ〉R|x⊥0 〉
rotates by angle 2φ from |ψ〉 to |x0〉, where

sinφ = 〈ψ|x0〉 = 1/
√

n.

|x0〉

|ψ〉
φ ∣∣x⊥

0

〉

Thus the algorithm uses f O(
√

n) times to reach |x0〉.

Grover’s algorithm

The composition of two reflections is a rotation: R|ψ〉R|x⊥0 〉
rotates by angle 2φ from |ψ〉 to |x0〉, where

sinφ = 〈ψ|x0〉 = 1/
√

n.

|x0〉

|ψ〉
φ ∣∣x⊥

0

〉

Thus the algorithm uses f O(
√

n) times to reach |x0〉.

Grover’s algorithm

The composition of two reflections is a rotation: R|ψ〉R|x⊥0 〉
rotates by angle 2φ from |ψ〉 to |x0〉, where

sinφ = 〈ψ|x0〉 = 1/
√

n.

|x0〉

|ψ〉
φ ∣∣x⊥

0

〉

Thus the algorithm uses f O(
√

n) times to reach |x0〉.

Grover’s algorithm

The composition of two reflections is a rotation: R|ψ〉R|x⊥0 〉
rotates by angle 2φ from |ψ〉 to |x0〉, where

sinφ = 〈ψ|x0〉 = 1/
√

n.

|x0〉

|ψ〉
φ ∣∣x⊥

0

〉

Thus the algorithm uses f O(
√

n) times to reach |x0〉.

Applications of Grover’s algorithm

This can be used to obtain many speedups over classical
algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time [Dürr
and Høyer ’96]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al ’04]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al ’98]

Finding a maximal matching in a bipartite graph with V
vertices and E edges in O(V

√
E logV) time [Ambainis and

Špalek ’05]

Approximating the `1 distance between probability
distributions on n elements in O(

√
n) time [Bravyi et al ’09]

. . .

Applications of Grover’s algorithm

This can be used to obtain many speedups over classical
algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time [Dürr
and Høyer ’96]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al ’04]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al ’98]

Finding a maximal matching in a bipartite graph with V
vertices and E edges in O(V

√
E logV) time [Ambainis and

Špalek ’05]

Approximating the `1 distance between probability
distributions on n elements in O(

√
n) time [Bravyi et al ’09]

. . .

Applications of Grover’s algorithm

This can be used to obtain many speedups over classical
algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time [Dürr
and Høyer ’96]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al ’04]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al ’98]

Finding a maximal matching in a bipartite graph with V
vertices and E edges in O(V

√
E logV) time [Ambainis and

Špalek ’05]

Approximating the `1 distance between probability
distributions on n elements in O(

√
n) time [Bravyi et al ’09]

. . .

Applications of Grover’s algorithm

This can be used to obtain many speedups over classical
algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time [Dürr
and Høyer ’96]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al ’04]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al ’98]

Finding a maximal matching in a bipartite graph with V
vertices and E edges in O(V

√
E logV) time [Ambainis and

Špalek ’05]

Approximating the `1 distance between probability
distributions on n elements in O(

√
n) time [Bravyi et al ’09]

. . .

Applications of Grover’s algorithm

This can be used to obtain many speedups over classical
algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time [Dürr
and Høyer ’96]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al ’04]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al ’98]

Finding a maximal matching in a bipartite graph with V
vertices and E edges in O(V

√
E logV) time [Ambainis and

Špalek ’05]

Approximating the `1 distance between probability
distributions on n elements in O(

√
n) time [Bravyi et al ’09]

. . .

Accelerating other algorithms

Grover’s algorithm accelerates a particular classical algorithm:
unstructured search.

Can we speed up other algorithms too?

Another case where we can achieve a speedup: backtracking
(“trial and error”).

Accelerating other algorithms

Grover’s algorithm accelerates a particular classical algorithm:
unstructured search.

Can we speed up other algorithms too?

Another case where we can achieve a speedup: backtracking
(“trial and error”).

