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4 NEWS

LMS NEWS

Annual Elections to LMS Council

The LMS Nominating Committee is responsible for
proposing slates of candidates for vacancies on
Council and vacancies on Nominating Committee itself.
The Nominating Committee welcomes suggestions
from the membership.

Anyone who wishes to suggest someone for a
position as an Officer of the Society or as a
Member-at-Large of Council (now or in the future)
is invited to send their suggestions to Professor
Kenneth Falconer, the current Chair of Nominating
Committee (nominations@lms.ac.uk). Please provide
the name and institution (if applicable) of the
suggested nominee, their mathematical specialism(s),
and a brief statement to explain what they could bring
to Council/Nominating Committee.

It is to the benefit of the Society that Council is
balanced and represents the full breadth of the
mathematics community; to this end, Nominating
Committee aims for a balance in gender, subject area
and geographical location in its list of prospective
nominees.

Nominations should be received by 16 April 2021 in
order to be considered by the Nominating Committee.

In addition to the above, members may make
direct nominations for election to Council or
Nominating Committee. Direct nominations must
be sent to the Executive Secretary’s office
(nominations@lms.ac.uk) before noon on 1 September
2021. For details on making a direct nomination, see
lms.ac.uk/about/council/lms-elections.

The slate as proposed by Nominating Committee,
together with any direct nominations received up to
that time, will be posted on the LMS website in early
August.

New Editor-in-Chief sought for
LMS Newsletter

The LMS seeks someone with broad mathematical
interests, who is passionate about communicating
mathematics and supporting the Society, to become
Editor-in Chief of the LMS Newsletter, starting in
May 2021.

The LMS Newsletter has several purposes. It aims
to provide a sense of identity, community, and
connection for the Society’s members. It is a
channel for communicating the power, beauty and
value of mathematics and mathematical research
by disseminating new mathematical ideas and
information. It also seeks to make transparent the
Society and its workings.

The main duties of the Editor-in-Chief, who is
ultimately responsible to the Society’s Council, are:

• overseeing the commissioning of content for the
mathematical features section

• overseeing the sourcing of material for other
sections

• signing off on the content and layout for each
bi-monthly issue

• chairing, leading and coordinating support from the
Newsletter Editorial Board.

In addition to the Newsletter Editorial Board, the
Editor-in-Chief also works closely with, and is further
supported by, members of the Society’s staff.

This role is unremunerated, although reasonable
expenses will be paid. The role requires a time
commitment of approximately one day a week on
average, year round.

Back issues of the Newsletter are available on the
Society’s website at bit.ly/36h6iUL.

For further information about this role, including
attributes sought and how to apply, please
contact the Executive Secretary Caroline Wallace at
caroline.wallace@lms.ac.uk. Applications will close on
1 April 2021.

Plan S Update

In September 2018 several research funders formed
an international consortium, cOAlition S, to launch
the Plan S initiative. The intention of Plan S
is to require that scientific publications arising
from research supported by consortium members
must be published immediately open access in
compliant journals or platforms. The timeline for
implementation of these requirements varies by
funder (see bit.ly/2MuZ1d5), but in general only grants

mailto:nominations@lms.ac.uk
https://www.lms.ac.uk/publications/lms-newsletter-back-issues
mailto:caroline.wallace@lms.ac.uk
https://www.coalition-s.org/plan-s-funders-implementation
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awarded by members of cOAlition S beginning after
1 January 2021 will include these requirements. It
should be noted that UKRI will not be publishing their
open access policy until Spring 2021.

For those subject to Plan S requirements the three
main ways compliance can be achieved are:

• Publication of the final typeset version of record
(VoR) with a CC BY licence in an open access journal
or platform registered in the Directory of Open
Access Journals (DOAJ).

• Open access publication of the VoR with a
CC BY licence in a hybrid journal covered
by a transformative arrangement approved by
cOAlition S (only until the end of 2024).

• Publication of the VoR with restricted access in a
subscription journal but at the same time depositing
the Author’s Accepted Manuscript (AAM) with a CC
BY licence in an institutional or subject repository,
with immediate open access. The AAM is the
final author-created version of the manuscript as
accepted for publication by the journal, including
any changes made during peer review. The use of a
CC BY licence is to permit others to distribute, remix,
adapt, and build upon an article, even commercially,
as long as they credit the original author(s).

If the costs of publication of the VoR open access are
supported through an article processing charge (APC)
then funders will only pay this if the journal is fully
open access or denoted a ‘transformative journal’.
Alternatively, authors can comply by making their VoR
open access in journals covered by ‘transformative
agreements’ that have been negotiated between their
institution and a publisher and cover the cost of open
access. A list of compliant venues can be found on
the cOAlition S website.

Whilst most mathematics journals impose no
restriction on posting early versions of a paper to
a repository such as arXiv, the standard licences
signed with publishers typically impose conditions on
depositing the AAM, including an embargo or use of
a non-commercial licence.

All of the Society’s hybrid journals offer
transformative agreements to a growing number of
authors, negotiated between our publishing partners
and academic institutions. This has resulted in growth
in the proportion of papers where the version of
record is available open access in all of the journals
managed by the Society. For example, close to one

fifth of the articles published online in 2020 in the
Bulletin, Journal, Proceedings and Journal of Topology
were open access.

It should be noted that the amount of content
supported by APCs is taken into account in setting
subscription prices (see bit.ly/2MrLbrX).

The Society also publishes a fully open access journal,
the Transactions. Through the appointment of a new
Editorial Board (as described in the January LMS
Newsletter) the Society intends to offer authors
a high-quality publication venue for those whose
funders support open access publishing.

The publications landscape is changing rapidly.
The Society is looking to adapt to the changing
requirements of authors and funders in a way that
allows its publication activities to continue on a
sustainable basis while enabling the Society to return
all surplus income to support mathematicians and
mathematics research.

John Hunton
LMS Publications Secretary

De Morgan Donations and
Other Gifts

Launched in 2019, De Morgan Donations are gifts to the
Society of £1,865 or more. Named after the Society’s
first President in 1865, Augustus De Morgan, these
donations have started to play a significant role in
helping the Society in its support of the mathematical
community.

Our funding of mathematical research, typically close
to £700,000 annually, is one particularly important way
in which the Society meets its objectives to promote,
disseminate and advance mathematics. In 2020, the
Society drew on its reserves to invest over £120,000
in a second round of LMS Early Career Fellowships, to
mitigate some of the impact of the covid-19 pandemic
on the academic careers of Early Career Researchers.
This, together with a most generous donation from the
Heilbronn Institute for Mathematical Research, enabled
us to support 22 more Early Career Fellows than we
normally would have done.

Going forward, the Society continues to explore
new ways in which it can support members of the
mathematical community who have been significantly
affected by the pandemic. For example, with a generous
gift from the Liber Stiftung we are providing higher

https://www.lms.ac.uk/content/statement-pricing-lms-journals
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levels of support to mathematicians whose work has
been impacted by caring responsibilities, and with one
from Dr Tony Hill we are establishing the new Levelling
Up Scheme to support pupils from under-represented
backgrounds studying A-level Mathematics.

The De Morgan Donations we have received so far
have made a highly significant contribution to these
initiatives and we are most grateful to the donors for
their generosity. We are also extremely grateful for the
many other generous gifts and bequests we receive in
support of our charitable work.

De Morgan Donations can be made either via
lms.ac.uk/content/donations#Donate or by contacting
me (president@lms.ac.uk) for further details.

The Society is also grateful to its many volunteers for
the time and energy they contribute to our various
activities, especially at a time when many are so busy.

Jon Keating FRS
LMS President

Atiyah UK–Lebanon Fellowship
2021–22

Maciej Dunajski (left) with Michael Atiyah

The Atiyah UK–Lebanon Fellowships were set up in 2019
as a lasting memorial to Sir Michael Atiyah (1929–2019)
in the form of a two-way visiting programme for
mathematicians between the UK and Lebanon, where
Sir Michael had strong ties.

The LMS is delighted to announce that the Atiyah
Fellowship for the academic year 2021–22 has been
awarded to Professor Maciej Dunajski of Cambridge
University.

Professor Dunajski’s research is in mathematical physics,
in particular the interplay between differential geometry,
integrable systems, general relativity and twistor theory.

His main research achievement is the solution (joint with
Robert Bryant and Mike Eastwood) of the metrisability
problem posed more than 120 years ago by Roger
Liouville. He plans to make one or two short visits
to the Centre for Advanced Mathematical Sciences at
the American University of Beirut (AUB), as well as
Notre-Dame University-Louaize, where he will lecture on
twistor theory.

The photograph shows Professor Dunajski with Michael
Atiyah. It was taken in Trinity College during what may
perhaps have been Sir Michael’s last visit to Cambridge
in the summer of 2017.

The 2020–21 Fellows were Professor Mark Wildon (Royal
Holloway, University of London) and Professor Ahmad
Sabra (AUB). Professor Wildon will be visiting AUB and
Professor Sabra will be visiting the University of Sussex
as soon as the covid-19 situation permits.

For further information about the Fellowships and
information on how to apply, see bit.ly/39CDKra. It
expected that applications for Fellowships to be held the
academic year 2022–23 will open in September 2021.

Privy Council Approval of
Amended LMS Standing Orders

At its meeting on 16 December 2020, the Privy Council
agreed to proposed amendments to the London
Mathematical Society’s Royal Charter and Statutes
which, with the By-Laws, are known collectively as the
Standing Orders.

The Society’s Council set up the Standing Orders Review
Group in 2014. It was felt that the original wording
of the documents, agreed in 1965 when the Charter
was granted, was no longer appropriate and in places
was out of date, not least with the way the LMS now
operated. Linguistic changes were required to remove
sexist and ageist wording, and there were several
relatively minor procedural changes. The Standing
Orders Review Group had been willing to be bold, but
increasingly realised in their deliberations that in general
the documents had been extremely well drafted in
1965. The proposed changes received close scrutiny
by Council on several occasions and were subject to
a consultation with the whole LMS membership in
2018–19.

LMS members voted overwhelmingly to approve the
proposed changes to the Standing Orders at the 2019
Annual General Meeting. Following this, the changes
to the Royal Charter and Statutes were formally
submitted to the Privy Council in February 2020 (the

https://www.lms.ac.uk/content/donations#Donate
mailto:president@lms.ac.uk
https://www.lms.ac.uk/grants/atiyah-uk-lebanon-fellowships


i
i

“NLMS_493” — 2021/2/16 — 13:09 — page 7 — #7 i
i

i
i

i
i

NEWS 7

By-Law changes do not require Privy Council approval).
Unfortunately because of the covid-19 pandemic, the
Privy Council did not consider such proposals from
any organisations at its meetings for some months.
Liaison between the Society and the Privy Council
Office continued throughout 2020 and notification was
received in early December that the Privy Council
advisors raised no objections to the proposals. Her
Majesty the Queen approved the two Orders in Council
at the December Privy Council meeting in Windsor.
The revised Standing Orders are now posted on the
Society’s website and are being implemented.

The Society would like to thank all those members
who have been involved in the review of the Standing
Orders, including especially those who sat as members
of the Standing Orders Review Group (Caroline Series,
Simon Tavaré, Terry Lyons, Alexandre Borovik, June
Barrow-Green, John Toland and Fiona Nixon) — and in
particular Stephen Huggett, who as General Secretary
ensured that the process was carried out efficiently and
in a robust manner, taking into account all viewpoints
and ‘future proofing’ the Standing Orders to take the
Society forward.

Further information on the Standing Orders Review,
including the rationale for the changes, can be found
at lms.ac.uk/about/lms-standing-orders-review.

Forthcoming LMS Events

The following events will take place in forthcoming
months:

LMS Women in Mathematics Day: 24 March, online
(tinyurl.com/y5uwol5f)

Society Meeting at the BMC–BAMC: 8 April, online
(tinyurl.com/yarpowdo)

LMS Spital�elds History of Mathematics
Meeting: 14 May, online (tinyurl.com/y3kpv6ye)

Midlands Regional Meeting and Workshop:
2–4 June, Lincoln (tinyurl.com/y5vtaytx)

Summer General Society Meeting: 2 July, London

Invited Lecture Series 2021: August, online
(tinyurl.com/y2gyehr4)

Northern Regional Meeting: 6–10 September,
University of Manchester (tinyurl.com/yamy8uvq)

A full listing of upcoming LMS events can be found
on page 71.

OTHER NEWS

Su�rage Science Awards 2020

Jewellery designed by students at Central Saint
Martins–UAL

For the participants, one of the most uplifting
moments of 2020 was the virtual celebration of the
2020 Su�rage Science Mathematics and Computing
Awards. The Su�rage Science Scheme celebrates
women in science for their scienti�c achievements
and for their ability to inspire others. It aspires to

encourage more women to enter scienti�c subjects,
and to stay. It was founded in 2011 with awards to an
initial cohort of 11 women in Life Sciences, and in 2013
the Scheme expanded with a new cohort of women
in Engineering and Physical Sciences. In 2016 the
Scheme expanded again to include a Mathematics
and Computing cohort.

The awards are beautiful pieces of jewellery designed
by students at the art and design college Central
Saint Martins–UAL, inspired by the jewellery worn
by the su�ragettes and by conversations with
scientists. The jewellery designed for mathematics
and computing awards are a simple circular silver
bracelet with a pearl bead that traces out the unit
circle, with the equation e ic + 1 = 0 inscribed on
the inside, and a brooch made of gold punched
tape encoding su�ragette messages. Every two years,
awardees are asked to nominate their successors —
and the jewellery pieces are passed on in a ceremony.

https://www.lms.ac.uk/about/lms-standing-orders-review
http://web.socem.plymouth.ac.uk/wim/index.html
https://www.lms.ac.uk/events/meeting/lms-society-meeting-bmc
https://www.lms.ac.uk/events/meeting/joint-meeting-ucl-educational-times-digitisation
https://www.lms.ac.uk/events/meeting/lms-midlands-regional-meeting-0
https://www.lms.ac.uk/events/lectures/invited-lectures
https://personalpages.manchester.ac.uk/staff/mike.prest/WCB60.html
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The 2020 ceremony was held online, and featured
video clips from the nominator–nominee award
pairs, as well as a panel discussion on diversity
in mathematics, statistics and computing. It
was inspiring to hear the reasons why each
woman had chosen her successor, as well as the
awardees’ visions for equality in the future of
their disciplines. There was also a lively panel
discussion, with discussion around concerns about
the disproportionate impact of covid-19 on women,
as well as the relevance of the Black Lives
Matter movement to mathematics, alongside positive
stories.

From a personal point of view, this has been a
special award, in that it aims to develop a supportive
network of women. Gwyneth Stallard was one of the
inaugural mathematics awardees and loved wearing
the bracelet — she was delighted to pass it onto
Eugenie Hunsicker who has done an amazing job
as her successor as Chair of the LMS Women
in Mathematics Committee. In turn, Eugenie has
passed it on to IMA and LMS Women and Diversity
Committee member Sara Lombardo. At the same
time, jewellery passed this year from Nina Snaith to
Apala Mjumdar and from Vicky Neale to Anne-Marie
Ima�don, as well as along lines of statisticians and
computer scientists. We three authors are currently
working together with EPSRC on ways of improving
equality and diversity in relation to funding, with
Gwyneth and Sara acting as Diversity Champions for
the Mathematical Sciences Strategic Advisory Team.

More details and photos of the awardees and the
jewellery can be found at su�ragescience.org.

Gwyneth Stallard
Eugenie Hunsicker

Sara Lombardo

PROMYS Europe Connect 2021
PROMYS Europe Connect, a challenging four-week
mathematics summer programme online, based at the
University of Oxford, UK, is seeking applications from
pre-university students from across Europe (including
all countries adjacent to the Mediterranean) who show
unusual readiness to think deeply about mathematics.

PROMYS Europe Connect is designed to encourage
mathematically ambitious students who are at least 16
years old to explore the creative world of mathematics.
Participants tackle fundamental mathematical
questions within a richly stimulating and supportive

online community of fellow first-year students,
returning students, undergraduate counsellors,
research mentors, faculty, and visiting mathematicians.

PROMYS Europe is a partnership of Wadham College
and the Mathematical Institute at the University of
Oxford, the Clay Mathematics Institute, and PROMYS
(Program in Mathematics for Young Scientists, founded
in Boston in 1989).

The programme is dedicated to the principle that no
one should be unable to attend for financial reasons.
Most of the cost is covered by the partnership and by
generous donations from supporters. In addition, full
and partial financial aid is available, for those who need
it.

The application form and application problem set
are available on the PROMYS Europe website
promys-europe.org. The closing date for applications
is 14 March 2021, and students will need to allow time
before the deadline to tackle the application problems.
PROMYS Europe Connect will run online from 12 July to
6 August 2021.

Sir Michael Atiyah Conference

The conference on the Unity of Mathematics in
honour of Sir Michael Atiyah, postponed from 2020,
has been rescheduled to take place in the Isaac
Newton Institute from 21–23 September 2021. It is
the intention of the organisers that this meeting will
be either a face-to-face or a mixed face-to-face and
online meeting, depending on circumstances nearer
the time. It is anticipated that registration will open
in late spring. For details and updates please see the
conference website newton.ac.uk/atiyah.

Assuming the conference can take place as planned,
some accommodation will be available in Murray
Edwards College, and limited funding should be
available, especially for early career researchers. For
advance expressions of interest and noti�cation
when registration opens, email Kathryn de Ridder
at o�ce@newton.ac.uk, using the subject line ‘Sir
Michael Atiyah Conference’.

A number of grants funded by the National Science
Foundation are available to cover full expenses
for PhD students and postdoctoral researchers
from the United States. Women and members of
other under-represented groups in the mathematics
community are particularly encouraged to apply. To
record an advance expression of interest, please
contact Laura Schaposnik at schapos@uic.edu.

https://www.suffragescience.org
https://promys-europe.org/
http://www.newton.ac.uk/atiyah
mailto:office@newton.ac.uk
mailto:schapos@uic.edu
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The organisers are grateful to all the sponsors:
the Clay Mathematics Institute, Heilbronn Institute
for Mathematical Research, London Mathematical
Society, National Science Foundation, Isaac Newton
Institute, and Oxford Mathematics Department.

LMS Honorary Member Receives
Top Honour

Professor Cheryl Praeger
(University of Western
Australia) has been
made a Companion of
the Order of Australia
in the 2021 Australia
Day Honours List for
‘eminent service to
mathematics and to

tertiary education, as a leading academic and
researcher, to international organisations, and as a
champion of women in STEM careers’.

Professor Praeger has had a long and distinguished
career and has made signi�cant contributions to
various areas of mathematics, including group
theory, permutation groups, combinatorics and
the mathematics of symmetry. Her expertise in
group theory and combinatorial mathematics has
underpinned advances in algebra research and
computer cryptography.

Professor Praeger has received many honours and
awards during her career. She received the 2019
Prime Minister’s Prize for Science, she was the �rst
female President of the Australian Mathematical
Society (1992–94) and the Society now awards

the Cheryl E. Praeger Travel Awards to female
mathematicians. Professor Praeger became an
Honorary Member of the London Mathematical
Society in 2014.

Visit tinyurl.com/y3h2xnbc for more information.

Clay Research Fellows
The Clay Mathematics
Institute has awarded
the 2021 Clay
Research Fellowships
to Maggie Miller,
Georgios Moschidis, Lisa
Piccirillo and Alexander
Smith. Clay Research
Fellowships are awarded

on the basis of the exceptional quality of candidates’
research and their promise to become mathematical
leaders.

Maggie Miller obtained her PhD in 2020 from
Princeton University, where she was advised by David
Gabai. She will be based at Stanford University.
Georgios Moschidis obtained his PhD in 2018 from
Princeton University, where he was advised by
Mihalis Dafermos. He will be based at Princeton
University. Lisa Piccirillo obtained her PhD in 2018
from the University of Texas at Austin, where she
was advised by John Luecke. She will be based at
the Massachusetts Institute of Technology. Alexander
Smith obtained his PhD in 2020 from Harvard
University, where he was advised by Noam Elkies and
Mark Kisin. He will be based at Stanford University.

For more information visit claymath.org.

EUROPEAN MATHEMATICAL SOCIETY NEWS

European Women in Mathematics

Owing to covid-19, the European Women in
Mathematics (EWM) Society held its General Assembly
online on 6 July 2020. The next EWM General
meeting will be in Helsinki in 2022. At the virtual
General Assembly, Andrea Walther (HU Berlin) and
Kaie Kubjas (Aalto) were elected the new convenors
of EWM, succeeding Carola-Bibiane Schönlieb and
Elena Resmerita who served as convenors since
2016. EWM has published an open letter to advocate
a proactive policy to support current employees

in temporary positions and future job applicants
in Mathematics in light of the Corona Crisis: see
https://tinyurl.com/yxkg9v5n.

EMS News prepared by David Chillingworth
LMS/EMS Correspondent

Note: items included in the European Mathematical
Society News represent news from the EMS are not
necessarily endorsed by the Editorial Board or the LMS.

https://tinyurl.com/y3h2xnbc
http://www.claymath.org/
https://tinyurl.com/yxkg9v5n
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MATHEMATICS POLICY DIGEST

UKRI Ethnicity Analysis of Funding
Applicants and Awardees

In December 2020 UK Research and Innovation (UKRI)
published detailed ethnicity data on funding applicants
and awardees, which highlighted disparities between
different ethnic groups. These data form part of UKRI’s
ongoing work to “increase equality and diversity in
the research and innovation system, through effective,
evidenced intervention”. These data are available at
tinyurl.com/y4w5odtp.

Funding Boost for Mathematical
Sciences Institutes

Three of the UK’s leading research institutes will be
supported to widen access to Mathematical Sciences
and support training through funding announced
by UKRI. The investment will allow the Isaac
Newton Institute (INI), the International Centre for

the Mathematical Sciences (ICMS) and the Heilbronn
Institute for Mathematical Research (HIMR) to launch
and expand a wide range of activities supporting
education and training.

The funding is part of the £300 million government
investment in the Additional Funding Programme for
Mathematical Sciences announced in 2020. The funding
will be delivered by the Engineering and Physical
Sciences Research Council (EPSRC), part of UK Research
and Innovation, and the Royal Society over a five-year
period from 2020/21 to 2024/25. More details are
available at tinyurl.com/y3sorkka.

Digest prepared by Dr John Johnston
Society Communications Officer

Note: items included in the Mathematics Policy Digest are
not necessarily endorsed by the Editorial Board or the
LMS.

OPPORTUNITIES

Forthcoming LMS Grant Schemes

Cecil King Travel Scholarships: The LMS administers
two £6,000 travel awards funded by the Cecil King
Memorial Foundation for early career mathematicians,
to support a period of study or research abroad,
typically for a period of three months. One Scholarship
will be awarded to a mathematician in any area of
mathematics and one to a mathematician whose
research is applied in a discipline other than
mathematics.

Applicants should be mathematicians in the UK or the
Republic of Ireland who are under the age of 30 at the
closing date for applications, and who are registered
for a doctoral degree or have completed one within 12
months of the closing date for applications. The LMS
encourages applications from women, disabled, Black,
Asian and Minority Ethnic candidates, as these groups
are under-represented in the UK or the Republic of
Ireland mathematics.

To apply, complete the application form at
tinyurl.com/yarns982 and include a written proposal
giving the host institution, describing the intended
programme of study or research, and the benefits to
be gained from the visit.

The application deadline for applications is 31 March
2021. Shortlisted applicants will be invited to interview
during which they will be expected to make a short
presentation on their proposal.

Interviews will take place in May 2021. Queries may
be addressed to Tammy Tran (ecr.grants@lms.ac.uk).
In view of the low number of applications received in
previous rounds, there is a high chance of success in
this scheme.

Computer Science Small Grants (Scheme 7): the
deadline for applications in the next round is 15 April.
The grants support a visit for collaborative research
at the interface of Mathematics and Computer
Science. More details at tinyurl.com/y7rbdhpn.

https://tinyurl.com/y4w5odtp
https://tinyurl.com/y3sorkka
https://www.lms.ac.uk/prizes/cecil-king-travel-scholarship
https://www.lms.ac.uk/grants/computer-science-small-grants-scheme-7
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Maximising your LMS Membership

International Connections with Other
Mathematical Societies

In forthcoming issues of the Newsletter we aim to
shine a spotlight on di�erent membership bene�ts.
This month we would like to highlight to members the
opportunities to connect internationally with other
mathematical societies through your membership of
the LMS.

Reciprocal Agreements with 21 International
Mathematical Societies

The Society has reciprocal agreements with the
following mathematical societies, enabling LMS
members to join those societies at a 50% discount
on the full membership fee of each society if they
are not normally resident in the same country as the
society. For example, a UK-based Ordinary Member
could join the Mathematical Society of Japan at their
reciprocal membership rate. For further information
about these societies, see tinyurl.com/y6jwpg8q.

American Mathematical Society
Australian Mathematical Society
Belgian Mathematical Society
Canadian Mathematical Society
Dansk Matematisk Forenig
Deutsche Mathematiker-Vereinigung
Finnish Mathematical Society
Société Mathématique de France
Indian Mathematical Society
Irish Mathematical Society
Unione Matematica Italiana
Mathematical Society of Japan
Koninklijk Wiskundig Genootschap
New Zealand Mathematical Society
Nigerian Mathematical Society
Norsk Matematisk Forening
Real Sociedad Matemática Española
Singapore Mathematical Society
South East Asian Mathematical Society
Svenska Mathematikersamfundet
Swiss Mathematical Society

https://www.lms.ac.uk/membership/membership-categories#Reciprocity
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In return, members of the above societies who are
not normally resident in the UK can join the London
Mathematical Society as a Reciprocity Member and
receive a 50% discount on the Ordinary membership
fee (other subscription rates such as Associate
Membership are already discounts on the Ordinary
Membership rate and the Society does not o�er
‘double discounts’). If you have any queries, please
contact membership@lms.ac.uk.

LMS members based in either Northern Ireland or
the Republic of Ireland and who are also members of
the Irish Mathematical Society can choose whether
to be a Reciprocity Member of either the LMS or the
Irish Mathematical Society.

Discounted membership of the European
Mathematical Society

Members of the London Mathematical Society can
join the European Mathematical Society (EMS) at
a 50% discount of the full EMS membership fee:
currently €25.00 annually instead of €50.00. Further
information about the European Mathematical
Society is available at euro-math-soc.eu/.

