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Quantum algorithms

@ Quantum computers are designed to use quantum
mechanics to outperform any possible standard computer
based only on the laws of classical physics.

@ If built, a large-scale quantum computer would find
applications to fields as diverse as number theory,
computational chemistry, and electronic design
automation.

@ These applications are driven by quantum algorithms:
algorithms that run on a quantum computer.
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In this talk, I'll discuss two famous quantum algorithms:
@ Shor’s algorithm for integer factorisation;

@ Grover’s algorithm for fast quantum search.


http://math.nist.gov/quantum/zoo/

This talk

In this talk, I'll discuss two famous quantum algorithms:
@ Shor’s algorithm for integer factorisation;

@ Grover’s algorithm for fast quantum search.

And some more recent work:
@ A quantum algorithm for accelerating backtracking
algorithms;

@ Applications to solving hard constraint satisfaction
problems.


http://math.nist.gov/quantum/zoo/

This talk

In this talk, I'll discuss two famous quantum algorithms:
@ Shor’s algorithm for integer factorisation;

@ Grover’s algorithm for fast quantum search.

And some more recent work:
@ A quantum algorithm for accelerating backtracking
algorithms;

@ Applications to solving hard constraint satisfaction
problems.

Disclaimer 1: The talk will focus on ideas and omit most/all
technical details.


http://math.nist.gov/quantum/zoo/

This talk

In this talk, I'll discuss two famous quantum algorithms:
@ Shor’s algorithm for integer factorisation;
@ Grover’s algorithm for fast quantum search.

And some more recent work:

@ A quantum algorithm for accelerating backtracking
algorithms;

@ Applications to solving hard constraint satisfaction
problems.

Disclaimer 1: The talk will focus on ideas and omit most/all
technical details.

Disclaimer 2: The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 392 papers
on quantum algorithms, so this is necessarily a partial view...


http://math.nist.gov/quantum/zoo/
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Let G be a group. Given access to a function f : G — X such
that f is constant on the cosets of some subgroup H < G, and
distinct on each coset, identify H.
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Hidden subgroup problem (e.g. [Boneh and Lipton "95])

Let G be a group. Given access to a function f : G — X such
that f is constant on the cosets of some subgroup H < G, and
distinct on each coset, identify H.

A particularly interesting, and simple, case: G = Z; for some
integer M. This is the problem of determining the period of a
periodic function which is one-to-one on each period:

l BEYE NENE BEw

On a quantum computer, the HSP can be solved using
O(log|Gl) queries to f for all groups G [Ettinger et al. '04].

Classically, some groups require Q(/|G|) queries [Simon '97].
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Periodicity in pictures
The quantum algorithm proceeds as follows:

@ Query all function values in superposition:

l BEYE NESE EEw

@ Measure the function value, receiving a random answer:

© Apply the quantum Fourier transform. If the period was t
we get a superposition with period M/t (ignoring phases):

NEEYEEYTEEYEEYEE

© Measure, getting a random outcome » = kM /t. Simplify
the fraction r/M and output the denominator.
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Periodicity and factorisation

Claim [Miller '76]

To find the prime factors of an integer N, it is sufficient to
determine the period of the function f(x) = a* mod N for
arbitrary integers a.

@ For any a, this function is periodic over Z. We truncate it
to the integers mod M for some M > N.

o If the period t does not divide M, the distribution on
measurement outcomes is peaked around integer
multiples of M/t.

@ e.g. if f has period 5 on domain size M = 32:
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Many cryptosystems and other problems reduce to the HSP, e.g.:
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A significant amount of other work on the HSP has resolved
its complexity for many other groups.

Open problem

For which groups G can the HSP be solved efficiently?
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Unstructured search

Problem

Given access to a function f : {1, ..., n} — {0, 1} such that
f(x) =1if and only if x = xp for some xo, output xo.

e Write [\)) = \f Sl =(1,1,..., 1T //n.

@ Grover’s algorithm: starting with [), alternately reflect
about |xy-) and about [1)):

R|1l’>R|x0L>R|¢>R|x0L> .. 'RNJ>R|XOL>’
where for a state [x), R,y = 2[x) (x| —I.