Colouring by backtracking

Colouring by backtracking

Colouring by backtracking

Colouring by backtracking

Colouring by backtracking

Colouring by backtracking

Colouring by backtracking

Quantum backtracking algorithm

Theorem (informal) [AM ’15]

Assume there exists a classical algorithm which solves a
constraint satisfaction problem on n variables via backtracking,
with a backtracking tree containing T nodes.

Then there is a quantum algorithm which solves the same
problem in time O(

√
T poly(n)).

We usually think of T as being exponentially large in n. In
this regime, this is a near-quadratic separation.

Quantum backtracking algorithm

Theorem (informal) [AM ’15]

Assume there exists a classical algorithm which solves a
constraint satisfaction problem on n variables via backtracking,
with a backtracking tree containing T nodes.

Then there is a quantum algorithm which solves the same
problem in time O(

√
T poly(n)).

We usually think of T as being exponentially large in n. In
this regime, this is a near-quadratic separation.

How the backtracking algorithm works

The algorithm is based on the use of a quantum walk to search
for a marked vertex in the backtracking tree.

We can view the algorithm as being like Grover’s
algorithm – but searching in a way that respects the
structure of the tree.

We replace the R|ψ〉 operations with operations of the
form R|ψx〉, for a node x, where |ψx〉 ∝ |x〉+

∑
y child of x |y〉.

The state |ψr〉 corresponding to the root r is different:
|ψr〉 ∝ |r〉+

√
n
∑

y child of r |y〉.

How the backtracking algorithm works

The algorithm is based on the use of a quantum walk to search
for a marked vertex in the backtracking tree.

We can view the algorithm as being like Grover’s
algorithm – but searching in a way that respects the
structure of the tree.

We replace the R|ψ〉 operations with operations of the
form R|ψx〉, for a node x, where |ψx〉 ∝ |x〉+

∑
y child of x |y〉.

The state |ψr〉 corresponding to the root r is different:
|ψr〉 ∝ |r〉+

√
n
∑

y child of r |y〉.

How the backtracking algorithm works

The algorithm is based on the use of a quantum walk to search
for a marked vertex in the backtracking tree.

We can view the algorithm as being like Grover’s
algorithm – but searching in a way that respects the
structure of the tree.

We replace the R|ψ〉 operations with operations of the
form R|ψx〉, for a node x, where |ψx〉 ∝ |x〉+

∑
y child of x |y〉.

The state |ψr〉 corresponding to the root r is different:
|ψr〉 ∝ |r〉+

√
n
∑

y child of r |y〉.

How the backtracking algorithm works

The algorithm is based on the use of a quantum walk to search
for a marked vertex in the backtracking tree.

We can view the algorithm as being like Grover’s
algorithm – but searching in a way that respects the
structure of the tree.

We replace the R|ψ〉 operations with operations of the
form R|ψx〉, for a node x, where |ψx〉 ∝ |x〉+

∑
y child of x |y〉.

The state |ψr〉 corresponding to the root r is different:
|ψr〉 ∝ |r〉+

√
n
∑

y child of r |y〉.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A R|ψx〉 and RB = −|r〉〈r|+

⊕
x∈B R|ψx〉.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A R|ψx〉 and RB = −|r〉〈r|+

⊕
x∈B R|ψx〉.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A R|ψx〉 and RB = −|r〉〈r|+

⊕
x∈B R|ψx〉.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A R|ψx〉 and RB = −|r〉〈r|+

⊕
x∈B R|ψx〉.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A R|ψx〉 and RB = −|r〉〈r|+

⊕
x∈B R|ψx〉.

Two applications
We applied Grover’s algorithm and backtracking to two
important problems: graph colouring and boolean
satisfiability [Campbell, Khurana, AM ’18].

(x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)∧ (x2 ∨ ¬x3 ∨ ¬x4)

Each problem is NP-complete and has a huge number of direct
applications:

SAT: verification of electronic circuits; planning;
computer-aided mathematical proofs; . . .
Colouring: register allocation; scheduling; frequency
assignment problems; . . .

Two applications
We applied Grover’s algorithm and backtracking to two
important problems: graph colouring and boolean
satisfiability [Campbell, Khurana, AM ’18].