To join the EMS, members can contact the EMS
direct and mention their LMS membership or
add EMS membership to their LMS membership
record when signing in via the LMS website here:
www.lms.ac.uk/user, or by completing and returning
the LMS subscription form. Payment for EMS
membership can also be made via the LMS and over
150 LMS members already pay for EMS membership
alongside their LMS membership. If you have any
queries, please contact membership@lms.ac.uk.

LMS members who are students may be interested
in the EMS’ free membership for students while
LMS members who are aged 60+ may be interested
in the EMS’ lifetime membership. Further details
about EMS membership rates are available here:
https://euro-math-soc.eu/individual-members.

Option to pay for membership of European
Women in Mathematics

Members of the London Mathematical Society who
are also members of the European Women in
Mathematics (EWM) association have the option
to pay for their EWM membership via their LMS
Membership account and over 30 EWM members
already pay for their EWM membership alongside
their LMS Membership.

To do so, you must �rst be a member of EWM:
further details about EWM membership and how
to join are available at tinyurl.com/y2ta5xh5. If they
wish, EWM members can then add their EWM
membership to their LMS membership account either
by logging in via the LMS website www.lms.ac.uk/user
or by completing and returning the LMS subscription
form. If you have any queries, please contact
membership@lms.ac.uk.

We hope this spotlight on the bene�ts of
LMS membership in supporting your international
connections has been helpful.

Elizabeth Fisher
Membership & Grants Manager

mailto:membership@lms.ac.uk
https://euro-math-soc.eu/
mailto:membership@lms.ac.uk
https://www.europeanwomeninmaths.org/membership/become-a-member/
mailto:membership@lms.ac.uk
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LMS Council Diary —
A Personal View

Council met via video conference for a relatively short
meeting on the morning of Friday 20 November 2020,
before the Annual General Meeting and Naylor Lecture
later that day. The meeting began with the President’s
business, including a report on the successful two-day
online Black Heroes of Mathematics Conference, hosted
jointly with the IMA and British Society for the History
of Mathematics and facilitated by ICMS, which attracted
over 250 participants, and an update on the ‘Levelling
Up’ scheme pilot, generously supported by Dr Tony
Hill, which aims to support the provision of online
tutoring for A-level Mathematics students who come
from backgrounds that are under-represented in the
mathematics community. Other business included
the Publications Secretary giving a brief update on

contract negotiations for the future production of the
Society’s main journals and reporting that Mathematika
would be made available free to LMS members from
2022 onwards, as well as an update on Committee
Membership. In a discussion about Society Membership,
the Treasurer noted that a healthy number of new
members were due to be elected at the AGM later that
day, in the recruiting of which the LMS Representatives
in universities had played a significant role. There was
also a discussion about the importance of voting in
Society elections and how this could be encouraged.

The meeting concluded with the President giving thanks
on behalf of Council to the outgoing Council Members,
and wishing luck to those members up for election.

Elaine Crooks
Member-at-Large

LEVELLING UP

This article forms the second of an ongoing series
of updates about this new scheme where, thanks to
a generous donation by LMS member Dr Tony Hill,
the LMS is developing a new venture to support the
provision of online tutoring for A-Level Mathematics
students who come from backgrounds that are
under-represented in the mathematics community.

For students from under-represented groups it may
appear an insurmountable task to achieve the
necessary quali�cations to study for a STEM degree
at university. From the perspective of a Year 12
BAME student attending an under-performing school
for example, who is hoping to study engineering at
university, there may be no well-de�ned route to
achieving their goal. Students from the school may
only rarely attain the necessary grades to consider
attending university. Teachers may be too stretched
to provide additional academic or personal support.
There may be pressure from peers to do other
things rather than study and, if the student is the
�rst person in their family to consider going to
university, family members may not know how best
to o�er their support. The covid-19 pandemic has
also provided huge new challenges with face-to-face
teaching curtailed, leaving the student feeling more
isolated, under pressure and unfocused. With high
grades required, they must perform well in A-level
mathematics to be accepted onto their preferred
course. Without extra academic and aspirational

support, the student may not achieve their goal.
But what if a programme were available to provide
tailored support to a student in this situation?

The Levelling Up Scheme is exactly the type of
programme that can provide the support required
to help such students succeed and achieve their
academic goals. The overall goal of the Scheme
is to signi�cantly increase inclusion, by boosting
students’ self-con�dence, raising their aspirations
and accelerating their academic attainment. The aim
is to prepare students to apply for a place on a STEM
degree at university, and then to succeed once they
are there. The Scheme is also vitally important in
helping to provide a diverse pool of graduate talent
with the skills to contribute to the UK’s long term
economic growth.

The pilot scheme will provide eighteen months of
academic and pastoral support for students from
under-represented groups, starting midway through
Year 12 and continuing until the end of Year 13.
Students will have the opportunity to take part in a
variety of specially designed online subject speci�c
tutorials, in collaboration with Durham and Leicester
universities.

See more information at levellingupscheme.co.uk.

John Johnston
Society Communications O�cer

https://www.levellingupscheme.co.uk/
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REPORTS OF THE LMS

Report: Annual General Meeting

The 2020 LMS Annual General Meeting was held on
Friday 20 November with LMS President Professor
Jon Keating, FRS in the Chair. This was the year of
the AGM with a twist: it was held online, through
the Zoom video conferencing software. Hosting
in cyberspace certainly had no adverse impacts
on attendance; the meeting attracted over 100
attendees, none of whom were required to travel
to London to take part. The meeting began with
Society business. First, a presentation from the
Vice-President, Professor Iain Gordon, on Society
activities over the course of the year. This was
followed by a report from the Treasurer, Professor
Rob Curtis, who gave a summary of Society accounts
for the year. Other matters included votes on Society
resolutions, and announcement of the results of
elections to Council and Nominating Committee.

Next, congratulations were recorded for recipients of
LMS awards. Each year, the LMS awards a selection
of prizes for achievements in and contributions
to mathematics. These range from the Senior
Anne Bennett Prize, which is awarded for work
in relation to advancing the careers of women in
mathematics, to the Senior Berwick Prize, awarded
for an outstanding piece of research published by
the Society. 2020 was no di�erent, and attendees
congratulated 2020’s twelve LMS prize winners,
and also the 276 mathematicians elected to LMS
Membership this year.

To conclude Society business, the President,
Professor Jon Keating, thanked all retiring members
of Council. Of particular note were the departures
of two long-standing members: Professors Stephen
Huggett and Rob Curtis stepped down as General
Secretary and Treasurer, having served eight and nine

year terms in those roles respectively. An admirable
commitment, and commendable to say the least.

At the conclusion of Society business, the meeting
was paused for a short break; even in virtual
meetings, co�ee breaks are always most welcome.
The break was followed by the Naylor Lecture,
given by Professor Nicholas J. Higham of the
University of Manchester — to whom the LMS
awarded the 2019 Naylor Prize — on ‘The
Mathematics of Today’s Floating-Point Arithmetic’.
The overarching theme was an investigation into the
reliability of low precision �oating-point arithmetic,
with a particular emphasis on understanding the
implications for recent developments in the latest
hardware implementing this arithmetic. Professor
Higham — the author of an acclaimed book on the
topic — gave a fascinating and highly accessible
talk, frequently linking together historical work
and current developments in the area, as well as
regularly highlighting applications in, for example,
deep learning.

It should be noted how smoothly this AGM ran. It is
easy to forget that running an event of this nature
in an online setting is never simple, and requires
careful planning and preparation. Potential hurdles —
of conducting formal votes virtually, and transitioning
between presentations and speakers, for example
— were made to look non-existent. The meeting
was, especially in light of current circumstances, a
resounding success.

Matt Staniforth
University of Southampton

Report: LMS Graduate Student
Meeting

The LMS Graduate Student Meeting on 16 November
2020 commenced with a lecture from Theo Mary
of the Sorbonne entitled Mixed Precision Arithmetic:
Hardware, Algorithms and Analysis. At the current
moment in time, when our entire lives seem to
revolve around computers, it is a welcome relief
to be reminded of their limitations. To a pure
mathematician like myself, it was fascinating to
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dive into the world of �oating-point arithmetic and
confront the fact that computers can only work with
numbers to �nite precisions; numbers, as I imagine
them, are Platonic ideals, not �nite sequences of bits
on a computer.

Theo discussed the trade-o� between di�erent
standards for �oating-point arithmetic: the higher
the precision, the slower the speed. But he went
on to explain how this trade-o� can be overcome
by strategically deploying higher-precision arithmetic
and lower-precision arithmetic at di�erent stages in
the calculation. By using higher-precision arithmetic
where it counts, one can achieve both good accuracy
and good speed.

A 32-bit �oating point number

A primary source of motivation for research into
computer arithmetic is the application to deep
learning, where intensive computation is required.
Consequently, much research is done in this �eld
by big tech companies, who also implement new
standards for low-precision arithmetic in hardware.
The chair of the session, Ian Short of the Open
University, asked Theo the interesting question of
how open these companies are when it comes to
working on this sort of research. Encouragingly, Theo
responded that they did have a good dialogue with
several of these companies, though, naturally, some
of their information remains strictly proprietary.

The meeting then turned to talks from Graduate
Students. A very healthy number of eighteen talks
were given. This was more than would be usual
for a graduate student meeting, showing that there
are advantages to the online format. In order to
accommodate such a large number, �ve breakout
rooms were required, each hosting four talks of 15
minutes. The �ve rooms roughly corresponded to
the areas of algebra, combinatorics, analysis, �uids,
and mathematical biology. It seems our geometry
graduate students must be rather shy.

I listened to the talks in the combinatorics room,
where I also spoke. There was a rich range of talks
here, from Ramsey theory to set theory, along with
my own talk on polytopal combinatorics. Carl-Fredrik
Nyberg Brodda �nished us o� with a very memorable
talk on his e�orts to uncover the origins of the
B. B. Newman spelling theorem in combinatorial
group theory. This was an exciting detective story of

missing PhD theses and the like, where everything
was happily solved at the end.

Nicholas Williams
University of Leicester

Report: Black Heroes of
Mathematics Conference

Growing up, we read about heroes in science
and mathematics whose breakthrough ideas led to
innovations. Unnoticed by many is the fact that very
few of these heroes are black or of black descent. Is
this so because black people have not contributed
to innovations and discoveries?

A few years ago, I was a PhD student in mathematics
and I asked myself similar questions. This is because
I needed to see role models who had blazed the
trail I was on who would inspire me. My quest led
me to an article: ‘Five Famous Black Mathematicians’
by Hazel Lewis with thanks to Dr Nira Chamberlain
(https://tinyurl.com/y32kka58). Katherine Johnson
was a name that stood out in this article because
the successful contributions she made at NASA in
doing the calculations that sent the �rst American
to space, beautifully captured in the movie Hidden
Figures.

The Black Heroes of Mathematics Conference was
a virtual conference organised on Monday 26 and
Tuesday 27 October 2020 by the British Society
for the History of Mathematics, the International
Centre for Mathematical Sciences, the Institute of
Mathematics and its Applications and the London
Mathematical Society. The vision of the conference
was “To celebrate the inspirational contributions of
black role models in the �eld of mathematics”. Over
250 participants from over 30 di�erent countries
attended all or part of the event online.
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Talks covered a range of technical and non-technical
topics, with presentations by the following
international speakers: Dr Nira Chamberlain, Dr
Angela Tabiri, Dr Howard Haughton, Professor Tannie
Liverpool, Natalya Silcott, Dr Spencer Becker-Kahn,
Professor Nkechi Agwu and Professor Edray Goins.
At the end of each day, there was a panel discussion
with Professor Clive Fraser, Dr Joanna Hartley,
Jonathan Thomas, Susan Okereke and the speakers
from that day. Questions discussed included what
we can do to increase the representation of black
people in mathematics, how can indigenous African
mathematics be used to support the learning of
mathematics, why should mathematics teachers be
interested in Black History Month, and do we really
need black heroes of mathematics — to mention a
few.

One of my favourite quotes at the conference was
by Dr Nira Chamberlain, “You do not need anyone’s
permission to become a mathematician”. Other
quotes included: “Being the �rst is not something
to be proud of, but is a calling to ensure that one is
not the last” — Dr Nira Chamberlain. Enthusiastic
comments from participants included “What an
utterly brilliant, inspiring event — may there be many
more!” and “We hope that one day, we will live in
a world where all children feel that maths belongs
to them. Until then let us showcase the stories of
diverse mathematicians so all of our students feel
like they could be a mathematician.”

Videos of talks from the conference can be found at
https://t.co/MyGefYZ8Id?amp=1.

Angela Tabiri
African Institute for Mathematical Sciences Ghana

Report: LMS Computer Science
Colloquium

The LMS Computer Science Colloquium was
held on Thursday 19 November 2020 online via
Zoom with the topic of the colloquium being
Algorithms, Complexity and Logic. A record number
of participants enjoyed a compelling series of talks.

The first speaker was Dr Anupam Das, from the
University of Birmingham, who gave a broad and
bountiful talk across his wide interests in logic,
taking in especially, proof complexity, computational
complexity and bounded arithmetic. Anchored

around these three disciplines, on a beautifully built
whiteboard, he described the ways in which the
areas interact, culminating in a seminal result of
Buss tying together polynomial time computation,
the bounded arithmetic theory S 1

2 and induction on
notation over NP-predicates. He also explained the
relationship of this bounded arithmetic theory to
length of proofs in the fundamental propositional
proof system called extended Frege.

The second speaker was Professor Nobuko Yoshida
from Imperial College, London. She gave a talk
titled Session Types: A History and Applications.
She was introduced and hosted by one of the
LMS Computer Science Committee members, Dr
Ornela Dardha. More specifically, Yoshida’s talk
was about: a history of (multiparty) session types;
what are binary and multiparty session types;
and several applications on multiparty session
types, including: (3-1) runtime monitoring for large
cyberinfrastructures; (3-2) robotics; (3-3) code
generation in Go; and (3-4) inference of session
types from Go code and verification by model
checking. Her talk was followed by questions and a
lunch break where further interaction continued.

The next speaker was Dr Kitty Meeks from the
University of Glasgow, who discussed the interplay
between certain decision problems and their exact
and approximate counting versions. These were
introduced in both monochrome and multicoloured
versions. Of course, if one can solve exact counting,
then also one can solve approximate counting; and
this latter is sufficient to solve the decision problem.
The remaining interactions are more subtle. For
example, it is known that an oracle for approximate
counting does not give rise to an efficient procedure
for exact counting (in both the multicolour and
monochrome regimes). The principal new result
of the talk was that, in the multicolour regime,
an efficient procedure for the decision problem
does give an efficient procedure for approximate
counting. This recent work (with Dell and Lapinskas)
is especially remarkable.

The final speaker of the day was Dr Igor
Carboni Oliveira from University of Warwick,
who presented deep and fascinating questions
and results about the descriptive complexity of
fundamental notions like prime numbers. Starting
from classical descriptive complexity as defined
by Kolmogorov in 1963, he rephrased the question
whether there are infinitely many Mersenne primes
in terms of infinitely many primes of minimum
description length. Time-bounded Kolmogorov

https://t.co/MyGefYZ8Id?amp=1
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complexity as introduced by Levin in 1984, can
be used to make assertions about the time
complexity of deterministically generating n-bit
primes. Oliveira then turned to a randomised
analogue of time-bounded Kolmogorov complexity
introduced by himself in 2019, which can be
used to identify short and effective probabilistic
procedures that are likely to generate data-like
prime numbers. Using this notion, he explained that
there are infinitely many primes admitting ‘short’
and ‘effective’ probabilistic representations, and
that we cannot feasibly distinguish ‘structured’ from
‘random’ strings. Throughout the talk he highlighted
open problems which demonstrate the fascination
and importance this line of research is offering

at the intersection of mathematics and computer
science.

The colloquium provided the audience with
perspectives of many facets of algorithms,
complexity and logic. The discussion after the talks
was lively. There was something for everyone to
take away from the talks and discussion.

Ornela Dardha (University of Glasgow)
Arnold Beckmann (Swansea University)

Charlotte Kestner (Imperial College London)
Barnaby Martin (Durham University)

Prudence Wong (University of Liverpool)

The LMS Newsletter appears six times a year (September, 
November, January, March, May and July).

The Newsletter is distributed to just under 3,000 individual 
members, as well as reciprocal societies and other academic 
bodies such as the British Library, and is published on the 
LMS website at lms.ac.uk/publications/lms-newsletter.

Information on advertising rates, formats and deadlines are at:  
lms.ac.uk/publications/advertise-in-the-lms-newsletter.

To advertise contact Susan Oakes (susan.oakes@lms.ac.uk).

ADVERTISE IN THE 
LMS NEWSLETTER
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Records of Proceedings at LMS meetings
Annual General Meeting and Society Meeting of the London Mathematical
Society: Friday 20 November 2020

The meeting was held virtually on Zoom, hosted by the International Centre for Mathematical Sciences.
About 110 members and visitors were present for all or part of the meeting. The meeting began at
3:00pm, with the President, Professor Jon Keating, FRS, in the Chair.

The President explained that, due to the covid-19 pandemic, the Society had adapted to adhere to UK
social distancing measures in order to keep its members, guests and sta� safe. In doing so, there had
been an impact on the Society’s Governance in relation to its Standing Orders. Members and guests
were asked to:

• note Council’s decision to hold the Annual General Meeting virtually;
• note that the Society was still using the old Standing Orders;
• note that the virtual AGM technically breached the Standing Orders, and in particular that physical
voting in person could not take place; and

• note that the Society had followed the Charity Commission’s guidelines on this issue and had informed
the Commission of our actions.

The Vice-President, Professor Iain Gordon, presented a report on the Society’s activities and the
President invited questions.

The Treasurer, Professor Robert Curtis, presented his report on the Society’s �nances during the
2019–20 �nancial year and the President invited questions.

The President introduced the members’ votes on four resolutions. As the voting was open to LMS
members only, guests who were not Society members were placed in the ‘virtual’ waiting room for the
duration of the vote, after which non-members were re-admitted to the meeting. This was in keeping
with the guidance from the Charity Commission that the Society should have a system in place to
ensure that only those eligible to vote could do so.

The minutes of the General Meeting held on 26 June 2020 had been circulated 21 days before the Annual
General Meeting and members were invited to ratify the minutes by a completing an onscreen poll. The
minutes were rati�ed.

Copies of the Trustees Report for 2019–20 were made available and the President invited members
to adopt the Trustees Report for 2019–20 by completing an onscreen poll. The Trustees Report for
2019–20 was adopted.

The President proposed Moore Kingston Smith be re-appointed as auditors for 2020–21 and invited
members to approve the re-appointment by completing an onscreen poll. Moore Kingston Smith were
re-appointed as auditors for 2020–21.

The President introduced the fourth poll and advised members that, following a suggestion by the
LMS Reps which was subsequently approved by Council in June 2020, the Society would be separating
the Ordinary membership subscription rate into three tiers: low, middle and high, based on Members’
annual professional salaries, as reported by the Members themselves. For the �rst membership year in
which the new fee would be implemented (2021–22), the high rate would represent an increase of more
than 10% over the previous year’s rate for those Members a�ected. Statute 11 of the Society’s Standing
Orders required the agreement of Members voting at a General Meeting where an increase of more
than 10% was proposed. An example of the tiered subscription rates would be:
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• Ordinary (high): £120.00 for members earning over £65,000
• Ordinary (middle): £100.00 for members earning between £35,000 – £65,000
• Ordinary (low): £80.00 for members earning up to £35,000.

Members at all tiers would retain the same bene�ts.

The President advised that Council was recommending the approval of the resolution to increase by
more than 10% the subscription rate for those Members paying a ‘high’ rate under the Society’s new
three-tiered subscription rate structure.

The President invited members to approve the resolution by completing an onscreen poll. The resolution
was approved.

Guests were then re-admitted from the waiting room.

43 people were elected to Ordinary Membership: Babatunde Aina, Murat Akman, Anna Ananova,
Eleftheriou Antonia, Ovidiu Bagdasar, Nicholas Baskerville, David Bate, Christopher Birkbeck, Christoph
Czichowsky, Remy Dubertrand, Amit Einav, Josephine Evans, Goitom Fessahaye, Fernando Galaz-Garcia,
Nicos Georgiou, Noel Giacometti, Andre Henriques, Nick Hills, Ashley Kanter, Tom Kempton, Dawid Kielak,
Sergey Kitaev, Angeliki Koutsoukou-Argyraki, Robert Laugwitz, Brendan Masterson, Andrea Mondino,
Pieter Naaijkens, Sarah Nagawa, James Newton, Davide Proment, Matthew Pusey, Yogendra Kumar
Rajoria, Timothy Reis, Yue Ren, Hayley Ryder, Anuradha Sahu, Nicholas Simm, Ravendra Singh, Terry
Soo, Pierpaolo Vivo, Graeme Wilkin, Julian Wilson and Andrew Wilson.

64 people were elected to Associate Membership: Edward Acheampong, Costanza Benassi, Andrea
Boido, Alessio Borzì, Stephen Butler, Bromlyn Cameron, Giulia Carigi, Dimitrios Chiotis, Lily Clements,
Andrea Clini, Daniel Cocks, Cristina Criste, Joshua Cromwell, Håvard Damm-Johnsen, Thibault Decoppet,
Georgios Domazakis, Loki Dunn, Gilles Englebert, Sam Fearn, Samuel Fisher, Yanik-Pascal Foerster,
Luca Gamberi, Wissam Ghantous, Katrina Gibbins, Tristan Giron, Sergio Giron Pacheco, Dewi Gould,
Elena Hadjicosta, Grant Harvey, Anastasia Ignatieva, Philipp Jettkant, Panagiotis Kaklamanos, Rajesh
Kaluri, Daniel Kaplan, Duncan Laurie, Michael Liedl, Abigail Linton, Joseph MacManus, Alexander Malcolm,
David Malka, Grace El-Raphaella Matonga, Holly Middleton-Spencer, László Mikolás, Patrick Nairne, John
Nicholson, Chimezie Nnanwa, Shreenil Odedra, Chirag Pithia, Daniel Platt, Ellen Powell, Bhairavi Premnath,
Michael Savery, Amit Shah, Thomas Sharpe, Eoin Simpkins, Julia Stadlmann, Matthew Staniforth, Samuel
Stark, Benedikt Stock, Angela Tabiri, James Taylor, Federico Trinca, Benjamin Ward and Finn Wiersig.

14 people were elected to Associate (undergraduate) Membership: Isobel Baddeley, Bhanu Banerjee,
Matthew Bond, David Cawthorne, Max Durrant, William Evans, Rahul Gupta, Lloyd Hughes, Brian Judelson,
Lynn Wei Lee, Yasmin Mussa, Glenn O’Callaghan, Qaisar Shah and Jiguang Yu.

12 people were elected to Reciprocity Membership: Daniel Asimov, Iyai Davies, Praveen Kumar Dhankar,
Matt Insall, Shobha Lal, G. Muhiuddin, Ram Kripal Prasad, Margaret Readdy, Mansur Saburov, Onur
Saglam, Subhrajyoti Saha and Jyoti Singh.

143 people were elected to Associate Membership for Teacher Training Scholars: Roba Abu Hantash,
Aduragbemi Adebogun, Hasan Ahmad, Anees Ahmed, Kabir Akmal, Bayan Ali, Zahra Ali, Chris Allen,
Henry Allen, Edward Antwi-Berchie, Joanna Aranowska, Dayana Arasarathnam, Thomas James Attrill,
Jennifer Auger, Tayyib Azeem, Steven Barker, James Barlow, Ethan Barnes, Joseph Bashir, Rebecca
Bedford, Jamina Begum, Jessica Bradbury, Thomas Brasier, Francis Brooks-Tyreman, Hannah Buckley,
Christan Butters, Milan Chrastina, James Colton, Etienne Corish, Samuel Corrigan, Nicholas Cossins,
Stephen Cox, Joshua Cunningham, Edward Curr, York Deavers, Francis Denton, Louise Devaney, Conrad
Doggett, Thomas Donnelly, Ankita Dudani, Edet Efretuei, Christopher Ellis, David Errington, Mehmet
Esen, Olivia Faggi, Ibrahim Farooq, Ciprian Faur, Peter Fitzpatrick, Katherine Frewer, Oliver Green,
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Bethany Hall, Laura Hallmark, Mark Hamilton, Richard Hayes, Thomas Henshaw, Curtis Holmes, Chris
Holmes, Lawrence Holmes, Nicole Houston, Tara Howard, Grant Hubbard, Stuart Huntley, Joshua Jenkins,
Sharmin Joarder, Joshua Johnson, Sarah Johnson, Steve Joiner, Emma Jones, Meggie Jordan, Rajdeep Josan,
James Keable, Dasina Kerai, Azrah Khan, Charlotte Kingdom, Emily Larkin, Robert Little, Yun Liu, Victoria
Long, Ross Longden, Thomas Lowe, Muhammad Mamsa, Ethan Marks, Peter Mills, Elizabeth Morland,
Simon Mullis, Angela Murphy, Mohammed Nasseri, Andrew Nolan, Alex Nuttall, Tim Oliver, Floriana
Pacchiarini, Tilly Porthouse, Gareth Pugh, Katherine Purdy, Christopher Quickfall, Mohammed Habeeb
Rabbani, Benjamin Raine, Zainab Razvi, Molly Reeve, Olivia Revans, Katy Rigby, Richard Robertson, Keith
Rochfort, Erin Rodrigues, Connor Rollo, Lucille Rostron, George Savage, Lauren Sealey, Eloise Sear, Lucy
Shelley, Amber Shiels, Daniel Shipp, Callum Shreeve, Matthew Simcock, Chris Simpson, Alexander Sinclair,
Joe Skerman-Gray, Sophie Slade, Sarah Slater, Edward Slater, Susannah Smith, Nicholas Stancill, Shane
Steele, Danny Sugrue, Megan Sullivan, James Taylor, Rachel Taylor, Benjamin Vickers, Beth Waghorn,
Mark Walklin, Benjamin Walne, Kyle Ward, James Ward, Duncan Weaving, Joseph Webster, Toby Wehrle,
Emma Wheeler, Francesca Williams, Luke Ryan Wilson, Crystal Wincy Wincent, Richard Winstanley, Chloe
Wong and Carina Yew-Booth.

No members signed the Members’ Book or were admitted to the Society. The President advised the
audience that, while the Society was unable to o�er the opportunity to members to sign it at this
meeting, the Members’ Book would once again be available for signing when face-to-face meetings
could be resumed.