° R, +) can be implemented by mapping i) +— (—1)]i),
which can be done using one evaluation of f
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Grover’s algorithm

@ The composition of two reflections is a rotation: Riy) R, &)
rotates by angle 2¢ from [\)) to |xg), where

sin d = (blxo) = 1/

@ Thus the algorithm uses f O(y/n) times to reach |xo).
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Applications of Grover’s algorithm

This can be used to obtain many speedups over classical
algorithms, e.g.:

e Finding the minimum of # numbers in O(+/7) time [Diirr
and Hoyer "96]

@ Determining connectivity of an n-vertex graph in O(n*/?)
time [Diirr et al "04]

e Finding a collision in a 2-1 function f : [n] — [n] in O(nl/3)
time [Brassard et al 98]

e Finding a maximal matching in a bipartite graph with V
vertices and E edges in O(VVE log V) time [Ambainis and
Spalek "05]

@ Approximating the {; distance between probability
distributions on 1 elements in O(y/7) time [Bravyi et al "09]
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Grover’s algorithm accelerates a particular classical algorithm:
unstructured search.

Can we speed up other algorithms too?

Another case where we can achieve a speedup: backtracking
(“trial and error”).
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Quantum backtracking algorithm

Theorem (informal) [AM "15]

Assume there exists a classical algorithm which solves a
constraint satisfaction problem on n variables via backtracking,
with a backtracking tree containing T nodes.

Then there is a quantum algorithm which solves the same
problem in time O(+/T poly(n)).




Quantum backtracking algorithm

Theorem (informal) [AM "15]

Assume there exists a classical algorithm which solves a
constraint satisfaction problem on n variables via backtracking,
with a backtracking tree containing T nodes.

Then there is a quantum algorithm which solves the same
problem in time O(+/T poly(n)).

@ We usually think of T as being exponentially large in n. In
this regime, this is a near-quadratic separation.
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How the backtracking algorithm works

The algorithm is based on the use of a quantum walk to search
for a marked vertex in the backtracking tree.

@ We can view the algorithm as being like Grover’s
algorithm — but searching in a way that respects the
structure of the tree.

e We replace the R,y operations with operations of the
form Ryy,,), for a node x, where [x) o< [x) + 3 g of + [V)-

@ The state [\,) corresponding to the root r is different:

|.Ll)1’> X |}"> -+ \/ﬁZy child of r |y>
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Let A and B be the sets of vertices an even and odd distance
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Each problem is NP-complete and has a huge number of direct
applications:

@ SAT: verification of electronic circuits; planning;
computer-aided mathematical proofs; ...

e Colouring: register allocation; scheduling; frequency
assignment problems; ...
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Summary of results: good and bad news

@ In the most optimistic hardware parameter regime we
considered, we could see speedup factors of > 10°
(compared with a standard desktop PC) for k-SAT (via
Grover’s algorithm) and > 10* for graph colouring (via
backtracking) for instances that can be solved in 1 day.

@ This speedup gets substantially smaller when considering
hardware available today (e.g. ~ 10° for k-SAT).

e If we additionally take into account the cost of classical
error-correction processing, this speedup essentially
disappears.

@ The number of physical qubits used is very large (e.g.
> 10'?), almost all of which are used for fault-tolerance.

@ This strongly motivates the design of improved
fault-tolerance techniques!
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@ I've described only a few quantum algorithms: there are
many others known.

@ Even in 2018, there are still quantum speedups to be
found for very basic problems. ..

@ ...and another challenge is to make the algorithms we
know truly practical.

Advert

A workshop on Quantum Computing Theory in Practice will
take place in Bristol from 8-10 April 2019.

www.bristolmathsresearch.org/meeting/qctip/
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Thanks!

Some further reading:

@ “Quantum algorithms: an overview” [AM 1511.04206]

@ “Quantum algorithms for algebraic problems” [Childs and
van Dam 0812.0380]

@ “New developments in quantum algorithms” [Ambainis
1006.4014]
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The dihedral hidden subgroup problem

The dihedral HSP turns out to be equivalent to a hidden shift
problem:

e Given two injective functions f, ¢ : Zy — X such that
g(x) =f(x+s) for some s € Zy, determine s.

Implies applications to pattern matching problems in strings.

@ The best known algorithm for the dihedral HSP uses time
20(VlogN) [Kuperberg '05] ... can this be improved?

@ A poly(log N)-time algorithm would give an efficient
quantum algorithm for the shortest vector problem in
lattices [Regev "04].