(x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)∧ (x2 ∨ ¬x3 ∨ ¬x4)

Each problem is NP-complete and has a huge number of direct
applications:

SAT: verification of electronic circuits; planning;
computer-aided mathematical proofs; . . .
Colouring: register allocation; scheduling; frequency
assignment problems; . . .

Two applications
We applied Grover’s algorithm and backtracking to two
important problems: graph colouring and boolean
satisfiability [Campbell, Khurana, AM ’18].

(x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4)∧ (x2 ∨ ¬x3 ∨ ¬x4)

Each problem is NP-complete and has a huge number of direct
applications:

SAT: verification of electronic circuits; planning;
computer-aided mathematical proofs; . . .
Colouring: register allocation; scheduling; frequency
assignment problems; . . .

Summary of results: good and bad news

In the most optimistic hardware parameter regime we
considered, we could see speedup factors of > 105

(compared with a standard desktop PC) for k-SAT (via
Grover’s algorithm) and > 104 for graph colouring (via
backtracking) for instances that can be solved in 1 day.

This speedup gets substantially smaller when considering
hardware available today (e.g. ∼ 103 for k-SAT).

If we additionally take into account the cost of classical
error-correction processing, this speedup essentially
disappears.

The number of physical qubits used is very large (e.g.
> 1012), almost all of which are used for fault-tolerance.

This strongly motivates the design of improved
fault-tolerance techniques!

Summary of results: good and bad news

In the most optimistic hardware parameter regime we
considered, we could see speedup factors of > 105

(compared with a standard desktop PC) for k-SAT (via
Grover’s algorithm) and > 104 for graph colouring (via
backtracking) for instances that can be solved in 1 day.

This speedup gets substantially smaller when considering
hardware available today (e.g. ∼ 103 for k-SAT).

If we additionally take into account the cost of classical
error-correction processing, this speedup essentially
disappears.

The number of physical qubits used is very large (e.g.
> 1012), almost all of which are used for fault-tolerance.

This strongly motivates the design of improved
fault-tolerance techniques!

Summary of results: good and bad news

In the most optimistic hardware parameter regime we
considered, we could see speedup factors of > 105

(compared with a standard desktop PC) for k-SAT (via
Grover’s algorithm) and > 104 for graph colouring (via
backtracking) for instances that can be solved in 1 day.

This speedup gets substantially smaller when considering
hardware available today (e.g. ∼ 103 for k-SAT).

If we additionally take into account the cost of classical
error-correction processing, this speedup essentially
disappears.

The number of physical qubits used is very large (e.g.
> 1012), almost all of which are used for fault-tolerance.

This strongly motivates the design of improved
fault-tolerance techniques!

Summary of results: good and bad news

In the most optimistic hardware parameter regime we
considered, we could see speedup factors of > 105

(compared with a standard desktop PC) for k-SAT (via
Grover’s algorithm) and > 104 for graph colouring (via
backtracking) for instances that can be solved in 1 day.

This speedup gets substantially smaller when considering
hardware available today (e.g. ∼ 103 for k-SAT).

If we additionally take into account the cost of classical
error-correction processing, this speedup essentially
disappears.

The number of physical qubits used is very large (e.g.
> 1012), almost all of which are used for fault-tolerance.

This strongly motivates the design of improved
fault-tolerance techniques!

Summary of results: good and bad news

In the most optimistic hardware parameter regime we
considered, we could see speedup factors of > 105

(compared with a standard desktop PC) for k-SAT (via
Grover’s algorithm) and > 104 for graph colouring (via
backtracking) for instances that can be solved in 1 day.

This speedup gets substantially smaller when considering
hardware available today (e.g. ∼ 103 for k-SAT).

If we additionally take into account the cost of classical
error-correction processing, this speedup essentially
disappears.

The number of physical qubits used is very large (e.g.
> 1012), almost all of which are used for fault-tolerance.

This strongly motivates the design of improved
fault-tolerance techniques!

Outlook

I’ve described only a few quantum algorithms: there are
many others known.