The President invited non-members within the audience to join the Society and advised that details
about membership were on the Society’s website.

The President informed the audience that donations to the Society were most welcome and that
donations, including to the De Morgan Donations scheme, could be made online.

The President invited members of the audience to congratulate the 2020 Prize-winners:

Pólya Prize: Professor Martin Liebeck (Imperial College, London)
Senior Anne Bennett Prize: Professor Peter Clarkson (University of Kent)
Senior Berwick Prize: Professor Thomas Hales (University of Pittsburgh)
Shephard Prize: Regius Professor Kenneth Falconer (University of St. Andrews); Professor Des Higham
(University of Edinburgh)
Fröhlich Prize: Professor Françoise Tisseur (University of Manchester)
Whitehead Prizes: Dr Maria Bruna (University of Cambridge), Dr Ben Davison (University of Edinburgh),
Dr Adam Harper (University of Warwick), Dr Holly Krieger (University of Cambridge), Professor Andrea
Mondino ((University of Oxford), Dr Henry Wilton (University of Cambridge)
LMS–IMA Christopher Zeeman Medal: Matt Parker

The certi�cates had been posted to the prize-winners.

The Scrutineer, Professor Chris Lance, announced the results of the ballot. The following O�cers and
Members of the Council were elected.

President: Professor Jon Keating
Vice-Presidents: Professor Iain Gordon, Professor Catherine Hobbs
Treasurer: Professor Simon Salamon
General Secretary: Professor Robb McDonald
Publications Secretary: Professor John Hunton
Programme Secretary: Professor Chris Parker
Education Secretary: Dr Kevin Houston
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Members-at-Large elected for two-year terms: Professor Peter Ashwin, Professor Anne-Christine
Davis, Professor Minhyong Kim, Professor Niall MacKay, Professor Anne Taormina, Dr Amanda Turner
Member-at-Large (Librarian): Dr Mark McCartney

Five Members-at-Large, who were elected for two years in 2019, have a year left to serve: Professor
Elaine Crooks, Professor Andrew Dancer, Dr Tony Gardiner, Dr Frank Neumann and Professor Brita
Nucinkis.

The following were elected to the Nominating Committee for three-year terms: Professor Chris Budd
and Professor Gwyneth Stallard. The continuing members of the Nominating Committee are: Professor
Kenneth Falconer (Chair), Professor I. David Abrahams, Professor Beatrice Pelloni, Professor Mary Rees
and Professor Elizabeth Winstanley. One member of Council will also be nominated to the Nominating
Committee.

Professor Nicholas J. Higham, University of Manchester, gave the Naylor Lecture 2020 on The Mathematics
of Today’s Floating-Point Arithmetic.

Before closing the meeting, Professor Keating thanked the retiring members of Council and welcomed
the President Designate Professor Ulrike Tillmann, FRS.

Professor Keating also thanked the speaker at the Graduate Student Meeting on 16 November 2020
Theo Mary (Sorbonne), and congratulated the winners of the Graduate Student Talk Prizes: Carmen
Cabrera-Arnau (UCL), Giulia Carigi (Reading), Carl-Fredrik Nyberg Brodda (UEA), Onirban Islam (Leeds),
Raad Kohli (St. Andrews) and Gustavo Rodrigues Ferreira (Open University). The President thanked the
other 12 graduate students who also gave talks.

The President thanked everyone who had worked to organise the online Annual General Meeting. The
President closed the meeting. There was no reception or Annual Dinner.

Records of Proceedings at LMS Meetings:
Society Meeting at the Joint Mathematics Meeting 2021

This meeting was held virtually on Zoom, at the Joint Mathematics Meeting co-hosted by the American
Mathematical Society (AMS) and the Mathematical Association of America (MAA). Over 15 members and
visitors were present for the LMS meeting session.

The Society meeting began at 5.00pm GMT on 7 January with the Publications Secretary, Professor
John Hunton, in the Chair. Professor Hunton welcomed guests, thanked the organising parties, and then
introduced Professor Tim Browning who spoke about the new Proceedings of the London Mathematical
Society. Professor Browning then introduced a lecture given by Professor Sarah Zerbes (UCL) on Special
Values of L-Functions.

Professor Hunton concluded the meeting by thanking Professor Zerbes, the organisers and the meeting
attendees on behalf of the LMS.
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Joining the De Morgan House Team — One Year On

CAROLINE WALLACE

LMS Executive Secretary Caroline Wallace re�ects on her �rst eventful year in the role.

I became Executive
Secretary of the London
Mathematical Society
in early April last year.
Someone asked me
recently what had
attracted me to the role.
There were several parts
to my answer.

First and foremost, I love mathematics. In particular,
I have a great interest in how it can be put to use
to improve our lives. This interest intensified when,
while still at school, I read the wonderful book
Mathematics and the Imagination by Edward Kasner
and James Newman. I am the proud inheritor of
my mother’s 1952 edition. It was given to her as
a prize when she was a young woman, as she left
her secondary school in the rural far north of New
Zealand, and, unusually for a woman in that time
and place, headed to university.

Pursuing my interest in the applications of
mathematics, I gained a degree in engineering at
the University of Cambridge and I spent the first
part of my career working in industry. I can honestly
say that the ‘real world’ power of mathematics was
evident to me every day.

The second part of my answer to the question
posed is that I was very impressed by the history
and the reputation of the London Mathematical
Society. It has a strong and clear mission: to
advance, disseminate and promote mathematical
knowledge. It is an organisation that has stood
the test of time and that has always placed high
value on the (still very topical) virtues of reasoning
and research. Yet it also remains a relatively small
Society where an individual can make a difference.

And this leads directly to the third part of my answer
to the question posed. Not only does the Society
have an incredible history, but it is also a charity.
It seeks to do good in the world by supporting
mathematical research and mathematicians and it
promotes equality of opportunity. I �nd it highly

motivating to work in an organisation that contributes
in such a concrete way to the public good. For
example, the Society’s involvement in the Levelling
Up Scheme, enabled by the extremely generous
support of our donor, Dr Tony Hill, has the potential
to increase the aspirations and the attainment
of A-level maths students from under-represented
groups across the country. You can read more about
this Scheme on page 13.

As I approach the end of my �rst year as the
Society’s Executive Secretary, it is clear to me that
I am very fortunate to have this role. As I noted
earlier, the Society has a clear mission and it has a
strong desire to achieve that mission. I lead a skilled
and knowledgeable sta� team. There are strong
relationships amongst the sta� and between the
sta�, the Council, the Membership and the wider
volunteer community.

The book plate for my
mother’s copy of
Mathematics and the
Imagination

This is not to say that it
has all been plain sailing.
I took up my role at
the Society two weeks
after the �rst covid-19
lockdown began. While it
was somewhat tempting
to focus in this article on
the impact of covid-19,
I did not want the
pandemic to dominate
my re�ections on my
�rst year with the
Society.

This is nonetheless a
good opportunity to
note that sta� recognise
and share the challenges

that the covid-19 pandemic has created for the
mathematics community. This includes amongst
many other things managing greater caring
responsibilities, limited workspace, altered work
expectations and looking after our physical and
mental wellbeing. I continue to be impressed by
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and deeply grateful for the �exibility and resilience
of my colleagues as they cope with the sudden
and disconcerting changes that the pandemic has
imposed on all of us.

I am also impressed by — and very proud to be
part of — the Society’s response to the pandemic.
The Society has demonstrated its willingness to
listen to its Membership and to change rapidly
what it does and how it does it. It has made
additional Early Career Fellowships available and given
additional funding to Research Groups to produce
online lectures. It has pushed back its deadlines for
LMS prize nominations, it has moved its meetings
and events online and it has explored ‘virtual’
exhibition stands at conferences where face-to-face
attendance is impossible. Recently, it has sought to
improve the signposting not just to its own but to
other organisations’ funding opportunities. And I am
pleased to say that there is more in the pipeline.

One of the many e�ects of the pandemic is that
it has greatly reduced the opportunities for me to
meet and get to the know the Society’s Members. I
have attended as many online Society meetings and
events as possible. Unfortunately, it is just not the
same as an ‘in person’ meeting, at which there would
be a chance over co�ee to introduce ourselves and
talk about the latest developments at the Society.
But if you do see me at an online meeting and would
like to say hello, please just message me in the chat
and hopefully we can arrange a separate call.

In the meantime, there are reasons to be hopeful
as the vaccination programme is rolled out, as we
continue to learn about the bene�ts of remote
working, and as we plan for how we can retain
the bene�ts of remote working (not least, reduced
environmental impact) in our new post-covid world.
I am looking forward to my second year with the
Society!
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Cover Image: Monte Carlo Simulation

IAN FLOOD

We are seeing unprecedented demand for
radio spectrum with the advocates of emerging
technologies pressing for access to frequency bands
already populated by established services. This leads
to studies of the radio interference environment with
spectrum managers increasingly motivated towards
consideration of mathematical models and spectrally
e�cient solutions.

The cover image is a snapshot of one step in a Monte
Carlo simulation using Visualyse Professional software.
The image shows a somewhat abstract model of
interference sources in a mobile network deployment
centred on St Louis, Missouri; local terrain features
can be seen. The yellow markers represent sources
of interference in the city, and the blue markers
are sources of interference in the rural environment.
There is one source for each mobile network cell and
the black markers show the locations of cell centres.

At each step in the simulation, the location
of an interference source is random within its
cell allowing for an extensive search of possible
interference geometries. The model calculates
aggregate interference ΣI from all sources incident
to a single victim receiver at the centre of the city.
ΣI can be expressed in decibels relative to a unit of
signal power in a speci�ed bandwidth. The results
from our simulation can be presented as a graph of
the Complimentary Cumulative Distribution Function
(CCDF).

In general, spectrum engineers are concerned
with evaluating interference in relation to
interference protection criteria which can take
several forms. Typical examples are an aggregate
interference-to-noise ratio ΣI /N expressed in
decibels, or a simple threshold for aggregate
interference ΣIT . Considering an aggregate
interference threshold, if ΣI = ΣIT then our criterion
is satis�ed exactly, but if ΣI > ΣIT then excess
interference is incident to the receiver. This may
be acceptable if the criterion is associated with a
constraint which allows the threshold to be exceeded
for a speci�ed percentage of time and this constraint
is satis�ed. We can easily use our graph of the

CCDF to test such criteria when working in the
time domain, but this has been the focus of some
discussion recently as many simulations attempt
to model large-scale network deployments and,
because of uncertainties, include some variability in
the deployment domain.

If the victim receiver and interferer are co-frequency
in this simulation, with all potential sources of
interference switched on, the modeller will not be
surprised to �nd excess interference at the receiver.

When an interference protection criterion is
exceeded, the modeller may consider mitigation. One
method is to calculate the radius of a zone around
the victim receiver where interference sources are
excluded; this might be appropriate if the receiver
is part of an important installation and at a �xed
location.

Another approach is to introduce a frequency
separation between interferer and victim receiver.
Here, spectrum masks, characterising emissions
from the interfering transmitters and the response of
receiver �ltering to incident signals, can be modelled.
A convolution of these masks allows for the Net Filter
Discrimination to be calculated at discrete frequency
separations; this is the discrimination, expressed in
decibels, available at the victim receiver when the
interferer is o�set in frequency.

FURTHER READING

[1] J. Pahl, Interference Analysis, Modelling Radio
Systems for Spectrum Management, Wiley,
Chichester, UK, 2016.
[2] NTIA, Interference Protection Criteria. Phase 1
- Compilation from Existing Sources, NTIA Report
05-432, U.S. Dept. of Commerce, Oct. 2005.

Ian Flood
Ian is a consultant with Trans�nite Systems, London.
His work involves modelling spectrum sharing
problems. He is a Chartered Engineer and holds a
PhD in graph-theoretic studies.
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Notes of a Numerical Analyst

At the Edge of Infinity

NICK TREFETHEN FRS

2n is bigger than n, and Cantor showed this is true
even when n is in�nite. The theory is beautiful,
and most of us know the basics. But we are easily
caught o� guard by �nite numbers when they are
big enough.

Take this equation adapted from [2], with (!) as a
warning that equality does not actually hold:

1010
428,000

= e 10
428,000

. (!)

Of course the two numbers aren’t really equal — their
di�erence is enormous. Yet they are indistinguishable
if you regard the top exponent as known to just
three digits, for the number on the left is equal to
exp(10428,000.36...). Or consider this one:(

1010
428,000 )2

= 1010
428,000

. (!)

This time the number on the left is equal to
10ˆ(10428,000.30...). Evidently the familiar rules of
arithmetic break down, in a practical sense, when
numbers are huge, giving us principles like

n2 = n, 2n > n . (!)

Note how these formulae echo Cantor’s results for
true in�nities, which we can write in shorthand as

∞2 = ∞, 2∞ > ∞.

For another curiosity at the edge of in�nity, let A
be an in�nite “random Fibonacci matrix” with zero
entries everywhere except ±1 (independent coin
tosses) on the �rst two superdiagonals, i.e., entries
a j ,j+1 and a j ,j+2 [3]. The spectrum Σ of A as an
operator on ℓ 2 is the closed disk |z | ≤ 2 (with
probability 1), which we can explain by noting that A
contains arbitrarily large regions where all the signs
are equal. Yet spectral theory is missing something
essential about A if we view it as a limit of matrices
An of �nite dimension n. In an inner region Σi ⊂
Σ, roughly the disk |z | < 1.3, the resolvent norm
‖(z − An)−1‖ grows exponentially as n → ∞, but
in the remainder of Σ it grows only algebraically,
as shown by the plot of log10 (‖(z − An)−1‖) in
Figure 1 for a matrix of dimension 200. The crown
of this “witch hat” is very tall (truncated raggedly

by �oating-point arithmetic), but the brim is �at. If
a physical system were governed by such matrices,
the spectrum measured in the lab would probably
be Σi , not Σ.

Figure 1. Random Fibonacci witch hat

Mathematics has a wonderful ability to reason
rigorously about idealisations. Sometimes it is good
to remember, however, that they are idealisations. In
moral philosophy, the �eld of “in�nite ethics” draws
conclusions based on the supposition that there may
be in�nitely many worlds with in�nitely many sentient
beings, including a creature epsilon close to my own
self down to the home address and the children’s
names [1]. Personally, I �nd it hard to believe that
anything is quite that in�nite.

FURTHER READING

[1] N. Bostrom, In�nite ethics, Analysis and
Metaphysics, 10 (2011), 9–59.
[2] S. J. Chapman, J. Lottes, and L. N. Trefethen,
Four bugs on a rectangle, Proc. Roy. Soc. A, 467
(2010), 881–896.
[3] L. N. Trefethen and M. Embree, Spectra and
Pseudospectra, Princeton, 2005.

Nick Trefethen
Trefethen is Professor of Numerical
Analysis and head of the Numerical
Analysis Group at the University of
Oxford.
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Mathematics News Flash

Jonathan Fraser reports on some recent breakthroughs in mathematics.

It is a pleasure to begin by thanking Aditi Kar for initiating the ‘News Flash’ section of the Newsletter and for
writing many beautiful mathematical vignettes. I will do what I can to follow in her footsteps. The three papers
discussed below establish deep results with easily understood statements. I hope the readership enjoys them
as much as I did.

Flat Littlewood polynomials exist

AUTHORS: Paul Balister, Béla Bollobás, Robert Morris,
Julian Sahasrabudhe and Marius Tiba
ACCESS: https://arxiv.org/abs/1907.09464

A Littlewood polynomial is a polynomial whose
coe�cients are all either +1 or −1. Littlewood
conjectured in 1966 that there should exist constants
a,b > 0 such that for every n ≥ 2 there exists a
Littlewood polynomial P of degree n such that

a
√
n ≤ |P (z ) | ≤ b

√
n

for all z ∈ ℂ with |z | = 1. This paper con�rms
Littlewood’s conjecture and was published in Annals
of Mathematics in 2020. As the authors explain, the
most challenging part of the proof was establishing
the lowering bound. Explicit polynomials satisfying
the upper bound only had been constructed by
Shapiro and Rudin over 60 years ago.

Littlewood’s problem, and the solution described
above, have implications in autocorrelation for binary
sequences. Autocorrelation refers to the correlation
of a signal with a delayed copy of the signal as a
function of the delay.

The group of boundary �xing homeomorphisms
of the disc is not left-orderable

AUTHORS: James Hyde
ACCESS: https://arxiv.org/abs/1810.12851

A group G is said to be left-orderable if it admits a
total order < such that for all f , g ,h ∈ G ,

f < g ⇔ h f < hg .

The integers under addition is the archetypal
example of a left-orderable group, and a
more sophisticated example is the group of
homeomorphisms of the unit interval which �x
the endpoints. The 2-dimensional analogue of this
latter example became notorious: is the group of
homeomorphisms of the closed disk which pointwise
�x the boundary left-orderable? This question was

posed in several esteemed circles (pun intended)
including in a paper of Navas published in the
Proceedings of the ICM in 2018 and in the famous
Kourovka Notebook.

Hyde answered this question in the negative with
an ingenious construction of a �nitely generated
subgroup which is itself not left-orderable. This
remarkable paper is only �ve pages long and was
published in the Annals of Mathematics in 2019.

On the Lebesgue measure of the Feigenbaum
Julia set

AUTHORS: Artem Dudko and Scott Sutherland
ACCESS: https://arxiv.org/abs/1712.08638

The Julia set of a polynomial P : ℂ → ℂ is the
boundary of the set of points whose orbit under
P remains bounded. Julia sets are typically intricate
fractal sets. Dudko and Sutherland consider the Julia
set of the infamous Feigenbaum polynomial z ↦→
z 2 + cF where cF ≈ −1.401155 . . . . This polynomial
is especially di�cult to study due to the dynamics
associated with the critical point: subtle behaviour
which occurs only with delicate choice of cF . The
main result of this paper, published in Inventiones
Mathematicae in 2020, is that the Lebesgue measure
of the Feigenbaum Julia set is zero. This answers
a famous open question in complex dynamics. In
fact, the authors prove the stronger statement that
the Hausdor� dimension of the Julia set is strictly
less than 2. The proof uses a computer programme
to rigorously establish that a certain condition is
satis�ed.

Jonathan Fraser is a Reader of
Mathematics at the University of
St Andrews. His research interests
centre on fractal geometry. He is
pictured with his son, Dylan, who
makes his second appearance in the
Newsletter.

https://arxiv.org/abs/1907.09464
https://arxiv.org/abs/1810.12851
https://arxiv.org/abs/1712.08638
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Penrose’s Incompleteness Theorem

MIHALIS DAFERMOS

On the occasion of Roger Penrose’s 2020 Nobel Prize in Physics, I discuss his remarkable incompleteness
theorem and its legacy for understanding black holes and singularities in general relativity.

This past year, Roger Penrose was awarded the
2020 Nobel Prize in Physics. The accompanying
press release [21] cites his 1965 paper ‘Gravitational
collapse and space-time singularities’ [13] below.

Penrose’s [13] as published in Physical Review Letters

On the surface, this is a very unusual citation for
a Physics Nobel: Penrose’s [13] did not propose
a new theory, formulate a new equation, or
discover a new explicit solution, achievements which
physicists more readily appreciate and celebrate.
Despite appearing in Physical Review Letters, [13]
is a quintessentially mathematical paper, sketching
the proof of a theorem—indeed, a theorem of
pure geometry. Yet it is hard to exaggerate how
profoundly this theorem in�uenced the way all of
us—mathematicans, physicists and even the wider
public—today understand general relativity.

In this article, I will try to introduce Penrose’s
incompleteness theorem of [13] and its legacy to a
broad mathematical audience. To set the stage, let
me �rst describe brie�y the mathematical structure
of Einstein’s celebrated theory of general relativity.

General relativity

General relativity postulates a uni�ed structure,
a Lorentzian metric g de�ned on a 4-dimensional
manifold M—spacetime—governing gravitation,
inertia and what we perceive as time and geometry.

Lorentzian metrics g are the analogue of the more
familiar Riemannian metrics, except that they have (in

4-dimensions) signature (−,+,+,+). This just means
that suitable local coordinates (x0,x1,x2,x3) around
a spacetime point p ∈ M can be chosen such that
the metric gp at p may be written as

gp = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2.

While for Riemannian metrics, gp (v,v) = 0 would
imply v = 0, in Lorentzian geometry, the set

Np = {0 ≠ v ∈ TpM : gp (v,v) = 0}

forms a double cone in the tangent space TpM
which can be viewed as an in�nitesimal version of
Minkowski’s light cone of special relativity (where
units have been chosen such that the speed of light
c = 1). We call such vectors v ∈ Np null vectors.

The cone bounds the set of so-called timelike vectors

Ip = {v ∈ TpM : gp (v,v) < 0}.

We always assume that it is possible to select a
distinguished connected component ofNp depending
continuously on p . This de�nes the so-called future
null cone N +p , which in turn bounds a connected
component I +p of Ip . We refer to vectors v ∈ N +p as
future null and v ∈ I +p future timelike.

These concepts have immediate physical
interpretation: test particles traverse curves W(g) in
spacetime whose tangent W′(g) is future timelike,
i.e. W′(g) ∈ I +

W (g) . Such curves are called worldlines.
The integral∫ g2

g1

√
−gW (g) (W′(g), W′(g))dg

is known as proper time, the time of local physical
processes, like a human observer’s heartbeat. In the
case of proper time parametrisation, where g (W′, W′) =
−1, the vector W′ is known as the 4-velocity. If
the test particles are ‘freely falling’, then these
worldlines W(g) must in fact be geodesics of g
(de�ned just as in Riemannian geometry). Light
rays traverse future directed null geodesics of the
metric, i.e. geodesics with W′(g) ∈ N +

W (g) . Since such
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geodesics are in general curved, general relativity
predicts the ‘bending of light’.

The interaction of gravitational �elds and
macroscopic matter in the theory is provided by the
so-called Einstein equations. These were formulated
by Einstein [5] in November 1915 and take the form

Ric(g ) − 1
2
Scal(g )g = 8cT. (1)

Here, Ric(g ) denotes Ricci curvature of g and
Scal(g ) denotes scalar curvature, both de�ned
just as in Riemannian geometry. (Recall that the
Ricci curvature is itself a certain average of the
full Riemann curvature tensor Riem(g ), whereas
the scalar curvature is simply the trace of the
Ricci curvature. The precise formulae are of no
particular relevance for this discussion.) The object
T on the right hand side of (1) is the so-called
stress-energy-momentum tensor of matter. We will
see an example of such a tensor later on. (In
writing (1), we note that we have chosen units such
that in addition to c = 1 the Newtonian gravitational
constant satis�es G = 1.)

One should view the Einstein equations (1) as the
general relativistic analogue of the Poisson equation

Δq = 4cd (2)

describing the Newtonian gravitational potential
q generated by the total mass density d of
matter. We note already, however, some fundamental
di�erences: equation (2), at �xed t , can be considered
as a linear elliptic equation completely determining
q from d and appropriate boundary conditions at
in�nity. Thus, in Newtonian theory, gravity is only
non-trivial in the presence of matter. In contrast,
equation (1) is non-trivial already where T = 0 globally,
in which case it simpli�es as:

Ric(g ) = 0. (3)

These are the Einstein vacuum equations.
Equations (3) in fact constitute a nonlinear hyperbolic
system with a well-posed initial value problem.

Equations (1) must in general be supplemented with
equations for matter �elds, which are in turn coupled
to (1) via the stress-energy-momentum tensor T. For
all conventional matter however, T satis�es certain
non-negativity properties, just as the mass density d

in Newtonian theory satis�es d ≥ 0. The most basic
of these properties is the statement that T(v,v) ≥
0 for any null vector v, in which case the Einstein
equations (1) imply the following inequality:

Ric(v,v) ≥ 0. (4)

It is worth noting already that equation (3), and more
generally inequality (4), encode geometric content,
analogous to that encoded in positivity assumptions
concerning Ricci curvature in Riemannian geometry.

Both the evolutionary pde point of view on (3) and the
geometrical point of view on (4) will be essential to
our story. We are already getting ahead of ourselves,
however. Let us �rst return to 1915!

The Schwarzschild solution and the problem of
‘singularity’

The problem of ‘singularity’ plagued Einstein’s theory
essentially from its inception. The issue arose
already in connection with the �rst non-trivial
solution of (3) to be discovered—only weeks after
Einstein’s formulation of the equations—namely that
of Schwarzschild [19]. Let me brie�y describe this
metric and the issues it gave rise to.

In local coordinates (t ,r , \, q) the Schwarzschild
metric can be written as

g = −(1 − 2m/r )dt2 + (1 − 2m/r )−1dr 2

+ r 2 (d\2 + sin2 \dq2). (5)

With a little bit of computation, the keen reader can
explicitly check that (5) indeed satis�es the vacuum
equations (3) for all values of parameter m ∈ ℝ. Note
that ifm = 0, the expression (5) simply reduces to the
�at Minkowski metric of special relativity, expressed
in spherical polar coordinates.

The early well-known triumphs of general relativity
(explaining anomalous precession of the perihelion
of Mercury, predicting the bending of light [11]) can be
easily deduced from (5), interpreting it as the vacuum
metric outside a spherically symmetric star of mass
m and radius R, measured in appropriate units.

As often happens, however, together with triumph
came new problems! In particular, if m > 0, then
the expression (5) de�ning the Schwarzschild metric
seems to be inadmissible at r = 2m, where the metric
coe�cient gr r manifestly blows up.

In the context of actual stars as understood at the
time, the issue seemed academic: typical stars have
R � 2m in these units, so there is no problem if one
only considers (5) for r > R. However, a prophetic
1939 paper [12] by Oppenheimer and Snyder—a
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paper little understood in its time—showed that the
question was not as academic as �rst seemed! The
point was that one should not restrict to static stars,
but allow also collapsing ones.

We will discuss [12] in the next section. Brie�y, [12]
constructs a spherically symmetric spacetime (M, g )
solving (1) coupled to the equations for a perfect �uid,
where the �uid is pressureless, and thus

T = d u♭ ⊗ u♭, (6)

where d denotes the rest mass density and u♭ the
1-form dual to the �uid 4-velocity. The precise form g
takes in the support of (6) is not important here. We
remark only that outside the support, the solution is
both vacuum and spherically symmetric, and thus (by
Birkho�’s theorem [11]) necessarily coincides with (5).
The support of the matter has the interpretation of
a collapsing star. If g denotes the proper time of a
freely falling observer W(g) on the boundary of the
star, then its radius R (W(g)) → 2m as g → gcritical
for some gcritical < ∞. Thus, one does have to face
the limit r → 2m in (5) after all!

The paper [12] did not quite make explicit what
happens to freely falling observers W when or after
they reach r = 2m. It turns out, however, that this
had in fact already been understood (at least in
the vacuum region) by Lemaitre [9], who explicitly
extended the metric (5) across r = 2m. It is in
retrospect remarkable that this question caused as
much confusion as it did, since it su�ces to de�ne

v = t + r + 2m log |r − 2m |, (7)

in which case the metric (5) transforms into

−(1−2m/r ) (dv )2+2dvdr +r 2 (d\2+sin2 \dq2). (8)

This metric is manifestly regular for all r > 0 and all
v ∈ ℝ. We will discuss its behaviour at r = 0 later!

Even more astonishing than the initial confusion itself,
however, was how long it took the correct solution
to become common knowledge in the physics
community! Indeed, as late as 1958, Lemaitre’s work
was being rediscovered, for instance by Finkelstein [6].
This turned out to be quite fortuitous for our story,
as it was from a lecture of Finkelstein in London that
Penrose was to learn about this extension [17].

Oppenheimer–Snyder à la Penrose

The starting point for Penrose’s seminal [13] is
precisely a lucid presentation of Oppenheimer–Snyder

collapse, including Lemaitre’s extension as he learned
it from Finkelstein. The geometry of the spacetime
is illustrated by a diagram reproduced here.

It is worth walking through this depiction: good visual
aides are central to Penrose’s work!

Diagram of Oppenheimer–Snyder spacetime from
Penrose’s paper [13]

The hypersurface C 3 is a 3-dimensional spacelike
slice of spacetime M4

+, i.e. a hypersurface on which
the induced metric is Riemannian; one may view
C 3 as representing space at an instant. There is
an initial ball of matter on C 3 of radius R0 > 2m,
and its world tube through spacetime is depicted
(labelled ‘matter’). This is where the �uid energy
momentum (6) is supported. Outside the support,
M4
+ is vacuum, and thus, described by the Lemaitre

extension (8) of Schwarzschild. Note level surfaces
v = const depicted, with v increasing moving up.

As a Riemannian manifold, C 3 is as nice as can
be; its metric is complete and asymptotically �at.
(Asymptotic �atness, the condition that the metric
approach Euclidean at large r , is the analogue of
the boundary condition q→ 0 in Newtonian theory
governed by (2).) Thus, we may view M4

+ as ‘evolving’
from a physically admissible initial state. In more
technical terms, C 3 is in fact a Cauchy hypersurface,
which, in pde language, means that its data determine
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uniquely the spacetime (M4
+, g ) as a solution of (1)

with (6), and (M4
+, g ) is in fact the so-called maximal

Cauchy development of these data. We will return to
this issue later!

The cones depicted in the diagram are precisely
the future light cones N +p at each spacetime point
p . Drawing these cones allows us to pick out by
sight worldlines and trajectories of light rays (such
curves are collectively known as causal). Note that
as depicted in the diagram, the N +p tilt inwards (with
respect to the r coordinate) compared with �at
Minkowski space, tilting more and more as r → 0.

Considering the radius R (v ) of the support of the
matter (6) as a function of v , one may moreover infer
from the diagram that there is aVcrit (not labelled) for
which R (v ) → 0 as v →Vcrit, while for v > Vcrit, the
spacetime is vacuum and thus completely described
by (8). At least for v > Vcrit, one sees easily that the
future null cones N +p on r = 2m are in fact tangent to
r = 2m, with all other null directions pointing inside
r ≤ 2m, i.e. w(r ) ≤ 0 for all w ∈ N +p , where w(r )
just denotes the action of vectors on functions by
di�erentiation. For r < 2m, we have w(r ) < 0 for
all w ∈ N +p . Thus, if W(g) is a future causal curve
and r (W(g0)) < 2m, v (W(g0)) > Vcrit then r ′(W(g)) <
0 for all g ≥ g0, and so r (W(g)) < 2m. It follows
in particular that there is a non-empty region of
spacetime which cannot send signals to far away
outside observers for which r is large. This region
would later be named the black hole region [11].

Finally, we notice that all worldlines which enter the
black hole region eventually reach r = 0. An easy
computation with (8) reveals that this in fact happens
in �nite proper time, that is to say, given any worldline
W(g) parametrised by proper time g, then there
exists a gmax such that r (W(g)) → 0 as g → gmax.
Similarly, future null geodesics entering the interior of
the black hole reach r = 0 in �nite a�ne time, while
there is the marginal case of those remaining for all
a�ne time on the boundary, along which eventually
r = 2m. This boundary came to be known as the
event horizon. Examples of null geodesics lying on
this horizon are depicted on the diagram.

We now �nally turn to discuss r = 0. The spacetime
M cannot be extended to include r = 0, at least not
in a suitably regular fashion, as is clear by computing
the Kretschmann scalar K , a contraction of the
tensor Riem ⊗ Riem, which equals K = 48m2r −6

and thus diverges as r → 0. This thus represents
a singularity, where physical quantities diverge, and
presumably, general relativity itself breaks down.

Let us note already that there is another way of
saying that something is ‘wrong’ with spacetime,
without explicitly talking about the ‘singularity’ at
r = 0. We say a future causal geodesic (i.e. one
with W′(g) ∈ I +

W (g) ∪ N
+
W (g) ) is future complete if it

can be extended to be de�ned on [g0,∞), otherwise,
future incomplete. Geodesics with r (W(g)) → 0 as
g → gmax are incomplete in view of the above, and
since it contains such geodesics, M4

+ is itself said to
be future causally geodesically incomplete.

In the above example, geodesic incompleteness
seems intimately tied both with the black hole region
and with the presence of the r = 0 ‘singularity’.
Future causal geodesics in Oppenheimer–Snyder
turn out to be future incomplete if and only if they
approach r = 0, in fact if and only if they enter
the interior of the black hole region. In general,
however, it is trivial to come up with spacetimes with
future incomplete causal geodesics but which are in
no reasonable sense ‘singular’ nor have black hole
regions: one can just remove appropriate sets from
Minkowski space. We shall return to this issue later!
In the meantime, let us introduce Penrose’s theorem.

Trapped surfaces and incompleteness

The Oppenheimer–Snyder spacetime depicted above
is all well and good, but at the end of the day, it is just
a single explicit solution of the equations (1)—and a
very symmetric one at that. Moreover, the singular
behaviour it exhibits corresponds to r → 0, and
it is natural to expect that behaviour there is
very sensitive to perturbation away from symmetry.
Indeed, on the eve of the appearance of [13], the
general belief was that all this strange causal and
singular behaviour—largely misunderstood in any
case—was an artefact of symmetry [17].

The key to address, and �nally frustrate, this
expectation was a profound new concept, geometric
in nature: that of a closed trapped surface.

Brie�y, a closed trapped surface is a compact
spacelike 2-surface T 2 (without boundary) such that
its area element at every p ∈ T 2 is in�nitesimally
decreasing in both future null directions orthogonal
to T 2. (Compare with usual spheres in Minkowski
space decreasing in one and increasing in the other.)
A more precise de�nition of this is given in the box.

In Oppenheimer–Snyder spacetime, any surface S 2

of constant (v ,r ) with r < 2m lying in the vacuum
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region of the spacetime is in fact a closed trapped
surface. (This is clear since w(r ) < 0 in this region
forw ∈ N +p .) An example of such a surface is labelled
on the diagram. Let us already note, moreover,
that the presence of such a surface is stable to
perturbation of spacetime. This follows trivially from
the compactness of S 2 and the fact that trappedness
is de�ned by strict inequalities.

Trapped surfaces

If T 2 is a spacelike 2-surface (i.e. its induced
metric is Riemannian), then for all p ∈ T 2 one
can de�ne two unique future null normals L
and L to the tangent space of T 2 at p . We
callT 2 trapped if tr (X ,Y ) ↦→ g (∇X L,Y ) and
tr (X ,Y ) ↦→ g (∇X L,Y ) are both negative,
where X ,Y are tangent to T 2. Note that the
null geodesics generated by L and L span the
two components of boundary of the causal
future of T 2, and thus this de�nition can be
interpreted as saying that the area element of
T 2 is in�nitesimally decreasing as it is �owed
along either component of the boundary.

Given the notion of closed trapped surface, Penrose’s
theorem is incredibly simple to state, and, as it turns
out, not so di�cult to prove (see the Box at the end
of the article), by methods of global geometry:

Theorem 1 (Penrose’s incompleteness theorem [13]).
If (M, g ) is su�ciently smooth, admits a non-compact
Cauchy hypersurface, contains a closed trapped surface
and satis�es the inequality (4) for all null v, then it is
future-causally geodesically incomplete.

Closed trapped surfaces thus are ‘surfaces of no
return’ which, once present, ensure incompleteness!

Note how the theorem’s assumptions and conclusion
are indeed exhibited for Oppenheimer–Snyder
spacetime (M4

+, g ) itself. In particular, the curvature
inequality (4) for null v follows from the Einstein
equations (1) and the de�nition (6), in view of the
fact that the �uid 4-velocity u satis�es u ∈ I +p .

As remarked already, geodesic incompleteness in
the special case of Oppenheimer–Snyder seems to
be intimately connected to both black holes and
singularities. It is thus tempting to interpret this
theorem as predicting these. (Indeed, the traditional
name for the above theorem, which we have avoided
here for reasons we shall return to later, is the

Penrose singularity theorem.) As we shall see, this
interpretation is not in fact correct, and the true
situation is far more interesting. Before trying to
explain, let us introduce the evolutionary point of
view, which will be essential for what follows.

The evolutionary point of view

The true signi�cance of Penrose’s theorem
becomes apparent by interpreting it in an explicitly
evolutionary context.

The precise language in order to do this was not in
fact available in 1965, but was clari�ed a few years
later in a paper [1] of Choquet-Bruhat and Geroch,
which introduced the notion of the maximal Cauchy
development. This important concept is explained
further in the box. Brie�y, given appropriate initial
data for (1) on a 3-manifold C 3, this is the biggest
spacetime (M, g ) of (1), together with the matter
equations, admitting C 3 as a Cauchy hypersurface.
With this, one may now talk of a unique spacetime
(M, g ) which is ‘predicted’ by general relativity from
initial data, resolving the ambiguity of domain, that,
as discussed earlier, would allow for many trivial
examples of geodesically incomplete spacetimes.

The maximal Cauchy development is the object to
which one should apply Penrose’s incompleteness
theorem. We may in particular state the following:

Corollary 1. For all initial data su�ciently close to data
on C 3 in Oppenheimer–Snyder collapse, the resulting
maximal Cauchy development (M, g ) will still be future
causally geodesically incomplete.

In deducing the above, we have used also the
fact that the presence of a closed trapped
surface is stable not just to perturbation of
spacetime but to perturbation of initial data, by
general Cauchy stability arguments. Thus, geodesic
incompleteness of the maximal Cauchy development
is an inescapable prediction of the theory, following
from assumptions expressible on initial data alone,
robust to perturbation. Incompleteness cannot be
avoided by perturbing the initial data.

Note that there are pure vacuum solutions like (8)
which contain closed trapped surfaces. A more
interesting question, however, is whether closed
trapped surfaces can form in vacuum (3) from
initial data which don’t initially contain trapped
surfaces, just like Oppenheimer–Snyder at the initial
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hypersurface C 3. This was shown to be true in [3].
As in Corollary 1, it then follows that all initial data
suitably close to those of [3] again lead to an
incomplete maximal Cauchy development.

The initial value problem and the
maximal Cauchy development

For convenience, let us restrict to the vacuum
equations (3), although similar considerations
apply for a wide class of Einstein matter
systems. A vacuum initial data set is a
triple (C 3, ḡ ,K ) with C 3 a 3-manifold, ḡ a
Riemannian metric on C 3 and K a symmetric
2-tensor, such that ḡ and K satisfy the
vacuum constraint equations. (These are the
nontrivial relations arising for the �rst and
second fundamental forms from di�erential
geometry if C 3 were a spacelike hypersurface
of a Lorentzian manifold satisfying (3).) The
theorem of Choquet-Bruhat and Geroch [1]
states that given such a smooth (C 3, ḡ ,K ),
there exists a unique smooth (M, g ) which
admits C 3 as a Cauchy hypersurface, satis�es
the Einstein vacuum equations (3), and is
maximal in the sense that any other such
spacetime isometrically embeds in (M, g )
preserving C 3. (The statement that C 3 is a
Cauchy hypersurface is simply the statement
that all inextendible causal curves of M

intersect C 3 exactly once.)

The cosmic censorship conjectures

We have remarked already that Penrose’s theorem
is often misinterpreted as saying that black holes
generically form or that ‘singularities’ (in the sense
of local physics breaking down) generically arise.
This is presumably because geodesic incompleteness
in Oppenheimer–Snyder seems to be directly
connected with both of these features.

What Penrose actually proved, however, is perhaps
even more profound than what the press release [21]
says. For it is fair to say that his theorem
changed our very ‘value system’. Whereas before,
Oppenheimer–Snyder looked like the ultimate
pathology, which would hopefully disappear once
perturbed, Penrose showed us that we should not
just tolerate black holes and singularities, but that
we should in fact hope that black holes form, and

what’s more we should hope for singularities inside
them—and the stronger those are, the better!

Why? Because, as we shall see, the alternative that
his theorem allows is even worse.

Let us �rst understand the alternative to the
presence of a black hole. We need look no further
than negative mass Schwarzschild, i.e. the metric (5)
with m < 0. Here, r = 0 can again be viewed
as a singular boundary, but now one which is
visible to outside observers. We say the spacetime
possesses a ‘naked singularity’. In contrast to the
Oppenheimer–Snyder case, it would appear that one
would need to go beyond general relativity to describe
observations accessible to far-away observers.

Fortunately, the evolutionary point of view allows
us to exclude the particular example of negative
mass Schwarzschild outright, because it does not
in fact arise as a maximal Cauchy development
of complete asymptotically �at initial data C 3. But
who is to say that there do not exist spacetimes
with naked singularities that do arise from such
data, even perhaps from small perturbations of
Oppenheimer–Snyder data as in Corollary 1?

The conjecture that naked singularities should not
occur, or at least should generically not occur, is
Penrose’s original ‘cosmic censorship’ [16].

The conjecture can be nicely re-formulated [7] in the
evolutionary context with the help of yet another
fundamental concept introduced by Penrose, that
of ‘future null in�nity’ [14], typically denoted as I+,
which under suitable circumstances can be attached
as a conformal boundary of spacetime. Considering
I+ is extremely useful for formulating the laws of
gravitational radiation, but it can also serve as a
stand-in for the role of far-away observers when
de�ning black holes. For instance, one can de�ne the
black hole region as M\ J − (I+), where J − denotes
causal past, although one should also impose thatI+

itself is complete [7], loosely related to the statement
that far-away freely falling observer worldlines be
future complete. In this language, the de�ning feature
of a ‘naked singularity’ is that information from there
would arrive at I+ at �nite a�ne time, rendering I+

incomplete. The modern formulation [2] of Penrose’s
conjecture, adapted to the evolutionary setting, is

Conjecture 1 (Weak cosmic censorship). For generic
asymptotically �at initial data for (3) (or more
generally (1) coupled to suitable matter), the maximal
Cauchy development possesses a complete I+.
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The word ‘weak’ is traditional, meant to distinguish
this statement from the later ‘strong’ Conjecture 2.
The genericity assumption turns out to be necessary
even for vacuum (3) in view of recent examples [18] of
naked singularities, related to the previous spherically
symmetric [2]. A highly nontrivial symmetric toy
version of Conjecture 1 has been proven [2]. The
general problem, however, remains completely open!

The other ‘good’ feature of Oppenheimer–Snyder
is perhaps even more di�cult at �rst sight to
recognise as good: as remarked earlier, all incomplete
observers in Oppenheimer–Snyder spacetime fall
into the singularity r = 0. Moreover, not only do
they fall into the singularity, but an actual physical
observer with arms and legs would be destroyed at
r = 0, torn apart by in�nite tidal deformations [11].

While this is hardly ‘good’ for that poor observer, one
can argue that it is very ‘good’ for general relativity
as a classical physics theory! For perversely, it gives
the theory an attractive epistemological closure.
Observers either live forever or are torn apart. Either
way, their future as classical observers is completely
described and determined by the theory—for as long
as it makes sense to talk about them.

On the other hand, let us contemplate a
very di�erent situation. Imagine that there exist
incomplete observers who encounter no singularity.
The theory doesn’t say what happens to them, but
surely something must. What determines this?

Remarkably, this phenomenon is precisely what
occurs in the celebrated Kerr solution, a 2-parameter
family of vacuum metrics generalising (5). See [11].
Here the maximal Cauchy development of
(2-ended) asymptotically �at initial data satis�es the
assumptions of Theorem 1. It is thus incomplete, but
it is extendible smoothly as a Lorentzian manifold,
in fact as a vacuum solution, in fact it is extendible
so that all incomplete observers may live another
day in the extension. These extensions fail however
to admit the initial hypersurface as a Cauchy
hypersurface. The boundary of the maximal Cauchy
development in such an extension is thus known as
a Cauchy horizon. This notion is due to Hawking [8].
This strange situation can be understood better
considering the solution’s so called Penrose diagram,
an in�uential way of representing the geometry of
spacetimes which is beyond the scope of this article.
See [14].

In a certain sense, Cauchy horizons can be viewed as
‘worse’ than singularities. The Kerr case is extremely
pernicious in that not a single incomplete observer

encounters anything that would even suggest that
the regime of classical relativity has been exited.
So it is a spectacular and seemingly inexplicable
failure of the predictability of the theory, in no way
accompanied by singularity. It was again Penrose
who discovered a possible way out, noticing that
Kerr’s Cauchy horizon is subject to a blue-shift
instability [15]. This led him to put forth his
‘strong cosmic censorship’, which in its evolutionary
formulation [2] is the conjecture that, for generic
initial data, Cauchy horizons should not occur, i.e.

Conjecture 2 (Strong cosmic censorship). For
generic asymptotically �at initial data (3) (or more
generally for (1) coupled to suitable matter), the
maximal Cauchy development is inextendible as a
suitably regular Lorentzian manifold.

(Note that as stated, Conjecture 2 is not in fact
‘stronger’ than Conjecture 1.) To make Conjecture 2
precise, one must specify how ‘suitably regular’
should be interpreted. E�ectively, this corresponds to
specifying how ‘singular’ the boundary of spacetime
should be. The strongest formulation would have it
that the boundary is so singular so that all incomplete
observers are torn apart, just as in Schwarzschild,
providing the de�nitive closure described above.
This would correspond to the C 0 formulation of
Conjecture 2, where ‘suitably regular’ just means
‘continuous’. Unfortunately, this version is in fact
false [4]. A weaker formulation is proposed in [3]
and there are some positive non-trivial results [10]
for a symmetric toy version. As with Conjecture 1,
however, a positive resolution of a suitable version
of Conjecture 2 remains completely open!

In conclusion, Penrose’s theorem may not imply that
black holes form or even true ‘singularities’ develop,
but it very much taught us to live with black holes
and singularities—indeed, to love them. Black holes
are not themselves the singularity, but they are what
protects us from singularity, and singularity in turn
is what protects us from a much more dangerous
kind of incompleteness associated with loss of
predictability. The wide acceptance of black holes,
now central both in astronomy and even popular
culture, ultimately stems from this. It is di�cult to
imagine a more impactful contribution to general
relativity—a more ironic reversal—arising from the
proof of a mathematical theorem of pure geometry.
With [13], our view of gravitational collapse irreversibly
changed, and the resulting weak and strong cosmic
censorship conjectures will undoubtedly remain the
main source of inspiration for further progress in
classical general relativity for many years to come.
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The proof of Penrose’s incompleteness theorem

The proof of Theorem 1 can be thought of as an ingenious adaptation of ideas from the Bonnet-Myers
theorem to the setting of Lorentzian geometry in the presence of a closed trapped surface. We sketch
the proof here. One considers the so-called causal future J + (T ) of the closed trapped surface T .
If spacetime admits a Cauchy hypersurface C 3, then one can show that the boundary B of this set
canonically projects to C 3. The variational theory of null geodesics, however, yields that B is covered
by null geodesic segments none of which may extend beyond its �rst focal point to T . The curvature
assumption (4) implies on the other hand that null geodesics emanating from T must develop focal
points if they can be extended to arbitrary a�ne time g. Thus, if these null geodesics are future
complete it follows that every null geodesic emanating from T develops a focal point, whence one
can show that B is compact without boundary, whence it cannot project to the non-compact C 3. This
contradicts the null geodesic completeness. See also Penrose’s Adams Prize essay [14]. There are many
extensions of this result, starting from work of Hawking [8]. See the survey [20].
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The Mathematics of Floating-Point Arithmetic
NICHOLAS J. HIGHAM

Floating-point arithmetic is ubiquitous in computing and its implementation in evolving computer hardware
remains an active area of research. Its mathematical properties di�er from those of arithmetic over the real
numbers in important and sometimes surprising ways. We explain what a mathematician should know about
�oating-point arithmetic, and in particular we describe some of its not so well known algebraic properties.

Floating-point arithmetic has been in use for over
seventy years, having been provided on some of
the earliest digital computers. For the �rst half
of that period there was tremendous variation
in �oating-point formats and in the ways the
arithmetics were implemented. Some �oating-point
arithmetics could produce anomalous results and
it was di�cult or impossible to write programs
that were portable, i.e., produce similar results on
di�erent computer systems with little or no change.

The 1985 ANSI/IEEE Standard for Binary Floating-Point
Arithmetic [9] provided binary �oating-point formats
and precise rules for how to carry out arithmetic
on them. Carefully designed over several years by
a committee of experts, it brought much-needed
order to computer arithmetic and within a few years
virtually all computer manufacturers had adopted it.

From a mathematical perspective we can ask several
questions about a �oating-point arithmetic.

• What mathematical properties does it have
compared with exact arithmetic?

• What sort of mathematical structure is it?

• How can we understand the accuracy of
computations carried out in it?

First, we need to de�ne the set of numbers under
consideration. A �oating-point number system is
a �nite subset F = F (V,t ,emin,emax) of the real
numbers ℝ whose elements have the form

x = ±m × V e−t+1. (1)

Here, V is the base, which is 2 on virtually all current
computers. The integer t is the precision and the
integer e is the exponent, which lies in the range
emin ≤ e ≤ emax. The signi�cand m is an integer
satisfying 0 ≤ m ≤ V t − 1. To ensure a unique
representation for each nonzero x ∈ F it is assumed
that m ≥ V t−1 if x ≠ 0, so that the system is
normalised.

The reason for the “+1” in the exponent of (1), which
could be avoided by rede�ning emin and emax, is for
consistency with the IEEE standard. The standard
also requires that emin = 1 − emax.

The largest and smallest positive numbers in the
system are xmax = V emax (V − V 1−t ) and xmin = V emin ,
respectively. Two other important quantities are u =
1
2 V

1−t , the unit roundo�, and n = V 1−t , the machine
epsilon, which is the distance from 1 to the next
larger �oating-point number. See the box for a simple
example of a �oating-point number system.

A toy �oating-point number system

This diagram shows the nonnegative (normalised) numbers in a binary �oating-point number system
with t = 3, emin = −2, and emax = 3. Note that the �oating-point numbers are equally spaced between
powers of 2 and the spacing increases by a factor of 2 at each power of 2. Here, the unit roundo� is
u = 0.125 and the machine epsilon n = 0.25; these are the distances from 1 to the next smaller and
next larger �oating-point number, respectively.

0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 12.0 14.0
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The system F can be extended by including
subnormal numbers, which have the minimum
exponent and m < V t−1, so that they are not
normalised; they �ll the gap between 0 and xmin with
numbers having a constant spacing V emin+1−t . The
IEEE standard includes subnormal numbers.

We assume throughout the rest of this article that
F is a binary system (V = 2), and that it follows
the IEEE standard by including the special numbers
±∞ and NaN (Not a Number). The numbers ±∞
obey the usual mathematical conventions regarding
in�nity, such as ∞ + ∞ = ∞, (−1) × ∞ = −∞, and
(finite)/∞ = 0. A NaN is generated by operations
such as 0/0, 0 ×∞, ∞/∞, (+∞) + (−∞), and

√
−1.

We also assume, again following the IEEE standard,
that the results of the elementary operations of
addition, subtraction, multiplication, division, and
square root are the same as if they were carried out
to in�nite precision and then rounded back to F , and
that rounding of x ∈ ℝ to F is done by mapping to
the nearest �oating-point number, with ties broken
by rounding to the �oating-point number with a zero
last bit. We denote the operation of rounding by fl.
With a standard abuse of notation, fl(expr), where
expr is an arithmetic expression, is also used to
denote the result of evaluating expr in �oating-point
arithmetic in some speci�ed order.

With the inclusion of ∞ and NaN, F is a closed
number system: every �oating-point operation on
numbers in F produces a result in F .

Algebraic properties

The real numbers form a �eld under addition
and multiplication. It is natural to ask what
sort of mathematical structure �oating-point
numbers form under the elementary (�oating-point)
arithmetic operations. To investigate this question
we will explore some basic algebraic properties of
�oating-point arithmetic.

Let a,b ∈ F . By de�nition, fl(a + b) and fl(b + a)
are equal, as are fl(a ∗ b) and fl(b ∗ a). However,
with three numbers the usual rules of arithmetic
break down: fl((a + b) + c )) is not necessarily equal
to fl(a + (b + c )) and fl((a ∗ b) ∗ c ) is not necessarily
equal to fl(a ∗ (b ∗ c )). In other words, �oating-point
addition and multiplication are not associative. For

example, in our toy system fl(0.25 + (8.0 − 7.0)) =
1.25 but fl((0.25 + 8.0) − 7.0) = fl(8.0 − 7.0) = 1.0.
Similarly, fl(a ∗ (b + c )) is not necessarily equal to
fl(a ∗ b + a ∗ c ), so the distributive law does not hold.

If a > b > 0 then fl(a + b) > a need not hold. The
reason is that b may be so small that a is unchanged
after adding b and rounding. Indeed fl(1 + x) = 1 for
any positive �oating-point number x < u .

Does the equation x ∗ (1/x) = 1 hold in �oating-point
arithmetic? The following result of Edelman says that
it may just fail to do so [6, Prob. 2.12].1

Theorem 2. For 1 < x < 2, fl(x ∗ (1/x)) is either 1
or 1 − n/2

A closely related question is which �oating-point
numbers are possible reciprocals of x ∈ F . Muller
[10] showed that when 1/x ∉ F there are two
possibilities.