Even in 2018, there are still quantum speedups to be
found for very basic problems. . .

. . . and another challenge is to make the algorithms we
know truly practical.

Advert
A workshop on Quantum Computing Theory in Practice will
take place in Bristol from 8–10 April 2019.

www.bristolmathsresearch.org/meeting/qctip/

www.bristolmathsresearch.org/meeting/qctip/

Outlook

I’ve described only a few quantum algorithms: there are
many others known.

Even in 2018, there are still quantum speedups to be
found for very basic problems. . .

. . . and another challenge is to make the algorithms we
know truly practical.

Advert
A workshop on Quantum Computing Theory in Practice will
take place in Bristol from 8–10 April 2019.

www.bristolmathsresearch.org/meeting/qctip/

www.bristolmathsresearch.org/meeting/qctip/

Outlook

I’ve described only a few quantum algorithms: there are
many others known.

Even in 2018, there are still quantum speedups to be
found for very basic problems. . .

. . . and another challenge is to make the algorithms we
know truly practical.

Advert
A workshop on Quantum Computing Theory in Practice will
take place in Bristol from 8–10 April 2019.

www.bristolmathsresearch.org/meeting/qctip/

www.bristolmathsresearch.org/meeting/qctip/

Outlook

I’ve described only a few quantum algorithms: there are
many others known.

Even in 2018, there are still quantum speedups to be
found for very basic problems. . .

. . . and another challenge is to make the algorithms we
know truly practical.

Advert
A workshop on Quantum Computing Theory in Practice will
take place in Bristol from 8–10 April 2019.

www.bristolmathsresearch.org/meeting/qctip/

www.bristolmathsresearch.org/meeting/qctip/

Thanks!

Some further reading:

“Quantum algorithms: an overview” [AM 1511.04206]

“Quantum algorithms for algebraic problems” [Childs and
van Dam 0812.0380]

“New developments in quantum algorithms” [Ambainis
1006.4014]

The dihedral hidden subgroup problem
The dihedral HSP turns out to be equivalent to a hidden shift
problem:

Given two injective functions f , g : ZN → X such that
g(x) = f (x + s) for some s ∈ ZN, determine s.

Implies applications to pattern matching problems in strings.

The best known algorithm for the dihedral HSP uses time
2O(

√
logN) [Kuperberg ’05] . . . can this be improved?

A poly(logN)-time algorithm would give an efficient
quantum algorithm for the shortest vector problem in
lattices [Regev ’04].

The dihedral hidden subgroup problem
The dihedral HSP turns out to be equivalent to a hidden shift
problem:

Given two injective functions f , g : ZN → X such that
g(x) = f (x + s) for some s ∈ ZN, determine s.

Implies applications to pattern matching problems in strings.

The best known algorithm for the dihedral HSP uses time
2O(

√
logN) [Kuperberg ’05] . . . can this be improved?

A poly(logN)-time algorithm would give an efficient
quantum algorithm for the shortest vector problem in
lattices [Regev ’04].

The dihedral hidden subgroup problem
The dihedral HSP turns out to be equivalent to a hidden shift
problem:

Given two injective functions f , g : ZN → X such that
g(x) = f (x + s) for some s ∈ ZN, determine s.

Implies applications to pattern matching problems in strings.

The best known algorithm for the dihedral HSP uses time
2O(

√
logN) [Kuperberg ’05] . . . can this be improved?

A poly(logN)-time algorithm would give an efficient
quantum algorithm for the shortest vector problem in
lattices [Regev ’04].

The dihedral hidden subgroup problem
The dihedral HSP turns out to be equivalent to a hidden shift
problem:

Given two injective functions f , g : ZN → X such that
g(x) = f (x + s) for some s ∈ ZN, determine s.

Implies applications to pattern matching problems in strings.

The best known algorithm for the dihedral HSP uses time
2O(

√
logN) [Kuperberg ’05] . . . can this be improved?

A poly(logN)-time algorithm would give an efficient
quantum algorithm for the shortest vector problem in
lattices [Regev ’04].