Theorem 3. The only z ∈ F that can satisfy
fl(x ∗ z ) = 1 are min{ y : y ≥ 1/x , y ∈ F } and
max{ y : y ≤ 1/x , y ∈ F }.

Perhaps surprisingly, these two possible z can
simultaneously give equality, so a �oating-point
number can have two �oating-point reciprocals. In
fact, of the 24 positive numbers in the toy system,
eight have two �oating-point reciprocals; for example,
y = 0.625 and y = 0.75 both satisfy fl(1.5 ∗ y) = 1,
and these are the two nearest �oating-point numbers
to 1/1.5 = 2/3.

Now consider the computation n ∗ (m/n), where m
and n are integers. If m/n is a �oating-point number
then fl(n ∗ fl(m/n)) = fl(n ∗ (m/n)) = fl(m) = m, as
no rounding is needed. Kahan proved that the same
identity holds for many other choices of m and n [4,
Thm. 7].

Theorem 4. Let m and n be integers such that
|m | < 2t−1 and n = 2i + 2 j for some i and j . Then
fl(n ∗ fl(m/n)) = m.

The sequence of allowable n begins 2,3,4,5,6,8,9,
10,12,16,17,18,20 (and is A048645 in the On-Line
Encyclopedia of Integer Sequences), so Theorem 3
covers many common cases. Nevertheless, the
equality does not hold in general.

It can be shown that fl
(√
x2

)
= |x | for x ∈ F , as long

as x2 does not under�ow (round to zero) or over�ow
1We give a minimal set of references in this article. Original sources can be found in the references cited.
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(exceed the largest element of F ), but fl((
√
x)2) = |x |

is not always true (by the pigeonhole principle) [6,
Prob. 2.20].

Rounding (to nearest) is monotonic in that for x ∈ ℝ
and y ∈ ℝ, the inequality x ≤ y implies fl(x) ≤ fl(y).
As a result, it is easy to show that

x ≤ fl
(x + y

2

)
≤ y .

While this result holds for base 2, the computed
midpoint can be outside the interval for base 10.

The inequality fl
(
x/

√
x2 + y2

)
≤ 1 always holds,

barring over�ow and under�ow [6, Prob. 2.21].
Although this fact may seem unremarkable, in
some pre-IEEE standard arithmetics this inequality
could be violated, causing failure of an attempt
to compute one of the angles in a right-angled
triangle with shortest sides of lengths x and y as
acos

(
x/

√
x2 + y2

)
.

The following result of Sterbenz guarantees that
subtraction is exact for two numbers that are at
most a factor 2 apart.

Theorem 5. If x and y are �oating-point numbers
with y/2 ≤ x ≤ 2y then fl(x − y) = x − y (assuming
x − y does not under�ow).

This result is notable because inaccurate results are
often blamed on subtractive cancellation. It is not
the subtraction itself that is dangerous but the way
it brings into prominence errors already present in
the numbers being subtracted, making these errors
much larger relative to the result than they were to
the arguments.

Finally, we note that a NaN is unique among elements
of F in that it compares as unordered (including
unequal to) everything, including itself. In particular,
a statement “if x = x” returns false when x is a NaN.
This is why some programming languages provide a
function to test for a NaN (e.g., isnan in MATLAB).

We conclude that �oating-point arithmetic is a
rather strange mathematical object that does not
correspond to any standard algebraic structure.
These examples could make one pessimistic
about our ability to carry out reliable numerical
computations. Fortunately, these peculiar features
of �oating-point arithmetic are not a barrier to
its successful use or to deriving satisfactory error
bounds, as we now illustrate.

Experimenting with di�erent
�oating-point arithmetics

It is instructive to run experiments in
�oating-point arithmetics based on di�erent
parameters t , emin, and emax.

We used the MATLAB function chopa [8]
for this purpose. This function rounds single
or double precision numbers to a speci�ed
target format (limited to emin = 1 − emax)
and supports several rounding modes and
other options. A library CPFloat o�ers similar
functionality for C [3].
ahttps://github.com/higham/chop

Error analysis

If we want to understand the e�ects of rounding
errors on a �oating-point computation then we need
to analyse how the individual rounding errors interact
and propagate. A natural way to try to do this is to
de�ne “circle operators” ⊕, 	, ⊗, and � by

x ⊕ y = fl(x + y), x 	 y = fl(x − y),
x ⊗ y = fl(x ∗ y), x � y = fl(x/y),

and then rewrite the expressions being evaluated in
terms of these operators. For example, consider the
evaluation of the cubic polynomial p = ax3 + bx2 +
cx + d by Horner’s rule as p = ((ax + b)x + c )x + d
(using 6 operations instead of the 8 required if we
explicitly form x3 and x2). We would then write the
computed p̂ as

p̂ =
(
(a ⊗ x ⊕ b) ⊗ x ⊕ c

)
⊗ x ⊕ d .

However, we cannot easily simplify this expression
because the circle operators do not satisfy the
associative or distributive laws.

The right way to do error analysis is to obtain
equations in terms of the original operators and
individual rounding errors. We need the result that
[6, Thm. 2.2]

x ∈ ℝ =⇒ fl(x) = x (1 + X), |X | ≤ u , (2)

where u is the unit roundo�. Since fl(x op y) is
de�ned to be the rounded exact value, it follows that
for op = +,−,∗,/ we have

fl(x op y) = (x op y) (1 + X), |X | ≤ u . (3)

https://github.com/higham/chop
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This is the standard model of �oating-point
arithmetic used for rounding error analysis. Note that
it does not fully characterise �oating-point arithmetic
because (2) does not fully characterise rounding:
for some x , two di�erent �oating-point numbers y
satisfy y = x (1 + X) with |X | ≤ u . It is possible to use
more re�ned models of �oating-point arithmetic that
more fully re�ect the de�nition of rounding, which
tends to give results with slightly smaller constants
at the cost of a much more complicated analysis. The
main purpose of a rounding error analysis, though,
is to gain insight into accuracy and stability rather
than to optimise constants.

For our cubic example, we can use the model to write

p̂ =
(( (
ax (1 + X1) + b

)
(1 + X2)x (1 + X3) + c

)
× (1 + X4)x (1 + X5) + d

)
(1 + X6)

= ax3 (1 + X1) (1 + X2) (1 + X3) (1 + X4) (1 + X5) (1 + X6)
+ bx2 (1 + X2) (1 + X3) (1 + X4) (1 + X5) (1 + X6)
+ cx (1 + X4) (1 + X5) (1 + X6) + d (1 + X6),

where |Xi | ≤ u for all i . This expression is rather
messy, but we can rewrite it as

p̂ = ax3 (1 + \6) + bx2 (1 + \5)
+ cx (1 + \3) + d (1 + \1), (4)

where the \i are bounded by the following lemma [6,
Lem. 3.1].

Lemma 1. If |Xi | ≤ u and di = ±1 for i = 1: n, and
nu < 1, then

n∏
i=1

(1 + Xi )di = 1 + \n ,

where
|\n | ≤

nu
1 − nu =: Wn .

Applying the lemma to (4), we obtain

|p − p̂ | ≤ W6 ( |a | |x |
3 + |b | |x |2 + |c | |x | + |d |), (5)

which is a concise and easily interpretable error
bound, with constant W6 = 6u +O (u2).

With careful use of the lemma, the profusion of 1+Xi
terms that arise in a rounding error analysis can be
kept under control and manipulated, using the usual
rules of arithmetic, into a useful bound.

Fused multiply-add operation

Since the 1990s some processors have
provided a fused multiply-add (FMA) operation
that computes x + y ∗ z with just one rounding
error instead of two, so that

fl(x + y ∗ z ) = (x + y ∗ z ) (1 + X), |X | ≤ u .

The motivation for an FMA is speed, as it
is implemented in such a way as to take
the same time as a single multiplication or
addition.

When an FMA is used the number of rounding
errors in a typical computation is halved. Our
cubic polynomial can be evaluated with three
FMAs, giving

p̂ =
(( (
ax + b

)
(1 + X1)x + c

)
× (1 + X2)x + d

)
(1 + X3)

= (ax3 + bx2) (1 + \3) + cx (1 + \2)
+ d (1 + \1),

which is more favourable than (4).

Although it generally brings improved
accuracy, an FMA can also lead to some
unexpected results.

If we compute the modulus squared of a
complex number from the formula

(x + iy)∗ (x + iy) = x2 + y2 + i(xy − yx)

then the result is real, because fl(xy) = fl(yx).
But if an FMA is used in evaluating xy−yx then
the imaginary part may evaluate as nonzero.

Similarly, if the discriminant b2 − 4ac of a
quadratic is nonnegative then the computed
result is guaranteed to be nonnegative by the
monotonicity of �oating-point arithmetic, but
with an FMA the result can be negative.

Error analysis strategy

Even with the use of Lemma 1, rounding error analysis
can be tedious, and it is natural to ask whether it can
be automated. Can we harness a computer to carry
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out the necessary manipulations? For focused classes
of algorithms some progress has been made [1],
but in general the task is di�cult or impossible to
automate. The reason is that the hardest part of an
error analysis is deciding what one wants to prove.
For the evaluation of the cubic we obtained a bound
(5) on the error in the computed p , known as the
forward error. Along the way we obtained (4), which is
a backward error result: it shows that the computed
p̂ is the exact result for a polynomial with perturbed
coe�cients a (1+\6), b (1+\5), c (1+\3), and d (1+\1),
and it bounds the size of the relative perturbations
by W6.

In general, for a computation y = f (x), where x
and y are vectors (say), we have three measures of
error for the computed ŷ :

• forward error: ‖y − ŷ ‖/‖y ‖,

• backward error:

min
{
‖Δx ‖
‖x ‖ : ŷ = f (x + Δx)

}
,

• mixed backward–forward error: the smallest n for
which there exist Δx and Δy such that

ŷ + Δy = f (x + Δx), ‖Δx ‖
‖x ‖ ≤ n ,

‖Δy ‖
‖ŷ ‖ ≤ n .

Depending on the problem, any one of these errors
may be the best one to bound in a rounding
error analysis, or perhaps the only one that it is
feasible to bound. Determining the right approach
and working out how to achieve a result that is
readable, understandable, and insightful can be
di�cult.

Backward error analysis was developed by
J. H. Wilkinson in the 1950s and 1960s [5]. It has
the attractive feature of decoupling the numerical
stability properties of an algorithm from the
conditioning of the underlying problem (its sensitivity
to perturbations in the data).

What is quite remarkable is that despite the strange
behaviour of �oating-point arithmetic illustrated
above, it is possible to carry out rounding error
analysis of a wide variety of algorithms and obtain
useful results.

Recovering the error

The sum s = a +b of a,b ∈ F is not in general
in F , so the computed sum ŝ = fl(a + b) may
be inexact.

However, the error e = s − ŝ is in F , and for
|a | ≥ |b | it can be computed (exactly) as [11,
Sec. 4.3.1]

e = b − (ŝ − a),

so that
a + b = ŝ + e .

This computation is known as Fast2Sum.
Let us denote it by [s ,e ] = Fast2Sum(a,b).
(There are other, more complicated, ways of
computing e that do not require |a | ≥ |b |.)

Of course, if we try to form fl(ŝ + e ) then
we will just obtain ŝ , because ŝ is the best
�oating-point representation of a+b . However,
in a sequence of operations we can add the
error from an earlier operation into a later
operation, where it can potentially have an
e�ect.

An important usage of Fast2Sum is in
compensated summation, proposed by Kahan
in 1965, which computes

∑n
i=1 xi by

1 s = x1
2 e = 0
3 for i = 2: n
4 t = xi + e
5 [s ,e ] = Fast2Sum(s ,t )
6 end

For standard recursive summation the
computed ŝ satis�es

|s − ŝ | ≤ cnu
n∑
i=1

|xi | +O (u2)

with cn = n−1, whereas the computed ŝ from
compensated summation satis�es the same
bound with cn = 2 (even though compensated
summation does not sort the arguments of
Fast2Sum). For large n, this reduction in the
constant makes a signi�cant di�erence.

The 2019 revision of the IEEE standard
includes so-called augmented arithmetic
operations for addition, subtraction, and
multiplication, which (like Fast2Sum) return
both the computed result and the error in it.
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Probabilistic analysis and stochastic rounding

A numerical computation with n × n matrices usually
has a rounding error bound proportional to cnu with
cn growing at least linearly. Traditionally, numerical
computations have been done in single precision
arithmetic or double precision arithmetic, with unit
roundo�s u of order 10−8 or 10−16, respectively.
Hence nu � 1 for practical problems.

However, half precision arithmetic is now increasingly
available in hardware, with u of order 10−3 for the
b�oat16 format and 10−4 for the IEEE half precision
format. In these arithmetics, nu = 1 for quite
modestly-sized problems, and in these cases an error
bound proportional to nu provides no information.

Mixed-precision algorithms

It is becoming common for computer systems
to o�er half precision, single precision, and
double precision �oating-point arithmetics in
hardware, possibly with quadruple precision
arithmetic in software. In designing algorithms
we wish to exploit the speed of execution of
lower precision arithmetic while ensuring that
enough higher precision is used to deliver a
result of the desired accuracy. Rounding error
analysis, parametrised by the unit roundo�s
for the di�erent precisions, helps to identify
suitable algorithms.

Traditional rounding error bounds, such as those
above for Horner’s rule, are worst-case bounds.
As Stewart observes [12], “To be realistic, we must
prune away the unlikely. What is left is necessarily
a probabilistic statement.” The idea of obtaining
probabilistic rounding error bounds by modelling
rounding errors as random variables is not new, but
a rigorous treatment producing bounds valid for
any dimension has only recently been developed,
by Connolly, Higham, and Mary [2], [7]. This analysis
proves that under the assumption that the rounding
errors are mean independent random variables of
mean zero, error bounds with constants

√
f (n)u

hold with high probability in place of worst-case
bounds f (n)u .

A form of rounding called stochastic rounding has
recently been �nding use in deep learning and other
areas. It rounds a number lying between two adjacent

�oating-point numbers a < b to a with a probability
proportional to the distance to b , and conversely for b .
Stochastic rounding is somewhat worse behaved than
round to nearest vis-à-vis its algebraic properties for
individual operations. However, the random nature
of the rounding is bene�cial. It can be shown [2]
that the rounding errors from stochastic rounding
are random variables satisfying both the mean
independence and the mean zero assumptions, so
that the

√
f (n)u bounds hold unconditionally. This

means that stochastic rounding can provide more
accurate results than round to nearest for large
problems.

As a simple example, we computed
∑104
i=1 xi in IEEE

half precision arithmetic, where xi is 1/i rounded
to half precision with round to nearest. The sum
computed with round to nearest had relative error
2.7 × 10−1, whereas the minimum, mean, and
maximum errors over ten sums computed with
stochastic rounding were 2.2 × 10−3, 1.2 × 10−2,
3.0 × 10−2, respectively. In this example, round
to nearest su�ers from stagnation, whereby the
smallest terms cannot change the computed partial
sum. By contrast, stochastic rounding gives all terms
a nonzero probability of increasing the sum, and in
fact it does so in just the right way to ensure that the
expected value of the computed sum is the exact
sum [2].

Outlook

The provision of half precision �oating-point
arithmetic in hardware is motivated by machine
learning, where its greater speed is proving bene�cial
despite its lower accuracy. Half precision can also
be exploited in general scienti�c computing, but
rounding error analysis is needed to determine
whether su�ciently accurate results are being
computed.

An example of how half precision arithmetic
can be harnessed to great e�ect is the HPL-AI
Mixed Precision Benchmark2, which is one of the
benchmarks that the TOP500 project uses to rank
the world’s most powerful supercomputers. This
benchmark solves a double precision nonsingular
linear system Ax = b of order n using an LU
factorisation computed in half precision and it re�nes
the solution using iterative re�nement in double
precision. As of November 2020, the world record

2https://icl.bitbucket.io/hpl-ai/

https://icl.bitbucket.io/hpl-ai/
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execution rate for the benchmark is 2.0 ExaFlop/s
(2 × 1018 �oating-point operations per second,
where most of the operations are half precision
ones) for a matrix of size 16,957,440, which was
achieved by the Fugaku supercomputer in Japan. For
a successful benchmark run, the relative residual
‖Ax̂ − b ‖/(‖A‖‖x̂ ‖ + ‖b ‖) of the computed x̂ must
be no larger than a threshold that is about 10−8

in this case. So after approximately 2n3/3 ≈ 3 ×
1021 �oating-point operations, Fugaku’s computed
solution x̂ had a small residual, which is a testament
to e�ectiveness of �oating-point arithmetic given
that each half precision operation has a relative error
of order 10−4.

Despite �oating-point arithmetic having some
strange mathematical properties, seventy years
of experience show that it usually works well
in practice, and it is supported by rigorous
mathematical analysis—both worst-case and
probabilistic. With hardware implementations of
�oating-point arithmetic evolving constantly and
new algorithms regularly being developed, interesting
mathematical questions will continue to arise over
the coming years.

Acknowledgements

I thank Michael Connolly, Massimilano Fasi, Sven
Hammarling, Theo Mary, Mantas Mikaitis, and Srikara
Pranesh for suggesting improvements to a draft
of this article. This work was supported by the
Royal Society and Engineering and Physical Sciences
Research Council grant EP/P020720/1.

FURTHER READING

[1] P. Bientinesi and R.A. van de Geijn.
Goal-oriented and modular stability analysis.
SIAM J. Matrix Anal. Appl. 32 (2011) 286–308.
[2] M.P. Connolly, N.J. Higham, and T. Mary.
Stochastic rounding and its probabilistic
backward error analysis. SIAM J. Sci. Comput.,
2021. To appear.
[3] M. Fasi and M. Mikaitis. CPFloat: a C
library for emulating low-precision arithmetic.
MIMS EPrint 2020.22, Manchester Institute
for Mathematical Sciences, The University of
Manchester, UK, Oct. 2020.

[4] D. Goldberg. What every computer scientist
should know about �oating-point arithmetic.
ACM Comput. Surv. 23 (1991) 5–48.
[5] S. Hammarling and N.J. Higham.
Wilkinson and backward error analysis.
https://nla-group.org/2019/02/18/
wilkinson-and-backward-error-analysis/,
Feb. 2019.
[6] N.J. Higham. Accuracy and Stability of
Numerical Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd
ed., 2002.
[7] N.J. Higham and T. Mary. A new approach
to probabilistic rounding error analysis. SIAM J.
Sci. Comput. 41 (2019) A2815–A2835.
[8] N.J. Higham and S. Pranesh. Simulating low
precision �oating-point arithmetic. SIAM J. Sci.
Comput. 41 (2019) C585–C602.
[9] IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985.
Institute of Electrical and Electronics Engineers,
New York, 1985.
[10] J.-M. Muller. Some algebraic properties of
�oating-point arithmetic. In: P. Kornerup (ed.)
Proceedings of the Fourth Conference on Real
Numbers and Computers (2000), pp. 31–38.
[11] J.M. Muller, N. Brunie, F. de Dinechin, C.P.
Jeannerod, M. Joldes, V. Lefèvre, G. Melquiond,
N. Revol, and S. Torres. Handbook of
Floating-Point Arithmetic. Birkhäuser, Boston,
MA, USA, 2nd ed., 2018.
[12] G.W. Stewart. Stochastic perturbation
theory. SIAM Rev. 32 (1990) 579–610.

Photo credit: Rob
Whitrow

Nicholas J. Higham

Nick is Royal Society
Research Professor and
Richardson Professor
of Applied Mathematics
in the Department of
Mathematics at the
University of Manchester.
His current research
interests include mixed

precision numerical linear algebra algorithms. He
blogs about applied mathematics at https://
nhigham.com/. Nick shudders to recall that in some
pre-IEEE standard computer arithmetics one could
have fl(1.0 ∗ x) ≠ x for a �oating-point number x .

https://nla-group.org/2019/02/18/wilkinson-and-backward-error-analysis/
https://nla-group.org/2019/02/18/wilkinson-and-backward-error-analysis/
https://nhigham.com/
https://nhigham.com/


i
i

“NLMS_493” — 2021/2/16 — 13:09 — page 42 — #42 i
i

i
i

i
i

42 FEATURES

Random Lattices in the Wild: from Pólya’s Orchard
to Quantum Oscillators

JENS MARKLOF

Point processes are statistical models that describe the distribution of discrete events in space and time.
Applications are everywhere, from galaxies to elementary particles. My aim here is to convince you that there
is an exotic but interesting class of point processes — random lattices — that have fascinating connections
with various branches of mathematics and some basic models in physics.

So what is a random lattice? First of all, a lattice in
dimension one is any non-trivial discrete subgroup
of the additive group of real numbers ℝ. (Non-trivial
means anything but the group of one element.) The
additive group of integers ℤ is an example and, up
to rescaling by a constant factor, it is in fact the only
example. Now in order to turnℤ into a random object,
let us translateℤ by a real number U to obtain the set
S(U) = ℤ +U, and then view U as a random variable
uniformly distributed in the unit interval [0,1]. The
choice of the unit interval is natural since U and U+1
will lead to the same shifted lattice S(U). With this,
S(U) becomes a random set, which we take (for the
purposes of this discussion) to be synonymous with
random point process. One can check that S(U) is
a translation-stationary random point process, i.e.,
S(U) + t has the same distribution as S(U) for every
choice of t ∈ ℝ — a simple consequence of the fact
that U is assumed to be uniformly distributed in [0,1].
A random point process describes the probability
of �nding k points in a given set B . In the present
setting, for B a bounded interval of length |B | and
integer k ≥ 0, we have that

ℙ

(
|S(U) ∩ B | = k

)
= max

(
1 −

��k − |B |�� , 0) .
It is not di�cult to see that the expected number of
points in B is |B |, which means that the process has
intensity one — compare this with the corresponding
probabilities for a Poisson process!

The above construction has produced a simple
instance of a point process in ℝ. Independent
superpositions of one-dimensional randomly shifted
lattices explain for example the limiting gap
distribution of the fractional parts of the sequence
log n, with n = 1,2,3 . . . [14]. But the fun really starts
in dimension two!

Poisson process

A homogeneous Poisson process with
intensity one in ℝ can be realised as
a sequence of random points where
the distances between consecutive points
are independent random variables with
an exponential distribution. That is, the
probability that a gap is larger than s is e−s .
It follows that the probability of having k
points in the interval B is given by the Poisson
distribution

|B |k
k !

e−|B | .

Two-dimensional random lattices

To construct a two-dimensional random lattice, we
begin with the integer lattice ℤ2. We could proceed
as before and de�ne a random point process in ℝ2

by shifting ℤ2 randomly by a vector ", say, uniformly
distributed in [0,1]2. This is �ne, but there is a
more interesting avenue. Unlike in dimension one, we
have a non-trivial group of linear volume-preserving
transformations acting on ℝ2. We can use this action,
rather than the group of translations as above, to
randomise ℤ2 and thus produce a two-dimensional
random lattice with a fundamental cell of volume one.
Here is how it works. We represent elements in ℝ2

as row vectors x = (x1,x2). A linear transformation is
then represented by real matrix multiplication from
the right,

x ↦→ x
(
a b
c d

)
= (ax1 + cx2,bx1 + dx2).

Volume is preserved if and only if the determinant
has modulus one, that is |ad − bc | = 1. We will only
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need to consider the case where also orientation is
preserved, which means ad − bc = 1. Such matrices
form a group, which we will label as SL(2,ℝ). L
stands for linear and S for special (referring to the
unit determinant). To produce our �rst example of a
random lattice in ℝ2, consider the sheared lattice

P1 (u) = ℤ2
(
1 u
0 1

)
.

Note that, P(u + 1) = P(u), and it is therefore
natural to consider u as a random variable uniformly
distributed on [0,1]. This turns P(u) into a random
set, a random point process. A similar construction
is possible for the randomly rotated lattice

R1 (q) = ℤ2
(
cos q − sin q
sin q cos q

)
where q is uniformly distributed in [− c

2 ,
c
2 ]. It is a

fact that any matrix inM ∈ SL(2,ℝ) can be uniquely
written as a product of a shear, stretch and rotation
matrix

M =

(
1 u
0 1

) (
v1/2 0
0 v−1/2

) (
cos q − sin q
sin q cos q

)
where u is real, v is real and positive, and −c < q ≤
c. This is known as the Iwasawa decomposition of
SL(2,ℝ), and provides a parametrisation of SL(2,ℝ)
in terms of (u ,v , q). It follows that any choice of
random elements (u ,v , q) yields a random lattice
ℤ2M . The above examples of randomly sheared or
rotated lattices are simply special cases! But is there
a particular natural choice of probability measure for
(u ,v , q) that plays the role of a uniform measure?
One could start with u uniformly distributed in
[0,1] and q uniformly distributed in [− c

2 ,
c
2 ], as

above — but what is a natural uniform probabilty
measure on the positive axis for v? The answer
is highly non-trivial, but has a beautiful geometric
interpretation. The key to the solution is the modular
group Γ = SL(2,ℤ), where now all matrix coe�cients
are restricted to integers. It is a discrete subgroup
of SL(2,ℝ) and in fact precisely the subgroup of
all W ∈ SL(2,ℝ) such that ℤ2W = ℤ2. This means
that M and WM lead to the same lattice ℤ2M , and
we can therefore restrict our attention to only one
representative of the coset ΓM = {WM | W ∈ Γ}. A
convenient set of such representatives is for example
given by

F=

{
(u ,v , \) ∈ ℝ3 | − 1

2 < u < 1
2 ,

u2 + v2 > 1, v > 0, − c
2 < q < c

2

}

(we should also include about half of the boundary).
This set is called a fundamental domain of the
Γ-action, just as the unit interval is a fundamental
domain of the ℤ-action on ℝ. The most natural
uniform measure on F is obtained from the Haar
measure of SL(2,ℝ), restricted to Fand normalised
as a probability measure. Explicitly, this Haar
probability measure is

`F =
3
c2

du dv dq
v2

.

Geometers will have spotted the intriguing similarity
with formulas from hyperbolic geometry: The group
SL(2,ℝ) acts on the upper complex halfplane ℍ =

{g ∈ ℂ | Im g > 0} by Möbius (fractional linear)
transformations

g ↦→ ag + b
cg + d , M =

(
a b
c d

)
.

The Möbius transformation for M as in the Iwasawa
decomposition maps i to u + iv , and thus the Möbius
action really comes from group multiplication in
SL(2,ℝ). In fact, we can identify Γ\ SL(2,ℝ) with
the unit tangent bundle of the modular surface
Γ\ℍ, where the angle \ = −2q parametrises the
direction of the tangent vector at the point g =

u + iv . With this identi�cation, the Haar probability
measure `F becomes the natural invariant measure
for the geodesic and horocycle �ows for the modular
surface.

Haar probability measure

If (x1,x2,x3) is a uniformly distributed random
vector in the unit cube (− 1

2 ,
1
2 )

3, then

(u ,v , q) =
(
sin( c3x1),

cos( c3x1)
1
2 − x2

, cx3

)
.

is a random element in F distributed
according to the Haar probability measure `F.

A key property of Haar measure on SL(2,ℝ) is
that it is invariant under left and right multiplication
by its group elements. This implies that (using
the invariance under right multiplication) for M
distributed according to `F, the random lattices
ℤ2M and ℤ2M g have the same distribution for
every element g ∈ SL(2,ℝ). In other words, the
random point process ℤ2M is SL(2,ℝ)-stationary!
The process is, however, not translation-stationary
since the origin is always realised. But even with
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the origin removed, the random process ℤ2M \ {0}
is not translation-stationary (as the formulas below
will show). Nevertheless, Siegel’s famous mean value
formula (published in 1945) shows that its intensity
measure is the standard Lebesgue measure dy .

Siegel’s mean value formula

Motivated by questions in the geometry
of numbers, Siegel proved that for any
measurable function f : ℝ2 → ℝ≥0,∫

F

( ∑
x ∈ℤ2M \{0}

f (x)
)
d`F =

∫
ℝ2
f (y ) dy .

Siegel’s formula in fact works for lattices
in arbitrary dimension d . In 1998 it
was generalised by Veech to general
SL(d ,ℝ)-stationary point processes in ℝd .
(Veech in fact proved it for a more general
class of random locally �nite Borel measures
in ℝd ).

One challenge is now to work out the probability

ℙ

(
|ℤ2M ∩ B | = k

)
for a given Borel set B . This turns out to be more
di�cult than one would think, despite the explicit
and simple form of the Haar probability measure.
The problem is the domain of integration! Let us
specialise to the case of lattice points in a strip.

Lattice points in a strip

Consider the lattice ℤ2M restricted to the vertical
strip

Zw ,R =
(
w −R,w +R

)
× (0,∞),

the green strip in Figure 1. For simplicity (and because
it’s all that is needed for our applications below) we
assume that −R < w < R, so that the vertical axis
interesects Zw ,R . We can now look for the lattice
point in the strip with the lowest height, i.e., with the
smallest positive x2-coordinate. For typical lattices
this point will be unique, and we will denote it by q .

It is remarkable that, for any given lattice ℤ2M , there
are at most three possible choices for q : the two
basis vectors r ,s of ℤ2M with minimal height in the
larger vertical strip between −2R and 2R (see Figure

1), and their sum r + s . This fact, and its link to the
famous three gap theorem for circle rotations, is
explained in [15]. This pretty observation enables us
to calculate the distribution of the minimal height
vector q [12].

s

r

r + s

−2R w −R 0 w +R 2R

Figure 1. The two linearly independent lattice vectors with
lowest and second-lowest heights in the vertical strip
between −2R and 2R form a basis. One can show that at
any vertical strip of width one (in green) contains at least
one of the three points, and hence the minimal height
vector q is either r , s or r + s .

Distribution of the lattice point with
minimal height

If ℤ2M is a Haar random lattice, then the
minimal height vector q = (q1,q2) in Zw ,R
is distributed according to the probability
measure Kw ,R (q )dq with density Kw ,R (q1,q2)
given by

6
c2
H

(
1 +

q−12 −max
(
|w |, |q1 −w |

)
−R

|q1 |

)

where H (x) =


0 if x ≤ 0
x if 0 < x < 1
1 if 1 ≤ x .

The density Kw ,R (q ) evidently depends on the
choice of w , which proves that the random
process ℤ2M \ {0} is not translation-stationary. The
SL(2,ℝ)-stationarity of our random lattice implies
on the other hand that all distribution functions must
be invariant under a simultaneously scaling of the
horizontal and vertical directions by factors of _ > 0
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and _−1, respectively. And indeed, the invariance

K_w ,_R (_q1,_−1q2) = Kw ,R (q1,q2)

is consistent with the explicit formula above.

If one is only interested in the height q2 of q but not
its direction, simply integrate over q1 ∈ [w−R,w+R].
The result of this integration can be found in [12,
Eq. (26)]. There is nothing to prevent us to further
average over w , thus providing the distribution of
the minimal height for a randomly shifted strip. The
result of this second integration is as follows.

Distribution of minimal height on average

For a Haar random lattice ℤ2M the minimal
height of a lattice point in the strip Zw ,R ,
on average over w , is distributed according
to the probability measure PR (q2) dq2 =

2R P (2Rq2) dq2, with P (s ) given by (see also
Figure 2)

6
c2
×


1 (s ≤ 1)
1
s + 2

(
1 − 1

s

)2
log

(
1 − 1

s

)
− 1
2

(
1 − 2

s

)2
log

���1 − 2
s

��� (s > 1).

The �rst moment is
∫ 1
0 sP (s )ds = 1. There is,

however, a heavy tail: for s large, we have

P (s ) ∼ 4
c2
s−3.

So already the second moment diverges! Compare
this with the exponential distribution in Figure 2,
which we would have obtained for minimum height
points from a Poisson point process with unit
intensity, in a strip of unit width.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 2. The exponential density e−s (blue) vs. P (s ) (red).

Let us now discuss two natural examples where
these distributions can be found in the ‘wild’. The
�rst describes visibility in Pólya’s orchard or —
equivalently — the free path length in the periodic
Lorentz gas, and the second the energy level
statistics for quantum harmonic oscillators.

Figure 3. The author in a perfectly periodic orchard: A
poplar plantation near Pordenone, Italy.

rw s/r

Figure 4. Intercollision �ight of a particle in the Lorentz
gas with scatterers of radius r . The free path length s is
measured in units of 1/r and the the exit parameter w in
units of r .

Pólya’s orchard and the Lorentz gas

Pólya asked how far one could see in a forest, if all
tree trunks had the same radius r and were either (a)
randomly located or (b) planted on a perfect periodic
grid. The same question arises in the study of the
free path length for the two-dimensional Lorentz gas,
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where in the simplest setting a particle moves along
straight lines in an array of spherical scatterers, see
Figure 4. Let us here focus on the periodic setting,
where the trees/scatterers are centered at points of
ℤ2. What is the visibility, or free path length, with
the observer at a given tree looking in direction
(− sin q,cos q)? Is there a limit distribution when r
is small and \ random?

Figure 5. Left: A ray of length s/r in direction
(− sin q,cos q) intersecting k tree trunks of (small) radius
r . Right: A rectangle containing k lattice points pointing
the same direction, same length and width 2r .

Figure 6. Left: The con�guration in Figure 5 (right) rotated
clockwise by q. Right: The con�guration on the left
rescaled in the horizontal and vertical directions by
factors of r−1 and r , respectively. The rectangle has now
width 2 and height s .

The number of tree trunks of radius r intersecting
a ray of length s/r is the same as the number of
lattice points in a rectangle of width 2r and length
s/r , see Figure 5. Now let’s rotate the whole picture

clockwise as in Figure 6 (left). The rectangle is now
vertical, and instead of the lattice ℤ2 we have the
rotated lattice

R1 (q) = ℤ2
(
cos q − sin q
sin q cos q

)
,

which we have met before. Finally, we stretch the
picture as described in Figure 6 (right), and obtain
the rectangle of height s and width 2 — the
r -dependence is gone! On the �ipside, the underlying
lattice has now transformed to the r -dependent
lattice

Rr (q) = ℤ2
(
cos q − sin q
sin q cos q

) (
r −1 0
0 r

)
.

The visibility, or free path length, can now be
expressed as the minimal height of lattice points in
the strip Zw ,1, where w describes the o�set of the
ray relative to the center of the initial tree trunk; see
Figure 6. (For example w = 0 means the ray emerges
from its centre as in Figure 5.) The condition |w | < 1
ensures we are sitting somewhere on the tree trunk.
In the context of the Lorentz gas, the fact that the
minimal height can only take three values asw varies
is known as Thom’s problem, in turn a close variant
of Slater’s problem. The key fact we will now use is
the following:

Randomly rotated lattices

If q is a uniformly distributed random variable
in [− c

2 ,
c
2 ], then the random lattice Rr (q)

converges in distribution to the Haar random
lattice ℤ2M as r → 0.

This statement is a consequence of the
equidistribution of large circles in the homogeneous
space Γ\ SL(2,ℝ). The convergence implies that the
limit distribution for the minimal height vector q
in the lattice Rr (q) restricted to the strip Zw ,1 is
given by the density Kw ,1 (q ), and the corresponding
distribution of the free path length is P1 (s ) = 2P (2s ),
see Figure 7. Note that if we had measured visibility
in units of the diameter 2s rather than radius r , the
limit distribution would be P (s ).

In the case of the Lorentz gas, P1 (s ) was in fact
�rst found by the physicist Dahlqvist [3] in 1997,
and only in 2007 established rigorously by number
theorists Boca and Zaharescu [1], who employed
analytic methods based on continued fractions and
Farey sequences. The density Kw ,1 (q ) plays an
important role in describing particles in transport in
the periodic Lorentz gas, and in 2008 was calculated
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independently by Caglioti and Golse [2] by continued
fraction techniques, and by Strömbergsson and
the author [12] via random lattices. The principal
advantage of the latter method is that it works in
any dimension [13] and even extends to aperiodic,
quasicrystalline point con�gurations! Now, on to the
second ‘real-world’ appearance of random lattices.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

Figure 7. The distribution of free path for the periodic
Lorentz gas with scatterers of radius r = 10−8, sampled
over 6000 initial conditions. Theoretical curves are the
exponential density 2e−2s (blue) vs. P1 (s ) = 2P (2s ) (red).
The data was computed using the algorithm in [9].

Quantum oscillators

In quantum mechanics, the energy levels of bound
states can only take speci�c discrete (‘quantized’)
values. One of the simplest and most fundamental
quantum systems with a purely discrete spectrum is
the harmonic oscillator. In two space dimensions, its
energy levels are given by

Em,n = (m + 1
2 )~l1 + (n + 1

2 )~l2

where m,n = 0,1,2, . . . run through the non-negative
integers. The quantities l1,l2 are positive reals,
the oscillation frequencies and ~ denotes Planck’s
constant. If we measure energy in units of ~l2, we
have the simpler expression

nm,n = (m + 1
2 )u + (n +

1
2 ), u =

l1

l2
.

Of particular signi�cance are the spacings between
energy levels, as they determine the emission
spectrum of the system. After a little thought, you
can convince yourself that the spacings between
consecutive levels nm,n in the interval [E ,E + 1) are
the same as the gaps between the fractional parts
bm of the sequence mu , where m = 0, . . . ,N − 1 and

N is number of nm,n in [E ,E + 1). The three gap
theorem mentioned earlier thus implies that we have
the same phenomenon for the energy levels for a
harmonic oscillator, at least for intervals of length
one. A numerical illustration of this fact is given in
Figure 8.

0.5 1.0 1.5 2.0 2.5 3.0
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Figure 8. The gap distribution for the fractional parts of
nu , with n = 1, . . . ,50000 and u = c.

One can show, however, that the distribution in Figure
8 will not converge as N becomes large. The only
hope to see a limit is to introduce a further average
over u . Using the approach in [15], we can express
the gap between bm and its nearest neighbour to the
right as the minimal height of all lattice points in the
strip Zw ,1/2 (of width one), with w = m

N −
1
2 and the

lattice

PN (u) = ℤ2
(
1 u
0 1

) (
N −1 0
0 N

)
.

As in the case of randomly rotated lattices, also here
we have a limit theorem.

Randomly sheared lattices

If u is a uniformly distributed random variable
in [0,1], then the random lattice PN (u)
converges in distribution to the Haar random
lattice ℤ2M as N →∞.

This fact is based on the equidistribution of long
closed horocycles on Γ\ SL(2,ℝ), which was proved
by Zagier in 1979 in the case of the modular surface,
and for more general discrete subgroups Γ by Sarnak
in 1981. The most powerful extension of results of
this type (as well as the rotational averages used
for Pólya’s orchard) is due to Ratner in the early
1990s [16]. It describes equidistribution of unipotent
orbits on quotients Γ\G whereG is now a general Lie
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group. (Horocycles are special examples of unipotent
orbits.) Recent breakthroughs that build on Ratner’s
work include the deep measure classi�cation and
equidistribution theorems for moduli spaces by Eskin,
Mirzakhani and Mohammadi. For an introduction
to dynamics on homogeneous spaces and their
relevance in number theory I recommend the
excellent textbook by Einsiedler and Ward [4].

0.5 1.0 1.5 2.0 2.5 3.0
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Figure 9. The gap distribution for the fractional parts of
nu , with n = 1, . . . ,2000 and u sampled over 2000
randomly chosen points in [0,1]. Theoretical curves are
the exponential density e−s (blue) vs. P (s ) (red).

By the same reasoning we used earlier for
Pólya’s orchard, the convergence of randomly
sheared lattices to Haar distributed random lattices
establishes the convergence of the gap distribution
for the fractional parts of mu . The one di�erence is
we now sum overw = m

N −
1
2 (m = 0, . . . ,N −1) rather

than integrate — but this discrete average can be
treated as a Riemann sum which approximates the
Riemann integral for N large. We can conclude that
the gaps between fractional parts on mu , and thus
the energy level spacings for quantum oscillators,
have the same limit distribution as the free path
length in the periodic Lorentz gas! Figure 9 compares
numerical data with the theoretical prediction.

The explicit form of the level spacing distribution for
quantum oscillators (in Figure 9) was �rst established
by Greenman [7] in 1996, following previous work
on the problem by Berry and Tabor (1977), Bohigas,
Giannoni and Pandey (1989), Bleher (1990-91), Pandey
and Ramaswamy (1992), Mazel and Sinai (1992); see
[10] for details and references. Greenman’s paper
predates Dahlqvist’s and Boca and Zaharescu’s work
on the Lorentz gas; and perhaps more remarkably,
the likeness of the two distributions seems to have
been overlooked even in the recent literature [17]!
That the two are the same is evident of course by
simply staring at the explicit formulas, and perhaps

no surprise given the similarity of their arithmetic
setting. The beauty of using lattices is that we
have a conceptual understanding of why the limit
distributions must coincide: random rotations and
random shears both converge to the same Haar
probability measure — a non-trivial fact!

Other applications

We can construct random lattices that are not only
SL(2,ℝ)-stationary but also translation-stationary
as follows. Take the randomly shifted lattice ℤ2 + "
with " uniformly distributed in the unit square [0,1]2
(recall our construction in dimension one), then apply
a linear transformation to obtain the random a�ne
lattice

(
ℤ2 + "

)
M with M distributed in F with

respect to Haar measure. This point process is now
translation-stationary and it has intensity one. In
fact, also its second moment coincides with that
of a Poisson point process; again a consequence
of Siegel’s mean value formula [5, App. B]. In 2004,
Elkies and McMullen [6] proved that the limiting
gap distribution for the fractional parts of

√
n, n =

1,2,3, . . . can be derived via a random a�ne lattice.
The proof uses equidistribution of certain nonlinear
horocycles, which is a consequence of Ratner’s
measure classi�cation theorem. The distribution
found by Elkies and McMullen also describes the
limiting distribution for directions in a �xed a�ne
lattice [13].

Random lattices appeared in the probability
literature in Kallenberg’s disproof of the Davidson
conjecture [8] on the classi�cation of line processes
which have (almost surely) no parallel lines.
The counterexamples to the conjecture were
constructed using two-dimensional random a�ne
lattices restricted to a vertical strip, where each
lattice point represents a line via the standard
linear parametrisation. This is particularly impressive
as Kallenberg was unaware of Siegel’s classical
construction in the geometry of numbers, as clari�ed
by Kingman; see the quote at the end of Kallenberg’s
paper.

Other examples where random lattices play an
important role are the value distribution of quadratic
forms, such as in Margulis’ proof of the Oppenheim
conjecture, the Hall distribution describing the
gaps between Farey fractions, random Diophantine
approximation, diameters of random Caley graphs
of abelian groups, the Frobenius problem, hitting
times for integrable dynamical systems, deviations of
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ergodic averages of toral translations, etc. And how
about random lattices in non-Euclidean settings?

But these are stories for another day!

Take home message

• Random lattices are important point
processes with connections to ergodic
theory, geometry, number theory,
combinatorics, probability and physics.

• The level spacing distribution of a quantum
oscillator equals the free path distribution
of the periodic Lorentz gas.
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Marriages, Couples, and the Making of
Mathematical Careers

DAVID E. DUNNING AND BRIGITTE STENHOUSE

By considering instances of mathematicians who have worked closely with a spouse or partner, we o�er
historical perspectives on gender and work-life balance in mathematical research. We aim to use history
to open space for re-imagining how collaboration, home-life, and labour �t together in the mathematical
community today.

The home life of mathematics

Though mathematicians are often imagined as
the quintessential solitary researchers, many have
managed the daily routines of a mathematical
career through partnership with a spouse who
was intimately involved in their working life. Whilst
marriage is certainly not the only, nor even the most
common form that collaboration can take, it does
o�er an especially clear window on the unstable
boundaries dividing labour into the intellectual and
the domestic, the masculinised and the feminised, or
the credited and the unacknowledged. As historians
of mathematics, we suggest that by looking at how
such categories were made, sustained, and changed
in the past, we can not only deepen our historical
understanding but also support more equitable
mathematical practice in the present.

A focus on collaboration is part of a broader trend
in history of science scholarship which has sought
to unravel the myth of the ‘lone genius’, that
heroic, solitary — and usually white, male, European
— individual who is celebrated as the sole mind
behind innumerable discoveries. This is perhaps
best encapsulated by Isaac Newton’s so-called annus
mirabilis or ‘Year of Wonders’, a period of intense
productivity when he escaped from Cambridge to
Woolsthorpe Manor during the Great Plague of
1665–6; it was here that he seemingly ‘invented’
calculus out of nothing, revolutionising physics and
mathematics. However, this narrative sidelines and
undervalues the work that had already been done
by mathematicians such as Pierre de Fermat, René
Descartes, or Isaac Barrow on the problems of �nding
tangents and quadratures. Futhermore it renders
invisible the extensive network of mathematicians
who corresponded with each other on such topics,
and of which Newton was a part. These written
exchanges could be facilitated by formal bodies, such

as learned academies and societies, but just as often
were part of personal correspondence.

Thus our need to understand individual
achievements in their wider intellectual and social
context should not end at the boundary of o�cially
recognised scholarly activity. The importance of
scienti�c knowledge production in the ‘domestic
sphere’ — that is at home, in private, or through
informal exchange — has been well treated
in literature on women in science. Until very
recently women were unable to access the ‘public’
institutions which have long been privileged as
knowledge-making spaces: universities, scienti�c
academies, or research laboratories. Only by looking
beyond these spaces have historians recognised
the many creative ways women found to participate
in scienti�c endeavours. Ineligible to study at the
École Polytechnique in 1794, Sophie Germain entered
into correspondence with Joseph-Louis Lagrange
under the pseudonym Antoine-Auguste Le Blanc in
order to get a copy of his lecture notes to study.
Germain subsequently situated herself within a wider
network of mathematical correspondents, perhaps
most notably Carl Friedrich Gauss, and although
she never directly published her work on Fermat’s
Last Theorem it was certainly read by Adrien-Marie
Legendre who explicitly attributed a result to her in
a memoir he presented to the Académie des Sciences
in 1823 [2].

To bring the collaboration that takes place within
a household to the foreground is then to unite
these two currents in historical research, viewing
collaboration and domesticity together. Historians of
science have studied collaboration between married
couples and other domestic partners, but so far we
lack a study dedicated to collaborative couples in
the history of mathematics. Collaborative couples
in mathematics, however, present a special case in
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Figure 1: Participants at the 1950 ICM. HUPSF International Congress of Math (BP1), Harvard University Archives.

that so many kinds of mathematical practice are
possible without any sort of specialised equipment
or facilities; there need be no di�erence between
domestic space and the space of mathematical
research. At times this fact has made mathematical
work more accessible to women than other forms
of scienti�c contribution, though that access has
not meant their work was regarded in equal or
ungendered terms. Rather instances of mathematical
collaborative couples provide us a window on the
complex gendered terrain of collaboration within a
marriage.

At home, the lines between the kinds of labour
a couple divvied up among themselves and those
which they delegated to servants, secretaries, or
extended family, position mathematicians in a wider
structure of class and familial relations. For Dorothy
Vaughan, the transition from school teacher to
professional mathematician was contingent on her
wider family providing childcare when she moved 137
miles away from her children to take up a job at
Langley Research Centre, part of the United States
National Advisory Committee for Aeronautics, in 1943.
Vaughan’s life and career is treated in Margot Lee
Shetterley’s book Hidden Figures, and the 2016 �lm of
the same name. Living through the global pandemic
in 2020 has certainly underscored the relationship
between gender, class, and caring responsibilities,
with the greatest reduction in time available for
research being felt by female scientists with young
dependents [5].

Couples and careers

We have so far emphasised domestic settings,
but a couple’s collaborative activity is certainly
not limited to the home. Many couples have

worked together to construct a shared network of
mathematical acquaintances via letter writing or,
more recently, through attendance at international
meetings, congresses, and conferences — sites at
which it can be impossible to separate mathematical
from purely social exchange. O�cially, women
often attended such conferences as spouses and
therefore do not turn up on the list of participants,
but nevertheless engaged with the mathematical
community in a meaningful way. Indeed the Women’s
Committee of the 1950 International Congress of
Mathematicians in Cambridge, Massachusetts was
made up of the wives of the organisers, and oversaw
some of the social activities at the conference which
were vital to international exchange. Thus women,
including many who were not mathematicians
themselves, helped sustain the professional networks
that made international mathematical research
possible.

Exclusion from formal membership in such networks,
however, was often one of the tactics used by
elite scientists to contain the perceived threat
to their professional status represented by rising
gender, sexual, or racial diversity in science.
Heterosexual couples who were also colleagues
can serve as useful comparative illustrations of
the di�erential obstacles women faced, even
while their marriages also sometimes o�ered
strategies for circumventing those obstacles. The
mathematical logician, psychologist, and activist
Christine Ladd-Franklin completed the requirements
for a PhD in Mathematics at Johns Hopkins University
in 1882. But the university — employing another
increasingly common tactic for hindering women’s
scienti�c activity — drew the line at actually awarding
degrees to the few women it grudgingly permitted
to become students. Her husband Fabian Franklin’s
scienti�c career, however, o�ered them stability
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and even the opportunity for them both to spend
a sabbatical year in Europe. Ladd-Franklin spent
this time working in the labs of Georg Müller in
Göttingen and Hermann von Helmholtz in Berlin.
Franklin left academia for journalism in 1895, whereas
Ladd-Franklin remained an active, highly regarded
scholar into old age, but she never had access to
the academic positions and resources he had had at
his disposal. In 1926 she �nally received the PhD she
had earned 44 years earlier.

The so-called ‘two-body problem’, where both
partners are early career researchers on the
academic job market, continues to create tension
for those hoping for work-life balance. The likelihood
of both partners successfully �nding work in
the same geographic location is often decreased
further when their research is in the same or very
similar �elds. According to the documentary �lm
by George Csicsery, Secrets of the Surface: The
Mathematical Vision of Maryam Mirzakhani, such
considerations even in�uenced the career trajectory
of Fields Medallist Mirzakhani, who was married to
mathematician Jan Vondrák.

In the case of couples who have collaborated even
more closely, working together on the �nest details of
their research, the distinction between cooperation
and exploitation can be slippery. A challenge for
historical interpretation arises in cases of joint work
appearing under a single (usually male) name, an
arrangement that may or may not have been mutually
agreeable depending on each partner’s interpretation
of their own role. The most well-known case in
mathematics is that of Grace Chisholm Young and
William Henry Young. In 1895, aged 27, Chisholm
Young was awarded her doctorate in mathematics
at Göttingen University, and between then and
1929 the Youngs published over 200 mathematical
papers. They collaborated closely throughout this
time, however only 13 papers were published jointly,
and only 18 were published under Chisholm Young’s
name alone. At a time when there were very few
paid positions for women to teach or research
mathematics (and even fewer for married women), it
seems that it was more bene�cial economically for
them as a household to attribute the work solely to
William Young.

The terms of a collaboration, however, do not always
remain amiable. When Mileva Mari threatened her
ex-husband Albert Einstein with revealing the extent
of their collaboration on work published under his
name, his chilling response was to point out that no
one would believe her:

“You made me laugh when you began to
threaten me with your memories . . .When
a person is completely insigni�cant, there
is nothing else to tell such a person but to
remain modest and silent. This is what I advise
you to do.” [1, p. 241].

The exploitation of collaborators arising from an
unequal power dynamic is still extremely relevant
today and of course not con�ned to partnerships.
PhD students and post-doctoral researchers face
chronic job instability whilst being reliant on the
support and collaboration of supervisors when
preparing their work for publication. This is further
complicated by the widespread sexual harassment
which persists at universities in the UK. The 2018
NUS Report on sta�-student sexual misconduct in
higher education found that 41% of the 1535 students
who responded to the survey had experienced
sexual misconduct from sta�, with postgraduates
more likely to have experienced misconduct than
undergraduates. Students were also more likely to
have experienced sexual misconduct from university
sta� if they were women, and more again if they
identi�ed as gay, queer, or bisexual. [6, pp. 8–9].

Given that the division of labour within a couple
is so often governed by prevailing inequities in the
society in which they live, it is no surprise that male
mathematicians have tended to more easily receive
credit, compensation, and prestige than their female
partners. By favouring William Henry Young’s name,
the Youngs adopted a highly successful strategy in
a publishing landscape that was not of their own
design.

But we also �nd examples of cooperative e�orts
to prioritise a woman’s mathematical career, such
as the case of Mary Somerville (née Fairfax) and
her husband Dr. William Somerville. Ineligible for
a university education or for election to a learned
society as a woman, Somerville’s access to the
mathematical knowledge circulating in these spaces
was highly restricted. As a ‘clubbable’ gentlemen
with interests in natural history and mineralogy,
her husband, on the other hand, was elected a
member of numerous learned societies including
the prestigious Royal Society of London. He actively
supported Somerville in her studies and scienti�c
writing by borrowing books from libraries on her
behalf, soliciting information from other society
members, either in person at meetings, or via
letter correspondence, and liaising with her publisher
during the production of her books [7]. Dr. Somerville
seems to have had no interest in mathematical
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research or in cultivating a reputation for himself
as an eminent scientist. The importance of this
disinterest was noted by geologist Charles Lyell in
1831 when he wrote the following:

“had our friend Mrs. Somerville been married
to La Place, or some mathematician, we
should never have heard of her work. She
would have merged it in her husband’s, and
passed it o� as his.” [3, p. 325]

While emphasising the role domestic partnerships
have played in mathematical work, we should not
neglect the converse in�uence that mathematical
careers can exert on a given couple’s way of building
a life together. In his survey of collaboration of
queer couples in the sciences, Opitz suggests that
“the ethos of professional respectability claimed
a signi�cant role in shaping the dynamics of
[queer] collaborative partnerships” [4]. That is to
say, scientists curated an image of themselves
and their relationships in order to conform with
scienti�c practice of the time, whether that was as
equal partners sharing expertise, or one partner
being positioned as a researcher and the other
as a domestic helpmate. This in turn a�ected the
dynamics of the relationship itself, for example
whether the partners desired or were able to
achieve cohabitation. Moreover, the lived experience
of a queer scienti�c couple was, and is, heavily
in�uenced by social factors, such as the need to avoid
harassment and discrimination in the workplace.

Paying attention to mathematicians’ marriages also
reveals ways that a mathematical career continues
to be shaped and reimagined after an individual’s
death. After Bernhard Riemann’s death, his widow
Elise Riemann played an active role in the production
of his Collected Works, while Emilie Weber helped
buttress the friendship of Heinrich Weber and
Richard Dedekind as they edited the publication.
Similarly, Mary Everest Boole asserted quite an active
voice in the commemoration of her husband, the
logician George Boole, whom she survived by half
a century. After his death she published proli�cally
on mathematical and logical pedagogy intertwined
with religious issues, developing a mystical (and
often mystifying) interpretation of George’s work.
In light of his well-documented reticence to speak
publicly about his own religious beliefs, along with
the temporal distance between his career as an
author and hers, it is di�cult to discern which of
her ideas he shared. But whereas sexist dismissals
of Mary’s admittedly eccentric views were once

common, scholarly consensus now rightly recognises
her as a generally reliable witness to the more
personal manifestations of George’s thought. Today
his contributions are better remembered through
the lens of the information-theoretic interpretation
developed by Claude Shannon in the mid-twentieth
century. (Claude and his wife Betty Shannon, a
computer at Bell Labs, o�er another example of a
mathematically collaborative marriage.) But Mary’s
e�orts to shape the commemoration of George’s
legacy stand as an insightful body of work, o�ering
a useful reminder that the meaning of a person’s
career is not �xed at the time of their death, and
does not belong to the deceased alone.

Figure 2. A letter from Augustus De Morgan to Dr.
Somerville, sending Bailly’s History of Astronomy for “Mrs
Somerville”. Bodleian Library, Somerville Collection, Dep.
c. 370, MSD-3 126, reproduced courtesy of the Principal
and Fellows of Somerville College.

The work of mathematics, past and present

Mathematical research — as the readers of the
Newsletter will hardly need reminding — is work.
When we understand the history of mathematics
as the history of a particular kind of work, it is
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clear that a full picture must include the related
and interdependent kinds of labour that together
form the context in which people make their lives
as mathematicians. Such a historical perspective in
turn compels us to recognise the seemingly mundane
questions around various divisions of labour as
meaningfully intrinsic to the work of mathematics in
the present.

In suggesting marriages as a focal point, we certainly
do not mean to overlook the many workers of diverse
kinds who have not been part of a mathematical
couple; this is just one line of historical inquiry
among many. We call attention to it as a particularly
illuminating one: given the feasibility of doing
mathematics at home, and the paper-based practices
so often constitutive of mathematical knowledge,
studies of collaborative couples stand to o�er much
insight to the history of mathematics. Moreover, such
studies naturally look beyond ‘lone geniuses’ and
destabilise the history of mathematics as presented
in university courses, namely as a body of knowledge
steadily unearthed through the conjecturing and
proving of theorems by the individuals after whom
they are named.

To organise mathematical work in a particular way, to
the advantage or disadvantage of particular people,
has always been part of the making of mathematical
careers. But the great diversity of ways this process
has played out in the past illustrates the contingency
of any given arrangement, and hence the possibility
of re-imagining how collaboration, domesticity, and
labour �t together in the mathematical community
today.

To �nd out more...

We encourage readers to attend the
forthcoming workshop Marriages, Couples, and
the Making of Mathematical Careers, supported
by the LMS and the British Society for the
History of Mathematics, to be held online
29–30 April 2021.

For more details and free registration please
visit mathmarriages.wordpress.com.
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To Ithaca

MARINA ILIOPOULOU

“As you set out for Ithaka / hope your road is a long one, / full of adventure, full of discovery....” 1. After ten years
of postgraduate experience, Marina Iliopoulou re�ects on the mathematician’s academic journey — bumpy,
constant and exciting.

In February 2019, after four years of PhD and nearly
six years of postdoctoral positions, I enthusiastically
assumed my �rst permanent appointment, as
Lecturer in Pure Mathematics at the University of
Kent. Starting a new life in a new place, I was eager to
bring my mathematical friends over, to discuss our
work and show them around beautiful Canterbury. In
February 2020, this became a reality: using my LMS
Celebrating New Appointments grant, I organised a
cosy one-day conference at the University of Kent.

The meeting featured four specialist talks on recent
advances in harmonic analysis, and surpassed
my expectations, attracting about 25 people from
around the UK. I was particularly happy to see
that there was a lot of mathematical interaction,
even between participants who had not met before.
The experience made me feel at home at Kent
and renewed my connection to the UK harmonic
analysis group, fuelling me with further excitement
for upcoming collaborations. Now, after several
months, the memory of the meeting is even more
special, marking the last time our harmonic analysis
group met, before coronavirus changed everything.

Having forgotten to take a photo of the meeting, I provide
one of the venue: SMSAS, University of Kent

As mathematicians, we primarily aim to create new
mathematics. This goal largely shapes our lives.
Before taking on permanent positions, we take on
years of training (in my case, a decade) of PhD
study and postdoctoral work, close to experts around
the world. Solving a mathematical problem can take
a lot of time — even years — and requires daily
dedication and deep concentration. Being so focused
without getting disheartened is not always easy. We
like being productive, but unfortunately performing
mathematical research o�ers no guarantee of results
— at least not when the problem is worth it. For
many of us, however, hunting down the truths behind
di�cult questions is reward in itself, motivating us
to lead this, often uncertain, life.

My own mathematical journey started in my home
town, with an undergraduate degree in mathematics
at the University of Athens (Greece). My professors
there were truly inspirational — and, even though
I had not the remotest idea what academic life is
like, I knew well enough that I loved puzzles and
wanted advanced mathematics to stay in my life.
My lecturers advised me to do a PhD abroad. I still
remember my surprise when I was told that getting
a PhD requires proving new theorems — somehow
until then I had assumed that all maths had already
been created, by people long dead. So, even though
I had never thought of leaving Greece (or wanted
to), I applied for postgraduate programmes abroad.
I was exceptionally lucky to be accepted for a PhD
at the University of Edinburgh, to work on harmonic
analysis under the supervision of Tony Carbery.

My four PhD years in Edinburgh were the happiest
of my life. Tony was a wonderful supervisor, who
respected my personal taste in mathematics and
gave me problems that I truly cared about —
combinatorial at the time. He also granted me
absolute intellectual freedom, trusting that I would
ask for guidance if I needed to. This was exactly what
I needed to be creative. Research became intertwined

1The �rst lines of "To Ithaca" by C. P. Cavafy
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with a care-free life, and was constantly in my mind.
In fact, I came up with the �nal piece of the solution
of my �rst problem — a piece I was missing for
months — after returning from a party at 4am. I
mention this not to endorse heavy drinking, but to
demonstrate that we always think our maths, and
that a regular 9am–5pm o�ce schedule doesn’t
necessarily get our ideas �owing.

At the start of my PhD, an unexpected breakthrough
in harmonic analysis (not induced by myself!)
made the �eld one of the most fertile in modern
mathematics. In particular, harmonic analysis aims to
understand the interaction of waves. Mathematicians
had long been trying to understand this interaction
via toy problems (including combinatorial questions,
such as the ones I worked on during my PhD). As I was
starting my PhD, such combinatorial problems were
shown to have a deep algebraic nature. Since then,
this algebraic behaviour has been systematically
exploited, leading to major advances in geometric
and analytic problems that in the recent past had
been considered untouchable. For us who work in
the �eld, these are exciting times to be alive. I quickly
became eager to work on the original harmonic
analytic problems that gave rise to the combinatorial
ones I was focusing on, and to contribute a little to
this wave of progress.

I achieved this during my postdoctoral positions
over the next six years, in Birmingham, MSRI and
UC Berkeley. Inspired by the vision of my mentors
(such as Jon Bennett in Birmingham and Michael
Christ in Berkeley), I started realising that being a
successful researcher means much more than just
solving problems. It also means developing a taste
for what is interesting; seeking connections between
di�erent mathematical areas; and creating questions
that matter. I started adopting this way of thinking,
and creating research plans and proposals of my
own.

All these years of e�ort and travelling had their
good and bad moments, and naturally shaped me
and my personal life. There are successes and
disappointments: for every paper I have produced,
I can provide a sizeable list of problems that I have
failed to solve, despite trying very hard. Often work
has been very hectic. For example, during my �rst
semester at Berkeley, I somehow managed to impose

upon myself the tightest travel restrictions short
of house arrest: I was spending so much time on
teaching preparations that I didn’t get a chance to
walk a single step west of my �at (I only had time
to go to the university and the supermarket, which
sadly were both east).

Not knowing where our next job will be, or even if
we will manage to secure one, despite so many years
of hard work, can be stressful, and can seriously
hinder our personal life. However, it is also exciting,
because, truly, anything can happen. It is a life full
of travel and experiences, anticipation and strong
excitement. Our love for research gives us energy
and con�dence, and can take us very far from where
we started, to destinations that we never imagined.

Some destinations where mathematics has taken me

My long-anticipated permanent job gave me
certainty and relief. Naturally, it comes with other
responsibilities, apart from research and teaching,
which I am still learning to balance. And while it
means the end of care-free research-oriented years,
the search for new questions and ideas never ends.
This search has the power to make every moment
interesting.

Marina Iliopoulou

Marina is a Lecturer in
Pure Mathematics at
the University of Kent.
She is interested in the
interface of harmonic
analysis, incidence
geometry and additive

combinatorics. She also loves singing, but her
neighbours prefer when she quietly does maths.
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Microtheses and Nanotheses provide space in the Newsletter for current and recent research students to
communicate their research �ndings with the community. We welcome submissions for this section from
current and recent research students. See newsletter.lms.ac.uk for preparation and submission guidance.

Microthesis: A Novel Algorithm for Solving
Fredholm Integral Equations

FRANCESCA ROMANA CRUCINIO

Fredholm integral equations of the �rst kind are the prototypical example of ill-posed linear inverse problems.
They model, among other things, reconstruction from noisy or delayed observations and image reconstruction.
My PhD project explores the use of Monte Carlo methods to solve these integral equations.

Fredholm Integral Equations

Fredholm integral equations of the �rst kind

h (y) =
∫

g (x ,y) f (x) dx , (1)

are linear integral equations in which the function
f is the unknown and g ,h are given. They
generalise linear systems of equations to the
in�nite-dimensional setting and describe the
distortion caused by g on the function f .

Solving (1) corresponds to reconstructing f from
its distorted version h. In the simplest case, the
distortion g models addition of noise to the signal f ,
which has to be reconstructed from its noisy version
h, a task known as deconvolution.

Fredholm equations �nd applications in medical
imaging, where f corresponds to an image which
is reconstructed from data provided by tomography
scanners. In epidemiology, (1) links the incidence
curve of a disease to the observed number of cases.

Regularisation

Fredholm integral equations (1) are generally ill-posed
and stable solutions can be found minimising a
distance between the h and the right-hand-side of (1).
We consider regularised solutions f which minimise
the Kullback-Leibler distance∫

h (y) log
(

h (y)∫
g (x ,y) f (x) dx

)
dy , (2)

with additional constraints to ensure smooth
reconstructions of f .

To minimise (2), we resort to iterative techniques
which, given an initial guess, reduce (2) sequentially
until a �xed point is reached and the reconstruction
of f stops improving.

Computational Considerations

Standard approaches to regularisation require
discretisation of the domain of f , restricting their
applications to low-dimensional scenarios, and make
strong assumptions on the regularity of f . Often,
knowledge of an analytic representation of h is
required.

Monte Carlo methods are a class of simulation based
techniques which approximate a (density) function f
through a set of samples. These algorithms provide
a stochastic discretisation of the domain of f which
can be applied in high-dimensional scenarios and can
be naturally implemented when only observations
from h are available.

Interacting Particle Methods

Interacting particle methods are a class of Monte
Carlo methods which approximate a probability
density through a population of (weighted) samples
evolving over time. My PhD project considers a
particular family of interacting particle methods,
sequential Monte Carlo (SMC).

newsletter.lms.ac.uk
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Figure 1. Sequential
Monte Carlo

In SMC, a population
of weighted samples
sequentially undergoes
random mutations,
which are weighted
so that mutations
that produce �tter
individuals are more
likely to survive
(selection). A new
population is originated
by replicating �tter
mutations, while the
other individuals die
out; see [2] for a more
detailed account.

We use SMC to approximate the �xed point of
the iterative scheme and show that the estimators
we propose enjoy good asymptotic properties:
as the discretisation gets �ner they converge to
a regularised solution of the integral equation.
Currently, we are exploring the use of McKean-Vlasov
stochastic di�erential equations to approximate the
function f minimising a penalised version of (2).

Image Reconstruction

Given the blurred image in the �rst panel of Figure 2
we can reconstruct the corresponding clear image
by solving a 2D Fredholm integral equation.

Blurred Image Iteration 5

Iteration 20 Iteration 100

Figure 2. Given the blurred image, h, we iteratively
reconstruct the original image, f . The function g
describes the motion which caused the blur.

Reconstruction of cross-sections of the brain from
the noisy measurements provided by positron
emission tomography (PET) scanners is one of the
most relevant applications of Fredholm integral
equations. These reconstructions are used to analyse

internal biological processes to detect medical
conditions such as schizophrenia, cancer, Alzheimer’s
disease and coronary artery disease.

The algorithm reconstructs the reference image
in the �nal panel of Figure 3 by re�ning the
reconstruction until a �xed point is reached.

Iteration 1 Iteration 5 Iteration 10

Iteration 20 Iteration 100 Reference Image

Figure 3. A cross-section of the brain is reconstructed
from the data given by a PET scanner.
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FURTHER READING

[1] F. R. Crucinio, A. Doucet, A. M. Johansen, A
Particle Method for Solving Fredholm Equations of
the First Kind, Preprint 2020, arXiv:2009.09974
[2] P. Del Moral, Feynman-Kac Formulae, Springer
2004

Francesca Romana
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Francesca is a PhD
student at the
Department of Statistics
of the University of
Warwick, supervised by
Adam M. Johansen and

Arnaud Doucet. Her main research interest is in
Monte Carlo methods, with a particular focus on
particle methods and their theoretical properties.
Outside of research, she enjoys travelling, good food
and board games.



i
i

“NLMS_493” — 2021/2/16 — 13:09 — page 59 — #59 i
i

i
i

i
i

REVIEWS 59

Mage Merlin’s Unsolved Mathematical Mysteries

by Satyan Linus Devadoss and Matthew Harvey, MIT Press, 2020, £20.00,
US$25.00, ISBN: 978-0262044080

Review by Troy Kaighin Astarte

I was summoned to
Camelot, where the great
mage Merlin told me of
sixteen mysteries...

This is a pleasant
and satisfying little
book, perfect for the
aesthetically-inclined
mathematician’s co�ee
table. It is short (I read
it cover-to-cover in
forty-�ve minutes) and

beautifully presented.

The book opens with a scan of the landscape of
mathematics, as seen by the authors. They say that
most people think of mathematics like a mountain: a
solid base of well-known topics, tapering up through
layers of increasing complexity, to the rarefied and
mysterious peaks of unsolved problems. The authors
propose that instead, mathematics should be seen like
an ice-cream cone: a palatable, if mundane, conical
base, growing steadily more tasty as one moves
upwards towards the delicious, downwards-trickling
frozen treat of mathematical mystery. The metaphor
is perhaps a little odd as most people do not begin
eating ice-cream cones from the point, but serves
to illustrate that unsolved maths can be seen as
reachable and desirable.

A new metaphor is swiftly employed after the first
few pages, which sticks throughout the book: our
narrator is Maryam, a young mathematician named
after Fields Medallist Maryam Mirzakhani, who is a
distant descendant of the legendary Merlin. A book
of tales written by Merlin himself has been handed
down to Maryam, and she has picked out sixteen
mathematical puzzles from the book. While unsolved
by Merlin or anyone else since, Maryam offers us
a tantalising glint of hope that we might be able to
solve them by reminding us of Andrew Wiles’ famous
solving of Fermat’s Last Theorem.

It is these ‘mysteries’ which constitute the majority
of the book. They cover a number of areas in
mathematics. From geometry, we have a puzzle about
arranging smaller squares to cover a larger one; in
graph theory, we ponder the relationship between
edges and vertices in thrackles; and in number theory,
we wonder whether there are infinitely many twin
primes. Many of the puzzles will be well-known to the
mathematical reader; others may be less so.

It is in the presentation of the puzzles that the
book shines. Each mystery is described by Merlin
in a double-page spread with beautiful typography,
lovely illustrations, and a short in-universe story
in which characters from Arthurian lore display
perverse attachments to particular mathematical
concepts. (Guinevere insists that on her daughters’
prime-numbered birthdays, red candles be lit.) Every
tale ends with Merlin sighing that “even with his
powers of magic and logic” he is never able to solve
them.

Each puzzle is preceded by a short introduction to
the mathematical concept handwritten in character
by Maryam, and a longer discussion follows each,
written (as far as I can tell) in the voice of Devadoss
and Harvey. The discussions explain the problem
in modern mathematical terminology and examine
related concepts. They include some proven results
related to the puzzle and explain who solved them;
some pointers are given about the direction one might
go to solve it. The puzzles are all clearly explained,
and, if inspired, one could easily start work on them
right away.

So, who is the book for? Despite its playful framing,
it is probably not a book for young children to read
themselves — the explanation sections are a little
advanced for anyone younger than secondary-school
age. The puzzles themselves are very accessible,
though, and one can certainly imagine young children
enjoying listening to the stories and talking about how
to think about the puzzle. Personally, I have always
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struggled with puzzles, tending to feel stupid that
I can’t solve them; but at least here, knowing the
best mathematical minds of generations hadn’t solved
them, there was no expectation that I should! I
found the most fun in trying to work out the maths
concepts behind each puzzle and beginning to develop
a strategy for their solution.

I think this book would do its best work on a coffee
table. I imagine most mathematically-minded people
would enjoy reading quickly through it when first
bought, and then dipping into it occasionally later. The
experienced mathematician is unlikely to find anything
new here, except perhaps the motivation to start
thinking about one of the problems. It might also serve
to interest a young relative caught by the illustrations
and start a conversation about maths.

One thing that an older reader might be prompted to
discuss is the role of computers in mathematics. Many
explanations mention that computer-assisted projects
have helped get some way towards solving puzzles
but not provided complete proofs. It is a shame, then,
that there is no discussion of the four-colour theorem,
which was significant and contentious for being a
long-standing conjecture whose computer-produced
proof was too complex for a human to comprehend.1

Well then, should you buy the book? I think so! If you have
the disposable income, twenty pounds on this is rather
nice. Think of it as a nice art piecewith a funmathematical
flavour that could prompt some good discussions.

FURTHER READING

[1] Appel, Kenneth, and Wolfgang Haken. ‘The
solution of the four-color-map problem.’ Scienti�c
American 237.4 (1977): 108-121.
[2] MacKenzie, Donald A. Mechanizing proof:
computing, risk, and trust. MIT Press, 2001.

Troy Astarte

Troy K. Astarte is a
researcher at Newcastle
University. Their main
research interest is
history of computer
science and the
demilitarised zones

between computing, mathematics, and logic. Troy
comes from Lancaster (UK) and regularly leads a
small team of enthusiastic problem-solvers through
improvisational and creative challenges (we play
Dungeons & Dragons).

1See [1] for the initial publication; a good discussion of the socio-philosophical implications of computers in proof is [2]. Chapter 4 of that
book specifically deals with the four-colour theorem.
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Fundamentals of Graph Theory

by Allan Bickle, American Mathematical Society, 2020, US$85.00,
ISBN: 978-1-4704-5342-8

Review by Claire Cornock

The author presents
standard topics that
you would expect to
see within a graph
theory book. These
include Eulerian graphs,
Hamiltonian graphs,
trees, algorithms (e.g.
to �nd a minimum
spanning tree), planar
and non-planar graphs,

colour theorems and bipartite graphs. The contents
extend far beyond this list, including more advanced
topics such as generalised graph colourings.

This book is fairly expensive, but you certainly get a
lot for your money. Amongst the 336 pages, there is a
large number of definitions and theorems, over 1,200
exercises and a long list of references to other sources.
There are nine main sections, each with an average of
over 20 pages and an average of 125 exercises, with
further information and questions in the appendices.

My background is within Pure Mathematics, with
limited knowledge of graph theory. I am familiar
with some of the basic methods and concepts
without any of the depth. I found that parts of the
book were very straightforward to follow, particularly
when de�nitions and results were backed up with
examples and/or diagrams. I had di�culty with some
concepts that I had not encountered before, but all
the information is there to persist with learning the
material. The longer you spend with the book, the
easier it is to follow.

This book aims to be appropriate for a range
of audiences, which is ambitious for any
publication. This includes undergraduates on
Mathematics-related degrees (e.g., Computer
Science), Mathematics undergraduates (with limited
prior exposure to proof), more experienced
Mathematics undergraduates and Mathematics
postgraduate students. There is a very detailed guide
for using the book which is confusing at �rst glance,

but the detail includes handy information on which
sections are needed before each part of the book,
and contains recommendations for the content of
lectures for each of the four student groups. There
seems to be a lot of content for a series of lectures,
but this is a useful guide for a lecturer to use.

I believe that the book is most suitable for lecturers
and PhD students. It is a great reference book for
anyone who wants to study the subject further
to work towards some of the unsolved parts of
graph theory. It can be used by more experienced
undergraduate Mathematics students, but with
caution. If they focus only on the parts that
correspond to their studies, this is a great book for
additional reading. It would be particularly good for
those students studying graph theory within their
�nal year project, under the guidance of a lecturer. I
do not think this book is suitable for students who
are not studying a Mathematics course. There is a
lot of information that is not relevant and it would be
di�cult to pick out the parts that are, as the more
complex results are alongside the more basic ideas.

The book is really well thought out. For example, the
order of the topics has been carefully considered.
At the end of each section, there is a list of topics
that relate to the ideas that are presented. There is
a very good section in the appendices on general
proof. This includes techniques, examples and lots
of exercises, with some linked to graph theory.

The best feature of this book is the extensive set
of exercises. These are conveniently presented
for each subsection, rather than listed together.
Understandably there are no answers, but the
questions are such a valuable resource regardless
of this.

My favourite section was the one on Hamiltonian
graphs. Really interesting facts are presented,
such as the connection with puzzles. There is a
particularly nice example of a Hamiltonian graph,
which contains a very detailed description of how
a Hamiltonian cycle was found. The applications
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include the Knight’s Tour and visiting different
cities. I was unfamiliar with the use of tournaments
in voting theory and found this part especially
interesting. I also liked the sections where the
historical background is provided. For example, a
good account of the historical developments is
presented within the section on the Four Colour
Theorem.

Real-life examples are used to motivate some
of the topics, which include road networks, data
storage and sporting fixtures. I especially liked how
graph theory is introduced at the start with the
consideration of social networks. Results move
far beyond the practical, motivating examples and
are studied mostly from an abstract perspective
and regarding specific graphs. There is extensive
consideration of when certain conditions hold.
Proofs are presented for most results, and
references are generally provided when they are

not. The book was especially good at highlighting
areas that had unsolved or partially solved
problems. It is made clear when results are only
known for certain cases. This makes the book
especially useful for the more advanced students.

Claire Cornock

Claire is a Principal
Lecturer at She�eld
Hallam University. She
studied Semigroup
Theory for her PhD and
now researches teaching
and learning pedagogy.

Claire is known for teaching with Rubik’s cubes to
help her students’ understanding of abstract ideas
within group theory.
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Number Theory: A Very Short Introduction

by Robin Wilson, Oxford University Press, 2020, £8.99, US$11.95,
ISBN: 978-0198798095

Review by Zachary Walker

Robin Wilson’s Number
Theory: A Very Short
Introduction is a
concise book but very
informative, aimed at
readers unfamiliar with
the subject. It is part of
a series of ‘Very Short
Introductions’ known
for being of a very
high quality, this book
certainly lives up to that

reputation. It is only 150 pages and split into nine
chapters. Despite its relatively in-depth content given
the target audience, it is a digestible short read.

The introductory chapter provides a fantastic
list of questions to provide motivation for the
investigation of the topic. These questions cover
both real world and abstract ideas, which one
would expect to capture the attention of the
wide audience the book is intended for. The
majority of the book is spent going over many
standard results of the field, but this does not
seem academic or dry. Particularly in the second
half, Wilson goes on to include applications of
some of the ideas covered, a few of these appear
more contrived than others but succeed in keeping
momentum throughout the book. The crescendo
of the chapter is a look at some of the most
well-known unsolved problems and recent results
which can be explained well with the material
introduced.

As former president of the British Society for
the History of Mathematics, Wilson unsurprisingly
takes the opportunity to include some fascinating
references to the timeline of number theory.
An impressive span of Eratosthenes through to
Andrew Wiles. The context of how number theory
was developed helps to justify interest in the
subject. Even if one was familiar with the maths
in this book then I think simply seeing how ideas
were developed could make it an interesting read.

Wilson starts with explanations that seem to presume
little prior knowledge, going over congruences, factors
and Euclid’s algorithm. These first ideas are explained
very well but as the ideas become more complicated
the fine details of the proofs are generally omitted,
which could be frustrating or confusing to someone
reading into the subject for the first time. I do not
think this is a significant issue but it does leave
some ambiguity as to whom the book is intended
for. While there are a set of official questions set out,
Wilson is not constrained to these and is constantly
using questions to point to theorems as a solution
to them. Knowledge of which results were likely to
be shown did not spoil the anticipation of resolving
the problems.

So many of the examples could be picked out but
I found the short section about Charles Dodgson’s
method for determining the day of the week of any
date especially satisfying. On one level this is an
amusing party trick, but I think it is more than that.
Wilson demonstrates that the simple tools that have
been explained can be used to provide a solution to
something, such that there is a sense of an underlying
order, although it is not clear what order that is. This
reveals something of the beauty of numbers and
mathematics in general.

The structure of call and response between the
problems and solutions being developed by revealing
more results from number theory sets up expectation
for the reader, which is broken in the final chapters.
After hearing about the Goldbach conjecture one
almost expects Wilson to introduce a new idea,
building on the rest of the book to solve the
conjecture, but the lack of an answer is far from
dissatisfying. The cliffhanger of open problems is not
only exciting but gives relevance to the subject by
showing how far away it is from being a complete field.
Unrealistic as it may be, I think leaving the reader in
a place where they are so desperate for resolution
that they attempt to find the answer themselves is
testament to this book being an inspiration.
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In case the reader missed it, the �nal short chapter
summarises all the questions covered and gives
succinct answers to all of them. It is in reading the
solutions to these problems that one realises that
the maths developed goes beyond the questions
themselves to provide a powerful framework.

Overall, this book is a good introduction to the
number theory but does an even better job of getting
a reader excited enough about the subject that I
think they would want to pursue it further. Wilson
has impressively captured the essence of the topic.

Zachary Walker

Zachary Walker is
an undergraduate in
his third year at The
Queen’s College, Oxford.
This year he has chosen
to study algebra and the
history of maths. When

he is not trying to �nish problem sheets, he enjoys
playing the cello.
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Obituaries of Members

Peter M. Neumann: 1940–2020

Photograph by Veronika Vernier (2007). © Mathematical
Institute

Peter Neumann, who was elected a member of the
London Mathematical Society on 17 December 1964,
died on 18 December 2020, aged 79.

Cheryl Praeger and Martin Liebeck write: Peter
Neumann was the �rst son of the well-known
mathematicians Bernhard and Hanna Neumann, who
came to the UK from Germany in the 1930s. Peter was
born in Oxford on 28 December 1940, where Hanna
was working on her DPhil while Bernhard served
with the Pioneer Corps in the British Army. After
the war, Bernhard and Hanna obtained university
appointments in Hull, where Peter grew up before
going to Queen’s College Oxford in 1959. During
1961–62, while still an undergraduate, Peter joined
his parents on their sabbatical year at the Courant
Institute in New York, and began mathematical
research on varieties of groups. This resulted in his
�rst research paper in 1962, the ‘3N’ paper written
jointly with his parents, and in 1964, the ‘B+3N’
paper published jointly also with Gilbert Baumslag.
Peter started his DPhil at Oxford in 1963 under the
supervision of Graham Higman, and by the time he
�nished in 1966, he had published �ve more research
articles, and had been awarded a Tutorial Fellowship
at Queen’s, to be followed a year later by a university
lectureship. He remained at Oxford for his entire
career, retiring in 2008.

Peter’s lifelong contribution to mathematics in the UK
and worldwide was monumental and wide-ranging:
through his research in algebra and the history of
algebra; his supervision of over 40 doctoral students,
many of whom went on to have distinguished
academic careers; his extensive service to the

London Mathematical Society; and his enormous
contribution to mathematics education.

Let us �rst brie�y discuss Peter’s research. Peter
was a leading �gure in algebra for over 50 years,
publishing around 100 papers and books on a
wide range of topics: varieties of groups, soluble
groups, group enumeration, permutation groups, and
algorithms in computational algebra. Each of his
publications is beautifully crafted, and its place in
mathematics carefully thought out and explained,
together with insightful comments on where further
work might lead. His work was highly in�uential, and
we are just two of his many bene�ciaries. Peter was
also a great collaborator, publishing with 38 di�erent
co-authors, and holding visiting positions at many
places around the world. Peter described himself as
a ‘mathematician historian’ and wrote extensively on
the history of algebra, including his comprehensive
book on the mathematical writings of Évariste Galois,
published in 2011. Peter’s contributions to research
and scholarship were recognised by the London
Mathematical Society with the award of the Senior
Whitehead Prize in 2003, and by the British Society
for the History of Mathematics which established the
Neumann Prize in 2009 in his honour.

Peter’s service to the London Mathematical Society
was very extensive: he was Publications Secretary
(1967–72); Journal Editor (1976–79); Bulletin Book
Review Editor (1979–81); Bulletin Editor (1979–84)
and Monographs Editor (1999–2003). He was also
an O�cer of the Society, holding the position of
Vice-President from 1990–92. The LMS honoured
Peter not just with the Senior Whitehead Prize, but
also with the joint LMS–IMA David Crighton Medal in
2012.

Peter also made an enormous contribution to
mathematics education in the UK. He was the
founding Chairman of UK Mathematics Trust (UKMT),
serving from 1996 to 2005. The Trust works with
hundreds of volunteers across the UK to organise
competitions promoting problem solving and team
work and other mathematical enrichment activities
for schoolchildren. During his period as chairman,
Peter led UKMT in taking on the staging of the 2002
International Mathematical Olympiad. For his services
to mathematics education, Peter was awarded an
OBE in 2008.

Peter loved music and was a �ne violin and viola
player. Before his stroke in early 2018 he would
frequently cycle long distances to meetings. In July
2018, Peter moved to a care home on Cumnor
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Hill. He continued to solve The Guardian cryptic
crosswords regularly — with numerous Facetime
discussions with his wife Sylvia throughout the
pandemic lockdown when visitors were not allowed.
Peter was a wonderfully generous, warm and wise
person, and is deeply missed by his many friends,
colleagues and students.

Peter is survived by his wife of 58 years, Sylvia, their
sons David and James and daughter Jenny, their ten
grandchildren, and their �rst great-grandchild Isaac,
born 4 October 2020.

Gordon D. James: 1945–2020
Professor Gordon James,
who was elected a
member of the London
Mathematical Society
on 10 May 1985, died
on 5 December 2020,
aged 74. Professor James
was LMS Journal Editor
1989–93.

Rob Curtis writes: Gordon’s natural talent for
mathematics �rst became apparent at Eastbourne
College where he was taught by Eric Laming, an
inspirational teacher who became a �rm friend of the
family for many years. From Eastbourne, Gordon won
a scholarship to Sidney Sussex College, Cambridge,
where he was tutored by John Conway, and where
he obtained a First Class degree in 1967 followed
by Distinction in Part III of the Tripos the following
year. He was then taken on as a research student
by John Thompson, the pre-eminent �nite group
theorist of the day, and wrote a PhD thesis on the
modular representations of the Mathieu group M24
for which he was awarded a Smith Prize for his �rst
year research.

It was during Gordon’s Part III year whilst we shared
a house in Cherry Hinton that he met Mary, his
wife-to-be, and they married in 1971. Shortly after
receiving the PhD in 1972, he was elected to a
Fellowship at Sidney Sussex, a post he held until
1985 when he moved to Imperial College, London.
He was very soon promoted to a Readership in
1986 and then to a Professorship in 1989, when
he delivered an inaugural lecture entitled ‘What
the Hecke Algebras?’, being unable to resist the
pun on the area of mathematics in which he had
become an international expert. Indeed, from the
sporadic groups, Gordon’s consuming interest had
shifted to the representation theory of the symmetric

groups. In 1975 he had spent his sabbatical leave
in Canada and visited G. de B. Robinson, himself
famous for his contributions to the representations
of the symmetric groups, and Gordon proceeded
to extend the delightful and highly combinatorial
classical theory to modular representations. He
produced two books on this work, one joint with
Adalbert Kerber, putting the whole theory on a
rigorous foundation. He then became interested
in developing an analogous theory for the general
linear groups and, together with Richard Dipper,
introduced the concept of q -Schur algebras. His
collaboration with Dipper, Andrew Mathas and others
produced a body of signi�cant results during this
period and posed tantalising conjectures which
have led to further important developments in the
area. Gordon’s ground-breaking book on unipotent
representations of the �nite general linear groups
was awarded the Adams Prize in 1981.

Besides these advanced research monographs,
Gordon, together with Martin Liebeck, produced a
highly regarded and popular undergraduate text on
the representation theory of �nite groups.

During his time at Imperial, Gordon served as Head
of Pure Mathematics from 1991–97 and supervised
8 PhD students. He was highly respected as a
dedicated, unsel�sh and sympathetic member of the
department.

Sadly, in 2002 Gordon was diagnosed with
Parkinson’s disease and a few years later had to
take early retirement through ill health. He and Mary
retired to the Yorkshire Dales and Gordon determined
to keep the disease at bay by walking miles over
the wonderful moorland. I myself have struggled to
keep up with him as he went up over those hills like
a gazelle, although he was already less sure-footed
going downhill. On one occasion I recall we were both
winched down into the remarkable Gaping Gill cavern,
300 feet below ground, halfway to the Ingleborough
Peak. Gordon fought the disease with passion and
fortitude but inevitably it caught up with him, and by
the end he struggled to keep his balance. Throughout
this ordeal Mary was a constant and indefatigable
support to him.

Gordon had many interests. He was a �ne chess and
bridge player, although his fondness for a ‘psych’ one
spade opening bid could mislead his partner as much
as his opponents! It was also not unknown for him
to play a game in which hands traditionally contain
�ve cards, the standard Cambridge ante being one
tenth of a penny. After retirement Gordon threw
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himself energetically into Yorkshire village life and
soon became a hugely valued member of the local
community.

Gordon was a �ne mathematician, a superb colleague
and a loyal friend; he is survived by his wife Mary,
their two children Elizabeth and William, and �ve
grandchildren.

A.E.L. Davis: 1928–2020

A.E.L. Davis with Antonin Švejda (left) and Igor Janovský
(right). Photograph from ntm.cz

Ann Elizabeth Leighton Davis, who was elected a
member of the London Mathematical Society on 15
January 1988, died on 23 November 2020, aged 92.

Snezana Lawrence writes: A.E.L. Davis (who always
preferred this form of address), a mathematical
historian, began her academic career with a thesis on
Kepler, which she completed in 1981 at Imperial College,
University of London. Her thesis, ‘A Mathematical
Elucidation of the Bases of Kepler’s Laws’, established
her as a foremost scholar on Kepler. This took her
on to be an active member of the International
Astronomical Union (IAU) and the British Society of
the History of Mathematics in the years to come.

Davis became a Vice-Chair of IAU’s Commission on
Johannes Kepler twice in her lifetime, and was the
leading scholar on Kepler until her passing. She was
a productive and energetic historian of mathematics,
in more general terms, too. Her greatest output
in the history of mathematics was certainly her
compilation of the online archive named after her,
The Davis Historical Archive: Mathematical Women
in the British Isles, 1878–1940, part of the larger
MacTutor History of Mathematics archive at St
Andrews University (bit.ly/39yhQ8h). The archive lists
the names of all women graduates in mathematics,
around 2500 in total, from the twenty-one colleges

and universities that educated women in the given
period. As she went about her work on compiling
the archive, Davis collected about two hundred books
written by or about the women whose lives and
careers she investigated. This collection is diverse,
including academic but also school-books, discourses
or biographies. She donated the collection to the
London Mathematical Society, under the name of
‘Philippa Fawcett Collection’ (bit.ly/3cyTtJx).

The Philippa Fawcett Collection is now one of the LMS’s
Special Collections, and is housed in De Morgan House.
Both the collection and the insistence on calling it
after Fawcett testifies to the generosity of spirit as
well as her unwavering efforts to promote the work
of women in mathematics and to record and inspire
future female mathematicians. It also tells something
about Davis’ own regard for the rights of women:
Fawcett was ‘above the Senior Wrangler’ at Cambridge
in 1890, and a daughter of a noted suffragist Millicent
Fawcett.

I met A.E.L. Davis many times at the BSHM meetings;
her approach to life and to the history of mathematics
was refreshing, piercing, and inspiring. A fearlessly
independent woman, she was always genuinely
interested in others’ work and stories, and rarely spoke
about herself — I wish I had had more time to ask
her many more questions about her own life.

What I know is scarce and does not do justice to such
an important and productive historian of mathematics.
For many years she worked as an Associate Lecturer
for the Open University (1989–2004), and towards
the end of her life became an Honorary Research
Associate of University College London and an
Honorary Visiting Fellow at the Mathematical Sciences
Institute, Australian National University. It is in
Australia that Davis died last year; she will be sorely
missed amidst the historians of mathematics of UK,
and in our global community.

Robin J. Chapman: 1963–2020
Dr Robin Chapman,
who was elected a
member of the London
Mathematical Society on
19 June 1987, died on 18
October 2020, aged 57.

Peter Cameron writes:
Robin was born in May
1963 in Swansea. He

attended Dynevor Comprehensive, where he won

http://www.ntm.cz/
https://mathshistory.st-andrews.ac.uk/Davis/info.html
https://www.lms.ac.uk/library/special-collections
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a Postmastership to Merton College, Oxford. After
taking one of the top Firsts in his year, he went
to Cambridge to do Part III and was accepted as a
PhD student to work with Martin Taylor. He followed
Martin to Manchester, completing his PhD in 1987.
After a Junior Research Fellowship at Merton College,
he took a position at Exeter University where he
remained for the rest of his career, though he
retained great a�ection for Oxford.

Robin was a very able undergraduate. When the
Galois theory lecturer listed the subgroups of
the symmetric group of degree 4 and asked the
students to find polynomials realising each as a
Galois group, Robin’s comment was “You missed
one”. His tutorial partner Peter Kronheimer took
pride in finding the shortest and most elegant
answer to any problem; at first Robin simply fought
the problem into submission, but as his stature as
a mathematician grew he found he was capable
of shorter and more beautiful arguments. Later in
his career, his co-author Patrick Solé praised the
elegance of his work, when (for example) he proved
by hand the equivalence of two constructions of
the Leech lattice.

I greatly valued the information he provided on his
web page, which included short and efficient proofs
of various ‘folklore’ results such as Bertrand’s
postulate and the characterisation of orders for
which every group is abelian. Others shared this
opinion, and he was often cited on MathOverflow
and StackExchange.

Robin was a mathematician first and foremost,
but his interests were very wide indeed. Peter
Kronheimer played French horn in a wind-quartet;
his quartet perfomed Ligeti’s Six Bagatelles, and
Peter was surprised to find that not only did Robin
come to the performance, but he could expound
on the work and its place in Ligeti’s oeuvre. This
knowledge stood him well in Mastermind, where he
reached the final in 2005: his special subjects in
the heats and final were The Life and Music of Igor
Stravinsky, One Foot in the Grave and The Science
Fiction Novels of Philip K. Dick. It is said that the pub
quiz machine in the students’ bar at Manchester
helped fund his studies there.

Robin’s mathematical interests lay in discrete
mathematics and number theory. One thing
he is remembered for is his “evil determinant
problem”, subsequently solved by Maxim Vsemirnov.
He published 50 papers, was on the editorial
board of two journals, and organised the British
Combinatorial Conference in 2011.

After the opening of the Heilbronn Institute for
Mathematical Research in 2005, Robin split his
time between there and Exeter, doing collaborative
mathematical research supporting the work of
Government Communication Headquarters. He
worked with the UK Olympiad team, and both Tony
Gardiner and Imre Leader write warmly of him.

Robin took great joy from mathematics and brought
joy to many friends. He is survived by his brother
and family.

Death Notices
We regret to announce the following deaths:

• Patrick D. Barry, Professor Emeritus of University
College Cork, who died on 2 January 2021.

• Colin J. Bushnell, Emeritus Professor at King’s
College London, who died on 1 January 2021.

• Walter Forster, formerly of University of
Southampton, who died on 17 January 2021.

• Robin L. Hudson, formerly of Loughborough
University, who died on 12 January 2021.

• Brian H. Murdoch, formerly Erasmus Smith
Professor at Trinity College, Dublin, who died on 9
December 2020.

• Stephen Pride, formerly of University of Glasgow,
died on 21 October 2020.

• Tommy A. Whitelaw, formerly of the University of
Glasgow, who died on 21 January 2021.

Biographical Memoirs
Memoirs of Michael Atiyah (bit.ly/39CeJMP),
Christopher Hooley (bit.ly/3ap16ja), Frank Bonsall
(bit.ly/36xSYvr) and Edward Fraenkel (bit.ly/2MM0yLP)
have recently appeared in Biographical Memoirs of
Fellows of the Royal Society.

https://doi.org/10.1098/rsbm.2020.0001
https://doi.org/10.1098/rsbm.2020.0027
https://doi.org/10.1098/rsbm.2020.0007
https://doi.org/10.1098/rsbm.2020.0014
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Early Career Mathematicians’ Spring
Conference 2021

Location: Online
Date: 13 March 2021
Website: tinyurl.com/y2povzt3

This IMA conference will interest mathematicians
early in their career, in academia and industry,
students of mathematical sciences, as well as those
with an interest in the subject. It will feature
plenary talks from distinguished speakers covering
a wide range of subjects, as well as networking
activities. The Invited Speakers include Mihaela Rosca
(DeepMind and UCL) and Nick Higham (University of
Manchester).

LMS Women in Mathematics Day
2021

Location: Online
Date: 24 March 2021
Website: tinyurl.com/y5uwol5f

This event, open to mathematicians of all genders
and from all backgrounds, aims to promote
interest and careers in mathematics for women.
In addition to talks, the event will include a panel
discussion and a poster competition open to women
mathematicians at undergraduate, postgraduate and
early career levels. The deadline for registration is
21 March 2021, 16:00. Register your attendance at
tinyurl.com/y6bvdfg8.

LMS Meeting at the Joint
BMC–BAMC 2021

Location: Online
Date: 8 April 2021
Website: tinyurl.com/yarpowdo

This event was originally scheduled for 2020 and was
postponed owing to covid-19. The meeting will begin
with Society business, followed by an LMS lecture
by Ciprian Manolescu (Stanford). Further details and
updates on the meeting can be found on the website.

LMS Spitalfields History of
Mathematics Meeting

Location: Online
Date: 14 May 2021
Website: tinyurl.com/y3kpv6ye

This event, held by the LMS and UCL Special
Collections, will celebrate the launch of the Educational
Times Digital Archive. Talks will have a mathematical
historical focus, and will include a presentation from
UCL about their work on the collections.

Korteweg-de Vries Equation, Toda Lattice
and their Relevance to the FPUT Problem

Location: University of Lincoln
Date: 26 May 2021
Website: https://wp.me/PcBUF5-6

This meeting aims to highlight aspects of integrable
systems theory applied to near-integrable many-body
dynamical systems. Postgraduate and final year
undergraduate students are particularly encouraged to
apply. Participation is open to final year students, early
career researchers and academics.

Dynamics and Geometry Summer School

Location: University of Bristol
Date: 21 June–2 July 2021
Website: tinyurl.com/s5hn592j

Dynamics and Geometry are two intertwined
areas of mathematics that have seen revolutionary
breakthroughs in recent years. In this summer school
world-leading experts will speak about some of these
developments, alongside problem sessions and other
opportunities for discussion and interaction.

Modelling in Industrial Maintenance and
Reliability

Location: Online
Date: 28 June–2 July 2021
Website: tinyurl.com/IMAMIMAR

This conference is the premier maintenance and
reliability modelling conference in the UK and builds
upon a very successful series of previous conferences.
It is an excellent international forum for disseminating
information on the state-of-the-art research, theories
and practices in maintenance and reliability modelling.

Research Students’ Conference in
Population Genetics

Location: University of Warwick
Date: 21–23 July 2021
Website: tinyurl.com/y9fjp36b

This conference is aimed at young researchers
interested in mathematical and statistical aspects
of population genetics, including coalescent theory,
stochastic processes in population genetics,
computational statistics and machine learning for
genomics.

https://ima.org.uk/15786/online-event-ima-early-career-mathematicians-spring-conference-2021/
http://web.socem.plymouth.ac.uk/wim/index.html
https://www.eventbrite.co.uk/e/lms-women-in-mathematics-day-2021-tickets-134326816123
https://www.lms.ac.uk/events/meeting/lms-society-meeting-bmc
https://www.lms.ac.uk/events/meeting/joint-meeting-ucl-educational-times-digitisation
https://wp.me/PcBUF5-6
https://web-eur.cvent.com/event/7437b240-918f-410c-b997-37e1277197cc/summary?RefId=LMS
https://ima.org.uk/12183/11th-ima-international-conference-on-modelling-in-industrial-maintenance-and-reliability-mimar/
https://warwick.ac.uk/fac/sci/statistics/staff/research_students/ignatieva/conference/
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Young Geometric Group Theory X

Location: Newcastle University
Date: 26–30 July 2021
Website: conferences.ncl.ac.uk/yggt2021

The aim of this YGGT conference is to bring
together young researchers in geometric group
theory, post-docs and graduate students. It will allow
them to learn from one another and from senior
mathematicians invited to give tutorial courses and
lectures in several branches of geometric group
theory. Supported by an LMS Conference grant.

Young Functional Analysts’ Workshop

Location: Lancaster University
Date: 12–14 August 2021
Website: tinyurl.com/yce6j3gy

This is an event aimed at early-stage researchers
(PhD students and postdocs) in functional analysis
and related areas. It is a great opportunity to
bring researchers with shared interests together and
provides the opportunity for participants to present
their own work in front of a supportive and interested
audience.

Scaling Limits: From Statistical Mechanics
to Manifolds

Location: Cambridge
Date: 1–3 September 2021
Website: statslab.cam.ac.uk/james60

This workshop, postponed from 2020, is in honour of
James Norris’ 60th birthday. There will be 16 invited
talks covering: Random growth processes and SPDEs;
Yang-Mills measure; Limits of random graphs, random
planar maps, and fragmentation processes; Markov
chains, interacting particle systems and �uid limits;
Di�usion processes and heat kernels. A workshop
dinner will be held at Churchill College.

Heilbronn Annual Conference 2021

Location: Heilbronn Institute
Date: 9–10 September 2021
Website: tinyurl.com/y63vvoar

The Annual Conference of the Heilbronn Institute
for Mathematical Research is the Institute’s �agship
event. The eight invited speakers are: Caucher Birkar,
Jon Brundan, Ana Caraiani, Heather Harrington, Gil
Kalai, Peter Keevash, Jeremy Quastel and Tatiana
Smirnova-Nagnibeda. They will deliver lectures
intended to be accessible to a general audience of
mathematicians.

https://conferences.ncl.ac.uk/yggt2021/
https://sites.google.com/site/yfawuk/about
http://www.statslab.cam.ac.uk/james60 
https://heilbronn.ac.uk/2020/12/11/heilbronn-annual-conference-2021/
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Covid-19: Owing to the coronavirus pandemic, many events may be cancelled, postponed or moved
online. Members are advised to check event details with organisers.

Society Meetings and Events

March 2021
24 LMS Women in Mathematics Day (online)

(493)

April 2021

8 Society Meeting at the joint BMC–BAMC
2021 (online) (493)

May 2021

14 LMS Spital�elds History of Mathematics
Meeting: Educational Times Digital
Archive Launch, London (493)

June 2021

2-4 Midlands Regional Meeting and
Workshop, Lincoln

22 Society Meeting at the 8ECM, Portorož,
Slovenia

July 2021

2 General Meeting of the Society, London

September 2021

6-10 Northern Regional Meeting, Conference
in Celebration of the 60th Birthday
of Bill Crawley-Boevey, University of
Manchester

January 2022

4-6 South West & South Wales Regional
Meeting, Swansea

Calendar of Events

This calendar lists Society meetings and other mathematical events. Further information may be obtained
from the appropriate LMS Newsletter whose number is given in brackets. A fuller list is given on the Society’s
website (www.lms.ac.uk/content/calendar). Please send updates and corrections to calendar@lms.ac.uk.

March 2021

13 Early Career Mathematicians’ Spring
Conference 2021 (online) (493)

14 International Day of Mathematics (491)

30-31 Mathematics in Defence and Security IMA
Conference (online) (492)

April 2021

6-9 British Mathematical Colloquium and
British Applied Mathematics Colloquium
2021 (online) (492)

20-23 Mathematics of Operational Research
(online) (492)

29-30 Marriages, Couples, and the Making of
Mathematical Careers (online) (492)

May 2021

26 Korteweg–de Vries Equation, Toda Lattice
and their Relevance to the FPUT Problem,
University of Lincoln (493)



i
i

“NLMS_493” — 2021/2/16 — 13:09 — page 72 — #72 i
i

i
i

i
i

June 2021

20-26 8th European Congress of Mathematics,
Portorož, Slovenia (492)

21-2 Jul Dynamics and Geometry Summer
School, University of Bristol include (493)

28-2 July Modelling in Industrial Maintenance and
Reliability (online) (493)

July 2021

7-9 Nonlinearity and Coherent Structures,
Loughborough University (492)

12-16 New Challenges in Operator Semigroups,
St John’s College, Oxford (490)

19-23 Rigidity, Flexibility and Applications,
Lancaster University (492)

21-23 Research Students’ Conference in
Population Genetics, University of
Warwick (493)

26-30 Young Geometric Group Theory X,
Newcastle University (493)

August 2021

12-14 Young Functional Analysts’ Workshop,
Lancaster University (493)

16-20 IWOTA, Lancaster University (481)
18-20 Young Researchers in Algebraic Number

Theory III, University of Bristol (492)

September 2021

1-3 Scaling Limits: From Statistical Mechanics
to Manifolds, Cambridge (493)

9-10 Heilbronn Annual Conference 2021,
Heilbronn Institute (493)

16-17 Statistics at Bristol: Future Results and
You 2021, Heilbronn Institute

19-24 8th Heidelberg Laureate Forum,
Heidelberg, Germany

21-23 Conference in Honour of Sir Michael
Atiyah, Isaac Newton Institute,
Cambridge (493)

July 2022

24-26 7th IMA Conference on Numerical Linear
Algebra and Optimization, Birmingham
(487)




